Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCorrea Espinal, Alexander Alberto
dc.contributor.advisorGómez Montoya, Rodrigo Andrés
dc.contributor.authorCano Arenas, José Alejandro
dc.date.accessioned2020-07-27T21:59:41Z
dc.date.available2020-07-27T21:59:41Z
dc.date.issued2020-07-24
dc.identifier.citationCano, J.A. (2020). Problema multiobjetivo de conformación de lotes, secuenciación y ruteo del picking, considerando vehículos heterogéneos, almacenes 3D multibloques, pedidos con llegadas dinámicas y fechas de entrega con ventanas de tiempo. (Doctoral thesis), Universidad Nacional de Colombia - Sede Medellín, Colombia.
dc.identifier.citationCano, J.A. (2020). Problema multiobjetivo de conformación de lotes, secuenciación y ruteo del picking, considerando vehículos heterogéneos, almacenes 3D multibloques, pedidos con llegadas dinámicas y fechas de entrega con ventanas de tiempo. (Tesis de Doctorado), Universidad Nacional de Colombia - Sede Medellín, Colombia.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77859
dc.description.abstractThis doctoral thesis aims to solve the multi-objective order batching, batch sequencing, batch assignment, and picker routing problem (PMCLSARP), considering heterogeneous vehicles, multi-block 3D warehouses, customer orders with dynamic arrivals (online) and due-windows. For this, a systematic literature review is performed to characterize the complexity and reality of order picking systems. Then, a mathematical formulation is proposed for the PMCLSARP, showing this problem is classified as NP-Hard due to its complexity. To solve the online PMCLSARP, an algorithm called AGOG + AGOI is designed and developed by nesting two genetic algorithms, and the parameters of these algorithms are validated to find the combination that provides the best performance for the objective function and computing time. The performance of the AGOG + AGOI is validated through different experimental scenarios and it is compared with the results provided by two benchmarks, obtaining average savings in the objective function of 25.2% and 18.6% when comparing AGOG + AGOI with the algorithms FCFS-SS3D and EDD-SS3D respectively. Consequently, the AGOG + AGOI provides satisfactory solutions for warehouse operating environments regarding operational efficiency (picking time), customer service (tardiness and earliness), and reasonable computing time, which can vary between 34 seconds and 2,8 minutes for each run of the algorithm.
dc.description.abstractEsta tesis de doctorado tiene como objetivo solucionar el problema multiobjetivo de conformación de lotes, secuenciación, asignación y ruteo del picking (PMCLSARP), considerando vehículos heterogéneos, almacenes 3D multibloques, pedidos con llegadas dinámicas (en línea) y fechas de entrega con ventanas de tiempo. Para esto, se realizó una revisión sistemática de la literatura que caracterizó los componentes principales para una aproximación a la complejidad y realidad de la preparación de pedidos (picking) en almacenes y centros de distribución. A través de la formulación matemática del PMCLSARP se logra la modelación del problema a abordar en la tesis, el cual se clasifica como NP-Hard debido a su complejidad. Para solucionar el PMCLSARP en línea, se diseña y desarrolla un algoritmo denominado AGOG+AGOI que anida dos algoritmos genéticos, y a dichos algoritmos se les realiza una validación de parámetros para encontrar la combinación que brinde mejor desempeño para la función objetivo y tiempos de computación. El desempeño del AGOG+AGOI se valida a través de diferentes escenarios de operación de almacenes y centros de distribución, y se compara con los resultados obtenidos con dos puntos de referencia, obteniendo ahorros promedio en la función objetivo del 25,2% y 18,6% al comparar el AGOG+AGOI con los algoritmos FCFS-SS3D y EDD-SS3D, respectivamente. Por lo tanto, el AGOG+AGOI brinda soluciones satisfactorias en eficiencia operativa (tiempo de picking) y servicio al cliente (tardanza y prontitud), y en tiempos de computación razonables para ambientes operativos de almacén, que pueden variar entre 34 segundos y 2,8 minutos para cada corrida del AGOG+AGOI.
dc.format.extent165
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleProblema multiobjetivo de conformación de lotes, secuenciación y ruteo del picking, considerando múltiples operarios, vehículos con capacidad heterogénea, almacenes 3D multibloques, pedidos con llegadas dinámicas y fechas de entrega con ventanas de tiempo
dc.title.alternativeMulti-objective order batching, sequencing and routing picking problem considering on-line orders, multiple pickers, heterogeneous vehicles, multi-block 3D warehouses, and due-windows
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Industria y Organizaciones
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellín
dc.contributor.researchgroupMODELAMIENTO PARA LA GESTIÓN DE OPERACIONES (GIMGO)
dc.description.degreelevelDoctorado
dc.publisher.departmentDepartamento de Ingeniería de la Organización
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAlbareda-Sambola, M., Alonso-Ayuso, A., Molina, E., & De Blas, C. S. (2009). Variable neighborhood search for order batching in a warehouse. Asia-Pacific Journal of Operational Research, 26(5), 655–683. https://doi.org/10.1142/S0217595909002390
dc.relation.referencesArdjmand, E., Sanei, O., & Youssef, E. (2019). Using list-based simulated annealing and genetic algorithm for order batching and picker routing in put wall based picking systems. Applied Soft Computing Journal, 75, 106–119. https://doi.org/10.1016/j.asoc.2018.11.019
dc.relation.referencesAzadnia, A. H., Taheri, S., Ghadimi, P., Mat Saman, M. Z., & Wong, K. Y. (2013). Order batching in warehouses by minimizing total tardiness: A hybrid approach of weighted association rule mining and genetic algorithms. The Scientific World Journal, 2013(2013), 1–13. https://doi.org/10.1155/2013/246578
dc.relation.referencesBartholdi, J. J., & Hackman, S. T. (2014). Warehouse & Distribution Science Release 0.96 (0.96). Atlanta: Georgia Institute of Technology, School of Industrial and Systems Engineering, The Supply Chain and Logistics Institute. Retrieved from http://www2.isye.gatech.edu/~jjb/wh/book/editions/wh-sci-0.96.pdf
dc.relation.referencesBriant, O., Cambazard, H., Cattaruzza, D., Catusse, N., Ladier, A. L., & Ogier, M. (2020). An efficient and general approach for the joint order batching and picker routing problem. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2020.01.059
dc.relation.referencesCano, J. A. (2019). Parameters for a Genetic Algorithm: An Application for the Order Batching Problem. IBIMA Business Review, 2019(2019), Article ID 802597. https://doi.org/10.5171/2019.802597
dc.relation.referencesCano, J. A. (2020b). Order Picking Optimization Based on a Picker Routing Heuristic: Minimizing Total Traveled Distance in Warehouses. In G. Ç. Ceyhun (Ed.), Handbook of Research on the Applications of International Transportation and Logistics for World Trade (pp. 74–96). PA, USA: IGI Global. https://doi.org/10.4018/978-1-7998-1397-2.ch00
dc.relation.referencesCano, J. A., Correa-Espinal, A. A., & Gómez-Montoya, R. A. (2018a). A review of research trends in order batching, sequencing and picker routing problems. Espacios, 39(4), 3. Retrieved from https://www.revistaespacios.com/a18v39n04/18390403.html
dc.relation.referencesCano, J. A., Correa-Espinal, A. A., Gómez-Montoya, R. A., & Cortés, P. (2019). Genetic Algorithms for the Picker Routing Problem in Multi-block Warehouses. In W. Abramowicz & R. Corchuelo (Eds.), Lecture Notes in Business Information Processing (Vol. 353, pp. 313–322). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-20485-3_24
dc.relation.referencesCano, J. A., Correa-Espinal, A., & Gómez-Montoya, R. (2020). Using genetic algorithms for order batching in multi-parallel-aisle picker-to-parts systems. International Journal of Applied Decision Sciences, In press. https://doi.org/10.1504/IJADS.2020.10028086
dc.relation.referencesCano, J. A., Correa-espinal, A., Gómez, R. A., & Cortés, P. (2019). Distance and travel time modeling in high-level picker-to-part systems (3-D warehouses). Journal of Southwest Jiaotong University, 54(6).
dc.relation.referencesChen, F., Wang, H., Qi, C., & Xie, Y. (2013). An ant colony optimization routing algorithm for two order pickers with congestion consideration. Computers and Industrial Engineering, 66(1), 77–85. https://doi.org/10.1016/j.cie.2013.06.013
dc.relation.referencesChen, F., Wei, Y., & Wang, H. (2017). A heuristic based batching and assigning method for online customer orders. Flexible Services and Manufacturing Journal, 1–46. https://doi.org/10.1007/s10696-017-9277-7
dc.relation.referencesChirici, L., & Wang, K. S. (2014). Tackling the storage problem through genetic algorithms. Advances in Manufacturing, 2(3), 203–211. https://doi.org/10.1007/s40436-014-0074-1
dc.relation.referencesDavarzani, H., & Norrman, A. (2015). Toward a relevant agenda for warehousing research: literature review and practitioners’ input. Logistics Research, 8(1), 1–18. https://doi.org/10.1007/s12159-014-0120-1
dc.relation.referencesDunke, F., & Nickel, S. (2016). Evaluating the quality of online optimization algorithms by discrete event simulation. Central European Journal of Operations Research, 1–28. https://doi.org/10.1007/s10100-016-0455-6
dc.relation.referencesGademann, N., & van de Velde, S. (2005). Order batching to minimize total travel time in a parallel-aisle warehouse. IIE Transactions, 37(1), 63–75. https://doi.org/10.1080/07408170590516917
dc.relation.referencesGómez, R. A. (2015). Problemas de conformación de lotes con ruteo en el acomodo y la preparación de pedidos considerando K equipos heterogéneos. Universidad Nacional de Colombia. Retrieved from http://www.bdigital.unal.edu.co/50619/1/1017126155.2015.pdf
dc.relation.referencesHenn, S. (2012). Algorithms for on-line order batching in an order picking warehouse. Computers and Operations Research, 39(11), 2549–2563. https://doi.org/10.1016/j.cor.2011.12.019
dc.relation.referencesHo, Y.-C., & Tseng, Y.-Y. (2006). A study on order-batching methods of order-picking in a distribution centre with two cross-aisles. International Journal of Production Research, 44(17), 3391–3417. https://doi.org/10.1080/00207540600558015
dc.relation.referencesHong, S. (2015). Order Batch Formations for Less Picker Blocking in a Narrow-Aisle Picking System. INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 14(3), 289–298. https://doi.org/10.7232/iems.2015.14.3.289
dc.relation.referencesHsu, C.-M., Chen, K.-Y., & Chen, M.-C. (2005). Batching orders in warehouses by minimizing travel distance with genetic algorithms. Computers in Industry, 56(2), 169–178. https://doi.org/10.1016/j.compind.2004.06.001
dc.relation.referencesKitchenham, B. (2004). Procedures for performing systematic reviews. Joint Technical Report (Vol. 33). Australia: Department of Computer Science. https://doi.org/10.1.1.122.3308
dc.relation.referencesKulak, O., Sahin, Y., & Taner, M. E. (2012). Joint order batching and picker routing in single and multiple-cross-aisle warehouses using cluster-based tabu search algorithms. Flexible Services and Manufacturing Journal, 24(1), 52–80. https://doi.org/10.1007/s10696-011-9101-8
dc.relation.referencesLi, J., Huang, R., & Dai, J. B. (2017). Joint optimisation of order batching and picker routing in the online retailer’s warehouse in China. International Journal of Production Research, 55(2), 447–461. https://doi.org/10.1080/00207543.2016.1187313
dc.relation.referencesMa, T., & Zhao, P. (2014). A Review of Algorithms for Order Batching Problem in Distribution Center. In International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2014) (pp. 172–175). Shenyang, China.
dc.relation.referencesMatusiak, M., De Koster, R., & Saarinen, J. (2017). Utilizing individual picker skills to improve order batching in a warehouse. European Journal of Operational Research, 263(3), 888–899. https://doi.org/10.1016/j.ejor.2017.05.002
dc.relation.referencesMuter, I., & Öncan, T. (2015). An exact solution approach for the order batching problem. IIE Transactions (Institute of Industrial Engineers), 47(7), 728–738. https://doi.org/10.1080/0740817X.2014.991478
dc.relation.referencesÖncan, T. (2013). A Genetic Algorithm for the Order Batching Problem in low-level picker-to-part warehouse systems. In Lecture Notes in Engineering and Computer Science (Vol. 2202, pp. 19–24). Kowloon: Newswood Limited. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84880080871&partnerID=40&md5=996c6eb5b552b7895672105ab9f46bec
dc.relation.referencesPan, J. C.-H., Shih, P.-H., & Wu, M.-H. (2015). Order batching in a pick-and-pass warehousing system with group genetic algorithm. Omega, 57(B), 238–248. https://doi.org/10.1016/j.omega.2015.05.004
dc.relation.referencesPferschy, U., & Schauer, J. (2018). Order Batching and Routing in a Non-Standard Warehouse. Electronic Notes in Discrete Mathematics, 69, 125–132. https://doi.org/10.1016/j.endm.2018.07.017
dc.relation.referencesRubrico, J. I. U., Ota, J., Tamura, H., Akiyoshi, M., & Higashi, T. (2004). Route generation for warehouse management using fast heuristics. In IEEE/RSJ international conference proceedings on intelligent robots and systems (pp. 2093–2098). Sendai, Japan. https://doi.org/10.1109/IROS.2004.1389706
dc.relation.referencesScholz, A., Schubert, D., & Wäscher, G. (2017). Order picking with multiple pickers and due dates –Simultaneous solution of order batching, batch assignment and sequencing, and picker routing problems. European Journal of Operational Research, 263(2), 461–478. https://doi.org/10.1016/j.ejor.2017.04.038
dc.relation.referencesTheys, C., Bräysy, O., Dullaert, W., & Raa, B. (2010). Using a TSP heuristic for routing order pickers in warehouses. European Journal of Operational Research, 200(3), 755–763. https://doi.org/10.1016/j.ejor.2009.01.036
dc.relation.referencesValle, C. A., Beasley, J. E., & da Cunha, A. S. (2017). Optimally solving the joint order batching and picker routing problem. European Journal of Operational Research, 262(3), 817–834. https://doi.org/10.1016/j.ejor.2017.03.069
dc.relation.referencesVan Gils, T., Caris, A., Ramaekers, K., Braekers, K., & Koster, R. B. M. De. (2019). Designing efficient order picking systems: The effect of real-life features on the relationship among planning problems. Transportation Research Part E, 125, 47–73. https://doi.org/10.1016/j.tre.2019.02.010
dc.relation.referencesWang, Y., Fu, C., Ma, M., & Wang, L. (2012). Routing optimization of high-level order picking truck based on swarm intelligent algorithm. Applied Mechanics and Materials, 101–102, 414–417. https://doi.org/10.4028/www.scientific.net/AMM.101-102.414
dc.relation.referencesZhang, J., Wang, X., Chan, F. T. S., & Ruan, J. (2017). On-line order batching and sequencing problem with multiple pickers: A hybrid rule-based algorithm. Applied Mathematical Modelling, 45(1), 271–284. https://doi.org/10.1016/j.apm.2016.12.012
dc.relation.referencesZhang, J., Wang, X., & Huang, K. (2017). On-line scheduling of order picking and delivery with multiple zones and limited vehicle capacity. Omega, 79, 104–115. https://doi.org/10.1016/j.omega.2017.08.004
dc.relation.referencesZhao, Z., & Yang, P. (2017). Improving order-picking performance by optimizing order batching in multiple-cross-aisle warehouse systems: A case study from e-commerce in China. In 2017 4th International Conference on Industrial Engineering and Applications (ICIEA) (pp. 158–162). Nagoya, Japan: IEEE. https://doi.org/10.1109/IEA.2017.7939198
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalorder picking
dc.subject.proposalruteo del picking
dc.subject.proposalorder batching
dc.subject.proposalpicking
dc.subject.proposalalgoritmos genéticos
dc.subject.proposalpicker routing
dc.subject.proposalgestión de almacenes
dc.subject.proposalgenetic algorithms
dc.subject.proposalModelo multiobjetivo
dc.subject.proposalwarehouse management
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito