Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorSalguero López, Gustavo Andres
dc.contributor.advisorLozano Moreno, José Manuel
dc.contributor.authorMéndez Báez, Leidi Yohana
dc.date.accessioned2020-07-29T16:11:30Z
dc.date.available2020-07-29T16:11:30Z
dc.date.issued2020-05-01
dc.identifier.citationEvaluación In vitro de la actividad antimicrobiana de las Células Estromales Mesenquimales de Gelatina de Wharton (CEM-GW)
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77872
dc.description.abstractAntimicrobial resistance is a growing problem in global public health and threatens the prevention and effective treatment of infections. The investigation of alternative strategies point to the generation and use of antimicrobial peptides (AMP) given its broad spectrum of antimicrobial activity. A potential source of (AMP) resides in human mesenchymal stromal cells (MSC). MSC have demonstrated potent therapeutic effects in terms of immunomodulation and multilineage differentiation and are actively involved in tissue control and repair. This work focused on exploring the potential antimicrobial effect of MSC isolated from Wharton's jelly (GW) of the umbilical cord upon experimental infection with bacterial strains Escherichia coli 25922, Klebsiella pneumoniae 43816, Staphylococcus aureus 29213 and Staphylococcus epidermidis 12228. Experimental bacterial infection on CEM-GW triggered important antimicrobial activity whose magnitude depended on the inoculated bacterial strain. This observed antimicrobial effect depended strongly on the presence of human platelet lysate (LPh) in MSC growth media. Importantly, based on characterization of RNA expression and secretion of the AMPs β-defensin-1, Lipocalin-2 and Hepcidin in supernatant, the antimicrobial effect of CEM-GW was significantly associated with increased expression and secretion of AMPs, especially β-defensin-1 and Lipocalin-2. These results provide evidence of the antimicrobial effect that CEM-GW exerts on the bacterial strains used, which depends on the presence of LPh and results in the expression and secretion of AMPs, as a potential mechanism of defense against infection.
dc.description.abstractLa resistencia a los antimicrobianos es un problema creciente de salud pública mundial y amenaza la prevención y el tratamiento eficaz de las infecciones. La investigación de estrategias alternativas apunta a la generación y uso de péptidos antimicrobianos (AMP) dado su amplio espectro de actividad antimicrobiana. Una potencial fuente de (AMP) reside en células estromales mesenquimales (CEM) humanas. Las CEM han demostrado potentes efectos terapéuticos en términos de inmunomodulación y diferenciación multilinaje y participan activamente en el control y reparación tisular. Este trabajo se enfocó en explorar el potencial efecto antimicrobiano de las CEM aisladas de gelatina de Wharton (GW) del cordón umbilical ante la infección experimental con las cepas bacterianas Escherichia coli 25922, Klebsiella pneumoniae 43816, Staphylococcus aureus 29213 y Staphylococcus epidermidis 12228. A partir de la exposición de inóculos bacterianos a CEM-GW se pudo observar una importante actividad antimicrobiana cuya magnitud dependió de la cepa bacteriana inoculada. Este efecto antimicrobiano observado se relacionó fuertemente con la presencia de lisado plaquetario humano (LPh). De manera importante a partir de la caracterización de la expresión de ARN mensajero y secreción de los AMPs β-defensina-1, Lipocalina-2 y Hepcidina en sobrenadante, el efecto antimicrobiano de las CEM-GW se asoció significativamente al incremento de la expresión y secreción de AMPs, especialmente β-defensina-1 y Lipocalina-2. Estos resultados proveen evidencia del efecto antimicrobiano que ejercen las CEM-GW sobre las cepas bacterianas utilizadas, el cual depende de la presencia de LPh y deriva en la expresión y secreción de AMPs, como mecanismo de defensa a la infección.
dc.description.sponsorshipInstituto DIsitrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS)
dc.format.extent111
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Ciencias de la vida
dc.subject.ddc610 - Medicina y salud
dc.titleEvaluación In vitro de la actividad antimicrobiana de las células estromales mesenquimales de gelatina de Wharton (CEM-GW)
dc.typeDocumento de trabajo
dc.rights.spaAcceso abierto
dc.description.projectEvaluación In vitro de la actividad antimicrobiana de las Células Estromales Mesenquimales de Gelatina de Wharton (CEM-GW)
dc.description.additionalMagíster en Ciencias Microbiología.
dc.type.driverinfo:eu-repo/semantics/workingPaper
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.contributor.corporatenameInstituto Distrital de Ciencia Biotecnología e Innovación en Salud IDCBIS
dc.contributor.researchgroupUnidad de Terapias Avanzadas - IDCBIS
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1. OMS, Organización Mundial de la Salud, OMS, Editor. 2019.
dc.relation.references2. OMS, Informe sobre la salud del mundo 2017. Ginebra. 2017, Organización Mundial de la Salud
dc.relation.references3. Tabares, V.R. Resistencia bacteriana en la mira de investigadores. 2016 [cited 2018.
dc.relation.references4. González García, M., et al., Péptidos antimicrobianos: potencialidades terapéuticas. 2017. Vol. 69. 2017.
dc.relation.references5. Meisel, R., et al., Human but not murine multipotent mesenchymal stromal cells exhibit broad-spectrum antimicrobial effector function mediated by indoleamine 2, 3-dioxygenase. Leukemia, 2011. 25(4): p. 648.
dc.relation.references6. Klimczak, A. and U. Kozlowska, Mesenchymal Stromal Cells and Tissue-Specific Progenitor Cells: Their Role in Tissue Homeostasis. Stem Cells Int, 2016. 2016: p. 4285215.
dc.relation.references7. da Silva Meirelles, L., P.C. Chagastelles, and N.B. Nardi, Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci, 2006. 119(Pt 11): p. 2204-13.
dc.relation.references8. Wang, H.S., et al., Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem cells, 2004. 22(7): p. 1330-1337.
dc.relation.references9. Ariff, B. and F. Chui, The Therapeutic Potential, Challenges and FutureClinical Directions of Stem Cells from the Wharton’s Jellyof the Human Umbilical Cord. Stem Cell, 2015: p. 1-15.
dc.relation.references10. Paredes, F. and J.J. Roca, Acción de los antibióticos. Perspectiva de la medicación antimicrobiana. Offarm, 2004. 23(3): p. 116-124.
dc.relation.references11. Calvo, J. and L. Martínez-Martínez, Mecanismos de acción de los antimicrobianos. Enfermedades infecciosas y microbiología clínica, 2009. 27(1): p. 44-52.
dc.relation.references12. Nguyen, L.T., E.F. Haney, and H.J. Vogel, The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol, 2011. 29(9): p. 464-72.
dc.relation.references13. Casares, D., P.V. Escribá, and C.A. Rosselló, Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues. International journal of molecular sciences, 2019. 20(9): p. 2167
dc.relation.references14. Kapoor, G., S. Saigal, and A. Elongavan, Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of anaesthesiology, clinical pharmacology, 2017. 33(3): p. 300-305.
dc.relation.references15. Yoneyama, H. and R. Katsumata, Antibiotic resistance in bacteria and its future for novel antibiotic development. Biosci Biotechnol Biochem, 2006. 70(5): p. 1060-75.
dc.relation.references16. Zhang, L.-j. and R.L. Gallo, Antimicrobial peptides. Current Biology, 2016. 26(1): p. R14-R19.
dc.relation.references17. Van Epps, H.L., René Dubos: unearthing antibiotics. The Journal of experimental medicine, 2006. 203(2): p. 259-259.
dc.relation.references18. Bahar, A.A. and D. Ren, Antimicrobial peptides. Pharmaceuticals (Basel, Switzerland), 2013. 6(12): p. 1543-1575.
dc.relation.references19. Aysenur, Y., et al., Natural-based Antibiofilm and Antimicrobial Peptides from Microorganisms. Current Topics in Medicinal Chemistry, 2018. 18(24): p. 2102- 2107.
dc.relation.references20. Cassatella, M.A., et al., Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells, 2011. 29(6): p. 1001-11.
dc.relation.references21. Zasloff, M., Antimicrobial peptides of multicellular organisms. Nature, 2002. 415(6870): p. 389-95.
dc.relation.references22. Téllez, G.A. and J.C. Castaño, Péptidos antimicrobianos. Infectio, 2010. 14: p. 55- 67.
dc.relation.references23. Shai, Y., Mode of action of membrane active antimicrobial peptides. Biopolymers, 2002. 66(4): p. 236-48.
dc.relation.references24. Jenssen, H., P. Hamill, and R.E. Hancock, Peptide antimicrobial agents. Clin Microbiol Rev, 2006. 19(3): p. 491-511.
dc.relation.references25. Brogden, K.A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol, 2005. 3(3): p. 238-50.
dc.relation.references26. Marchand, C., et al., Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucleic Acids Res, 2006. 34(18): p. 5157-65.
dc.relation.references27. Meade, K.G. and C. O'Farrelly, β-Defensins: Farming the Microbiome for Homeostasis and Health. Frontiers in Immunology, 2019. 9(3072).
dc.relation.references28. da Silva, F.P. and M.C.C. Machado, Antimicrobial peptides: clinical relevance and therapeutic implications. Peptides, 2012. 36(2): p. 308-314.
dc.relation.references29. Doss, M., et al., Human defensins and LL‐37 in mucosal immunity. Journal of leukocyte biology, 2010. 87(1): p. 79-92.
dc.relation.references30. Park, C.H., et al., Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem, 2001. 276(11): p. 7806-10.
dc.relation.references31. Forrellat Barrios, M. and N. Fernández Delgado, Hepcidina: nueva molécula, nuevos horizontes. Revista Cubana de Hematología, Inmunología y Hemoterapia, 2004. 20: p. 0-0.
dc.relation.references32. Michels, K., et al., Hepcidin and Host Defense against Infectious Diseases. PLoS pathogens, 2015. 11(8): p. e1004998-e1004998.
dc.relation.references33. Lombardi, L., et al., Insights into the antimicrobial properties of hepcidins: advantages and drawbacks as potential therapeutic agents. Molecules, 2015. 20(4): p. 6319-41.
dc.relation.references34. Alfonso García, G., et al., Aspectos biomédicos de la familia de las lipocalinas. Universitas Medica, 2007. 48(2): p. 118-128.
dc.relation.references35. Borregaard, N. and J.B. Cowland, Neutrophil gelatinase-associated lipocalin, a siderophore-binding eukaryotic protein. Biometals, 2006. 19(2): p. 211-5.
dc.relation.references36. Dittrich, A.M., H.A. Meyer, and E. Hamelmann, The role of lipocalins in airway disease. Clin Exp Allergy, 2013. 43(5): p. 503-11.
dc.relation.references37. Berger, T., et al., Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci U S A, 2006. 103(6): p. 1834-9.
dc.relation.references38. Goetz, D.H., et al., The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell, 2002. 10(5): p. 1033-43.
dc.relation.references39. Cederlund, A., G.H. Gudmundsson, and B. Agerberth, Antimicrobial peptides important in innate immunity. Febs j, 2011. 278(20): p. 3942-51.
dc.relation.references40. Wang, S., et al., Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry. Int J Mol Sci, 2016. 17(5).
dc.relation.references41. Batoni, P., et al., Rational modification of a dendrimeric peptide with antimicrobial activity: Consequences on membrane-binding and biological properties. Amino Acids, 2016. 48: p. 887-900.
dc.relation.references42. Kfoury, Y. and D.T. Scadden, Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell, 2015. 16(3): p. 239-53.
dc.relation.references43. Flores-Figueroa, E., J.J. Montesinos, and H. Mayani, [Mesenchymal stem cell; history, biology and clinical application]. Rev Invest Clin, 2006. 58(5): p. 498-511.
dc.relation.references44. Dominici, M., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006. 8(4): p. 315-7.
dc.relation.references45. Watson, N., et al., Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells. Cytotherapy, 2015. 17(1): p. 18-24.
dc.relation.references46. Gronthos, S., et al., Stem cell properties of human dental pulp stem cells. J Dent Res, 2002. 81(8): p. 531-5.
dc.relation.references47. Panepucci, R.A., et al., Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells, 2004. 22(7): p. 1263- 78.
dc.relation.references48. Hua, J., et al., Small Molecule-Based Strategy Promotes Nucleus Pulposus Specific Differentiation of Adipose-Derived Mesenchymal Stem Cells. Mol Cells, 2019. 42(9): p. 661-671.
dc.relation.references49. Maurer, M., Proteomic Definitions of Mesenchymal Stem Cells. Stem cells international, 2011. 2011: p. 704256.
dc.relation.references50. Alcayaga-Miranda, F., J. Cuenca, and M. Khoury, Antimicrobial activity of mesenchymal stem cells: current status and new perspectives of antimicrobial peptide-based therapies. Frontiers in immunology, 2017. 8: p. 339.
dc.relation.references51. Krasnodembskaya, A., et al., Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells, 2010. 28(12): p. 2229-38.
dc.relation.references52. Gonzalez-Rey, E., et al., Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut, 2009. 58(7): p. 929-39.
dc.relation.references53. Lalu, M.M., et al., Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One, 2012. 7(10): p. e47559.
dc.relation.references54. Li, Z., et al., Human umbilical cord mesenchymal stem cell-loaded amniotic membrane for the repair of radial nerve injury. Neural Regen Res, 2013. 8(36): p. 3441-8.
dc.relation.references55. Kong, C.M., et al., Manufacturing of human Wharton's jelly stem cells for clinical use: selection of serum is important. Cytotherapy, 2019. 21(4): p. 483-495.
dc.relation.references56. Bastawrous, M., et al., Wharton’s Jelly Stem Cells. 2016. p. 257-276.
dc.relation.references57. Kim, D.-W., et al., Wharton’s jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. International journal of molecular sciences, 2013. 14(6): p. 11692-11712.
dc.relation.references58. Liau, L.L., et al., Characteristics and clinical applications of Wharton’s jelly-derived mesenchymal stromal cells. Current Research in Translational Medicine, 2019.
dc.relation.references59. Yoon, J.H., et al., Comparison of explant-derived and enzymatic digestion-derived MSCs and the growth factors from Wharton’s jelly. BioMed Research International, 2013. 2013.
dc.relation.references60. Loria, C.R., Cinetica Microbiana. 2016.
dc.relation.references61. López Vargas, J.A. and L.M. Echeverri Toro, K. pneumoniae: ¿la nueva "superbacteria"? Patogenicidad, epidemiología y mecanismos de resistencia. Iatreia, 2010. 23(2): p. 157-165.
dc.relation.references62. Olsen, I., Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis, 2015. 34(5): p. 877-86.
dc.relation.references63. Zendejas-Manzo, G.S., H. Avalos-Flores, and M.Y. Soto-Padilla, General microbiology Staphylococcus aureus: Characteristics and methods of identifying pathogenicity. Revista Biomédica, 2014. 25(3): p. 129-143.
dc.relation.references64. Ortega-Peña, S. and R. Franco-Cendejas, Importancia médica del biofilm de Staphylococcus epidermidis en las infecciones de prótesis articular. Invest Discap, 2014. 3(3): p. 106-113.
dc.relation.references65. Harman, R.M., et al., Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds. Stem Cell Res Ther, 2017. 8(1): p. 157.
dc.relation.references66. Hincapié Mejía, G.M., et al., Evaluación de la degradación de E. coli empleando un fotorreactor de discos rotatorios. Ingeniería e Investigación, 2007. 27: p. 65-69.
dc.relation.references67. Arias Palacios, J., et al., Comparación de la actividad antimicrobiana de meropenem genérico y meropenem innovador por la técnica de micro dilución en cepas resistentes. Revista Cubana de Farmacia, 2015. 49: p. 0-0.
dc.relation.references68. Tao, Z., et al., Impact of the Staphylococcus epidermidis LytSR two-component regulatory system on murein hydrolase activity, pyruvate utilization and global transcriptional profile. BMC microbiology, 2010. 10: p. 287.
dc.relation.references69. Biedermann, A., et al., Interactions of anaerobic bacteria with dental stem cells: an in vitro study. PloS one, 2014. 9(11): p. e110616-e110616.
dc.relation.references70. Macías-Abraham, C., et al., Características fenotípicas y funcionales de las células madre mesenquimales y endoteliales. Revista Cubana de Hematología, Inmunología y Hemoterapia, 2010. 26(4): p. 256-275.
dc.relation.references71. Ranzato, E., et al., Platelet lysate promotes in vitro wound scratch closure of human dermal fibroblasts: different roles of cell calcium, P38, ERK and PI3K/AKT. J Cell Mol Med, 2009. 13(8b): p. 2030-8.
dc.relation.references72. Benavente, R., et al., Enantioselective oxidation of galactitol 1-phosphate by galactitol-1-phosphate 5-dehydrogenase from Escherichia coli. Acta Crystallographica Section D, 2015. 71(7): p. 1540-1554.
dc.relation.references73. Becherucci, V., et al., Human platelet lysate in mesenchymal stromal cell expansion according to a GMP grade protocol: a cell factory experience. Stem Cell Res Ther, 2018. 9(1): p. 124.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalpéptidos antimicrobianos
dc.subject.proposalantimicrobial peptides
dc.subject.proposalβ-defensina-1
dc.subject.proposalβ-defensin-1
dc.subject.proposallipocalin-2
dc.subject.proposallipocalina-2
dc.subject.proposalCEM-GW
dc.subject.proposalhepcidin
dc.subject.proposalCEM-GW
dc.subject.proposalhepcidina
dc.subject.proposalcepas ATCC
dc.subject.proposalATCC strains
dc.type.coarhttp://purl.org/coar/resource_type/c_8042
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/WP
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito