Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorSilva Valencia, Jereson
dc.contributor.advisorMendoza Arenas, Juan Jose
dc.contributor.authorAvella Sarmiento, Richard Giovanni
dc.date.accessioned2020-08-07T04:35:37Z
dc.date.available2020-08-07T04:35:37Z
dc.date.issued2020-07-08
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77980
dc.description.abstractLas mezclas de partículas que satisfacen diferentes estadísticas han sucitado gran interes tanto teórico como experimental en la últimas decadas, debido a la posibilidad de confinar y manipular gases cuánticos en redes ópticas a bajas temperaturas. En este trabajo se estudia el estado fundamental de un sistema unidimensional, conformado por fermiones con espı́n 1/2 que interactuan con bosones escalares, por medio del Hamiltoniano Bose-Fermi-Hubbard; este Hamiltoniano no tiene solución exacta, por lo que se hace uso de la técnica conocida como grupo de renormalización de la matriz densidad. En esta investigación se encontró, que además de los estados aislantes relacionados con cada uno de los portadores y considerando una interacción de tipo repulsivo entre bosones y fermiones, surgen dos fases aislantes debidas a la mezcla Bose-Fermi. Uno de estos estados emerge, cuando la densidad total de partı́culas es conmesurable con el número de sitios de la red y cumple con la relación ρ_B + ρ_F = n (n = 1, 2); este estado se denomina estado aislante de Mott mezclado. Los otros estados aislantes surgen, cuando la densidad total de partı́culas no es conmesurable, cumplen con la relación ρ_B + 1/2 ρ_F = n (n = 1, 2) y se ubican entre los estados aislantes de Mott triviales. Al considerar que la interacción bosón-fermión es de tipo atractivo, se encontraron estados aislantes no conmesurados que cumplen con las relaciones ρ_B − ρ_F = n y ρ_B − 1/2 ρ_F = n con n = 0, ±1. Teniendo en cuenta los diferentes resultados experimentales, en este trabajo también se consideró el efecto de un potencial de confinamiento de tipo armónico sobre la mezcla de Bose-Fermi y se encontró un estado fundamental caracterizado por la coexistencia de regiones aislantes y regiones superfluidas. En particular se encontró la coexistencia de un aislante de Mott bosónico y fermiónico en el centro del potencial de confinamiento. También se encontraron estados con diferentes configuraciones de separación de fase. Los modelos que se estudiaron, pueden ser realizados con las técnicas actuales de atrapamiento y confinamiento de átomos ultrafrı́os en redes ópticas y se espera que este trabajo estimule nuevas investigaciones.
dc.description.abstractThe ground state of one-dimensional mixture of spin 1/2 fermions and scalar bosons, are studied in the framework of the Bose-Fermi-Hubbard model, using density matrix renormalization group technique. This study allowed to find the relationships ρ_B ± ρ_F=(n± \delta) and ρ_B ± 1/2ρ_F=(n±delta), where plus(minus) is for repulsive (attractive) interactions and n is an integer (n = 1,2), \delta=0 when the coupling parameter boson-fermión is repulsive and \delta=1 for attractive case. Zero-temperature phase diagrams were built for the system, considering scalar bosons in the hard-core and soft-core limit. The repulsive fermión-fermion and boson-fermion interactions are considered in the hard-core limit. The phase diagram was calculated and it allowed to determine that to a given fermionic density ρ_F , the insulator states are located at the bosonic densities ρ_B = 1-ρ_F and ρ_B = 1 - 1/2ρ_F, and emerge even in the absence of fermion-fermion coupling. In addition, the boson-fermion repulsion drives quantum phase transitions inside the insulator lobes with ρ_B = 1/2$. In the soft-core limit, repulsive intraspecies interactions and attractive or repulsive interspecies ones were considered. In addition to the trivial Mott insulator phases, we reported the emergence of new non-trivial insulator phases depending on the sign of the boson-fermion interaction. These non-trivial insulator phases must satisfy the conditions. Spin gapless and gapfull parameters were found for all insulator phases, suggesting a very diverse magnetic response of the system. The models studied are feasible in the current cold-atom setups and we expected that the suggested insulators could be observed in current cold-atom experimental platforms. For the base state of a mixture of fermions with two degrees of internal freedom that interact with scalar bosons in the soft-core limit and considering the potentials of bosonic and fermionic external confinement are the same, we found the coexistence of Bosonic and fermionic Mott insulators around the center of the trap, these can be obtained varying the different system parameters, in addition we found various types of phase separation.
dc.description.sponsorshipColciencias
dc.format.extent118
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.relationR. Avella, J. J. Mendoza-Arenas, R. Franco, and J. Silva- Valencia, Phys. Rev. A 100, 063620 (2019).
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc530 - Física
dc.subject.ddc539 - Física moderna
dc.titleFases cuánticas de mezclas de átomos bosónicos y fermiónicos en una dimensión
dc.title.alternativeQuantum phases of bosonic and fermionic atoms mixture in one dimension
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectbecas de Colciencias de la convocatoria 727
dc.description.additionalLínea de investigación: Mecánica Cuántica
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Física
dc.contributor.corporatenameUniversidad Nacional de Colombia
dc.contributor.researchgroupGrupo de Sistemas Correlacionados
dc.description.degreelevelDoctorado
dc.publisher.departmentDepartamento de Física
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesK. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle. Bose-Einstein Condensation in a Gas of Sodium Atoms. Phys. Rev. Lett. 75, 3969 (1995).
dc.relation.referencesM. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995).
dc.relation.referencesJ. Klaers, J. Schmitt, F. Vewinger and M. Weitz. Bose-Einstein condensation of photons in an optical microcavity. Nature 468, 7323 (2010).
dc.relation.referencesJ. D. Plumhof, T. Stöferle, L. Mai, U. Scherf and R. F. Mahrt. Room-temperature Bose- Einstein condensation of cavity exciton-polaritons in a polymer. Nat. Mat. 13, 247 (2014).
dc.relation.referencesS. Sachdev. Quantum Phase Transitions. Cambridge University Press, Cambridge (1999).
dc.relation.referencesD. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, P. Zoller. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108 (1998).
dc.relation.referencesW. Hofstetter, J.I. Cirac, P. Zoller, E. Demler, and M.D. Lukin. High-temperature super- fluidity of fermionic atoms in optical lattices. Phys. Rev. Lett. 89, 220407, (2002).
dc.relation.referencesI. Bloch , J. Dalibard and W. Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008).
dc.relation.referencesT. Byrnes, K. Wen and Y. Yamamoto. Macroscopic quantum computation using Bose- Einstein condensates. Phys. Rev. A 85, 040306(R) (2012).
dc.relation.referencesD. Becker, M. D. Lachmann and E. M. Rasel. Space-borne Bose-Einstein condensation for precision interferometry. Nature 562, 391 (2018).
dc.relation.referencesN. Lundblad, R.A. Carollo, C. Lannert, et al. Shell potentials for microgravity Bose- Einstein condensates. npj Microgravity 5, 30 (2019).
dc.relation.referencesP. G. Matthew, A. Niayesh and B. M. Robert. Bose-Einstein condensates as gravitational wave detectors. Journal of Cosmology and Astroparticle Physics 2019, 032 (2019).
dc.relation.referencesB. DeMarco, and D. Jin. Onset of Fermi degeneracy in a trapped atomic gas. Science 285, 1703. (1999).
dc.relation.referencesF. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles, and C. Salomon. Quasipure Bose-Einstein condensate immersed in a Fermi sea. Phys. Rev. Lett. 87, 080403 (2001).
dc.relation.referencesJ. M. McNamara, T. Jeltes, A. S. Tychkov, W. Hogervorst, and W. Vassen. Degenerate Bose-Fermi mixture of metastable atoms. Phys. Rev. Lett. 97, 080404 (2006).
dc.relation.referencesT. Fukuhara, Y. Takasu, M. Kumakura, and Y. Takahashi. Degenerate Fermi gases of ytterbium. Phys. Rev. Lett. 98, 030401 (2007).
dc.relation.referencesB. J. DeSalvo, M. Yan, P. G. Mickelson, Y. N. Martinez de Escobar, and T. C. Killian. Degenerate Fermi gas of 87 Sr. Phys. Rev. Lett. 105, 030402 (2010).
dc.relation.referencesM. Lu, N. Q. Burdick, and B. L. Lev. Quantum degenerate dipolar Fermi gas. Phys. Rev. Lett. 108, 215301 (2012).
dc.relation.referencesK. Aikawa, et al. Reaching Fermi degeneracy via universal dipolar scattering. Phys. Rev. Lett. 112, 010404 (2014).
dc.relation.referencesNaylor, B. et al.. Chromium dipolar Fermi sea. Phys. Rev. A 91, 011603(R) (2015).
dc.relation.referencesS. Sugawa, K. Inaba, S. Taie, R. Yamazaki, M. Yamashita and Y. Takahashi. Interac- tion and filling-induced quantum phases of dual Mott insulators of bosons and fermions. Nature Phys. 7, 642 (2011).
dc.relation.referencesI. Ferrier-Barbut, M. Delehaye, S. Laurent, A. Grier, M. Pierce, B. Rem, F. Chevy, and C. Salomon. A mixture of Bose and Fermi superfluids. Science, 345, 1035 (2014).
dc.relation.referencesF. Schäfer, N. Mizukami, P. Yu, S. Koibuchi, A. Bouscal, and Y. Takahashi. Experimen- tal realization of ultracold Y b − 7 Li mixtures in mixed dimensions. Phys. Rev. A 98, 051602(R) (2018).
dc.relation.referencesM.-J. Zhu, H. Yang, L. Liu, D.-C. Zhang, Y.-X. Liu, J. Nan, J. Rui, B. Zhao, J.-W. Pan, and E. Tiemann. Feshbach loss spectroscopy in an ultracold 23 N a − 40 K mixture. Phys. Rev. A 96, 062705 (2017).
dc.relation.referencesV. Vaidya, J. Tiamsuphat, S. Rolston, J. Porto. Degenerate Bose-Fermi mixtures of ru- bidium and ytterbium. Phys. Rev. A 92, 043604 2015.
dc.relation.referencesM. W. Zwierlein, C. H. Schunck, A. Schirotzek and W. Ketterle. Direct observation of the superfluid phase transition in ultracold Fermi gases. Nature 442, 54 (2006).
dc.relation.referencesZ. Hadzibabic, C. A. Stan, K. Dieckmann, S. Gupta, M. W. Zwierlein, A. Görlitz, and W. Ketterle Two-Species Mixture of Quantum Degenerate Bose and Fermi Gases. Phys. Rev. Lett. 88, 160401 (2002).
dc.relation.referencesL. Mathey and D. W. Wang. Phase diagrams of one-dimensional Bose-Fermi mixtures of ultracold atoms. Phys. Rev. A 75, 013612 (2007).
dc.relation.referencesM. Lewenstein, L. Santos, M. Baranov, and H. Fehrmann. Atomic Bose-Fermi mixtures in an optical lattice. Phys. Rev. Lett. 92, 050401 (2004).
dc.relation.referencesI. Titvinidze, M. Snoek, and W. Hofstetter. Supersolid Bose-Fermi mixtures in optical lattices. Phys. Rev. Lett. 100, 100401 (2008).
dc.relation.referencesC. Lai and C. Yang. Ground-state energy of a mixture of fermions and bosons in One dimension with a repulsive δ-function interaction. Phys. Rev. A 3, (1971).
dc.relation.referencesR. Roy, A. Green, R. Bowler, and S. Gupta. Two-element mixture of Bose and Fermi superfluids. Phys. Rev. Lett. 118, 055301 (2017).
dc.relation.referencesS. Ospelkaus, C. Ospelkaus, O. Wille, et al. Localization of bosonic atoms by fermionic impurities in a three-dimensional optical lattice. Phys. Rev. Lett. 96, 180403 (2006).
dc.relation.referencesT. Ikemachi, A. Ito, Y. Aratake, Y. Chen, M. Koashi. et al. All- optical production of dual Bose-Einstein condensates of paired fermions and bosons with 6 Li and 7 Li. J. Phys. B 50, 01LT01 (2017).
dc.relation.referencesJ. Scaramazza, B. Kain, and H. Ling. Competing orders in a dipolar Bose-Fermi mixture on a square optical lattice: mean-field perspective. Eur. Phys. J. D 70, 147 (2016).
dc.relation.referencesK. Günter, T. Stöferle, H. Moritz, et al. Bose-Fermi mixtures in a three-dimensional optical lattice. Phys. Rev. Lett. 96, 180402 (2006).
dc.relation.referencesTh. Best, S. Will, U. Schneider, L. Hackermüller, D. van Oosten, I. Bloch, and D. S. Lühmann. Role of interactions in 87 Rb− 40 K Bose-Fermi mixtures in a 3D optical lattice. Phys. Rev. Lett. 102, 030408 (2009).
dc.relation.referencesM. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch and I. Bloch. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002).
dc.relation.referencesA. Zujev, A. Baldwin, R. T. Scalettar, V. G. Rousseau, P. J. H. Denteneer, and M. Ri- gol Superfluid and Mott-insulator phases of one-dimensional Bose-Fermi mixtures. Phys. Rev. A. 78,033619. (2008).
dc.relation.referencesW. Q. Ning, S. J. Gu, C. Q. Wu and H. Q. Lin. Phase diagrams of Bose-Fermi mixture in a one dimensional optical lattice in terms of fidelity and entanglement. Arxiv:07083.3178v1 (2007).
dc.relation.referencesL. Pollet, M. Troyer, K. Van Houcke, and S. M. A. Rombouts. Phase diagram of Bose- Fermi mixtures in one-dimensional optical lattices. Phys. Rev. Lett 96, 190402 (2006).
dc.relation.referencesA. Mering and M. Fleischhauer. One-dimensional Bose-Fermi-Hubbard model in the heavy-fermion limit. Phys. Rev. A 77, 023601 (2008).
dc.relation.referencesK. Noda, R. Peters y N. Kawakami Many-body effects in a Bose-Fermi mixture. Phys. Rev. A 85, 043628 (2012).
dc.relation.referencesS. Sinha y K. Sengupta. Phases and collective modes of a hardcore Bose-Fermi mixture in an optical lattice. Phys. Rev. B 79, 115124 (2009).
dc.relation.referencesA. Albus , F. Illuminati , J. Eisert. Mixtures of bosonic and fermionic atoms in optical lattices. Phys. Rev. A 68, 023606 (2003).
dc.relation.referencesL. Mathey. Commensurate mixtures of ultracold atoms in one dimension. Phys. Rev. B 75, 144510 (2007).
dc.relation.referencesX. Barillier-Pertuisel, S. Pittel, L. Pollet, and P. Schuck. Boson-fermion pairing in Bose- Fermi mixtures on one-dimensional optical lattices. Phys. Rev. A 77, 012115 (2008).
dc.relation.referencesA. Imambekov and E. Demler. Exactly solvable case of a one-dimensional Bose-Fermi mixture. Phys. Rev. A 73, 021602(R) (2006).
dc.relation.referencesH. Frahm and G. Palacios. Correlation functions of one-dimensional Bose-Fermi mixtu- res. Phys. Rev. A 72, 061604(R) (2005).
dc.relation.referencesM. Rizzi and A. Imambekov. Pairing of one-dimensional Bose-Fermi mixtures with une- qual masses. Phys. Rev. A 77, 023621 (2008).
dc.relation.referencesP. Sengupta and L. Pryadko. Quantum degenerate Bose-Fermi mixtures on one- dimensional optical lattices. Phys. Rev. B 75, 132507 (2007).
dc.relation.referencesY. Takeuchi and H. Mori. Mixing-demixing transition in one-dimensional boson-fermion mixtures. Phys. Rev. A 72, 063617 (2005).
dc.relation.referencesG. Bertaina, E. Fratini, S. Giorgini and P. Pieri. Probing the interface of a phase-separated state in a repulsive Bose-Fermi mixture. Phys. Rev. Lett. 120, 243403. (2018).
dc.relation.referencesA. Guidini, G. Bertaina, D. E. Galli, and P. Pieri. Condensed phase of Bose-Fermi mix- tures with a pairing interaction. Phys. Rev. A 91, 023603. (2015).
dc.relation.referencesM. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol, One dimensional bosons: From condensed matter systems to ultracold gases. Rev. Mod. Phys. 83, 1405. (2011).
dc.relation.referencesL. Mathey, D. Wang, W. Hofstetter, M. Lukin, and E. Delmer. Luttinger liquid of polarons in one-dimensional boson-fermion mixtures. Phys. Rev. Lett. 93, 120404 (2004).
dc.relation.referencesM. Batchelor, M. Bortz, X. Guan, and N. Oelkers. Exact results for the one-dimensional mixed boson-fermion interacting gas. Phys. Rev. A 72, 061603(R) (2005).
dc.relation.referencesA. P. Albus, F. Illuminati, and M. Wilkens. Ground-state properties of trapped Bose- Fermi mixtures: Role of exchange correlation. Phys. Rev. A 67,063606 (2003).
dc.relation.referencesK. Gunter, T. Stoferle, H. Moritz, M. Kohl and T. Essling. Bose-fermi mixtures in a three-dimensional optical lattice. Phys. Rev. Lett. 96, 180402 (2009).
dc.relation.referencesF. Hébert, G. G. Batrouni, X. Roy, and V. G. Rousseau. Supersolids in one-dimensional Bose-Fermi mixtures. Phys. Rev. B 78, 184505 (2008)
dc.relation.referencesH. Fehrmann, M. Baranov, B. Damski, M. Lewenstein and L. Santos. Meanfield theory of bose-fermi mixtures in optical lattices. Opt. Comm. 243, 23 (2004).
dc.relation.referencesM. Bukov and L. Pollet. Mean-field phase diagram of the Bose-Fermi Hubbard model. Phys. Rev. B 89, 094502 (2014).
dc.relation.referencesD. Wang. Strong-Coupling Theory for the Superfluidity of Bose-Fermi Mixtures. Phys. Rev. Lett. 96, 140404 (2006).
dc.relation.referencesL. Mathey, S. W. Tsai, and A. H. Net. Exotic superconducting phases of ultracold atom mixtures on triangular lattices. Phys. Rev. B. 75, 174516 (2007).
dc.relation.referencesL. Mathey, S.-W. Tsai, and A. H. Castro Neto. Competing Types of Order in Two- Dimensional Bose-Fermi Mixtures. Phys. Rev. Lett. 97, 030601 (2006).
dc.relation.referencesA. Mering and M. Fleischhauer. Fermion-mediated long-range interactions of bosons in the one-dimensional Bose-Fermi-Hubbard model. Phys. Rev. A 81, 011603 (2010).
dc.relation.referencesA. Masaki and H. Mori. Mott transition of Bose-Fermi mixtures in optical lattices induced by attractive interactions. J. Phys. Soc. Jpn. 82, 074002 (2013).
dc.relation.referencesL. Pollet, C. Kollath, U. Schollwöck, and M. Troyer. Mixture of bosonic and spin-polarized fermionic atoms in an optical lattice. Phys. Rev. A 77, 023608 (2008).
dc.relation.referencesF. Illuminati and A. Albus. High-temperature atomic superfluidity in lattice Bose-Fermi mixtures. Phys. Rev. Lett. 93, 090406 (2004).
dc.relation.referencesS. White. Density matrix formulation for quantum renormalization groups. Phys. Rev. 69, 2863 (1992).
dc.relation.referencesS. White. Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345 (1993).
dc.relation.referencesO. Legeza, J. Röder, and B. A. Hess. Controlling the accuracy of the density matrix renormalization group method: The Dynamical Block State Selection approach. Phys. Rev. B 67, 125114 (2003).
dc.relation.referencesP. Stoliar, M. Rozenberg, E. Janod, B. Corraze, J. Tranchant, and L. Cario. Nonthermal and purely electronic resistive switching in a Mott memory. Phys. Rev. B 90, 045146 (2014).
dc.relation.referencesY. Cui et al. Thermochromic V O 2 for Energy-Efficient Smart Windows. Joule, 2 1707 (2018)
dc.relation.referencesKim, Hyun-Tak. Metal-Insulator Transition Mechanism and Sensors Using Mott Insula- tor V O 2 . isbn 978-94-017-9004-8 (2015).
dc.relation.referencesW. Lingfei, L. Yongfeng, et al. Device Performance of the Mott Insulator LaVO 3 as a Photovoltaic Material. Phys. Rev. Applied 3, 064015 (2015).
dc.relation.referencesG. Pupillo, Ana Maria Rey, G. Brennen, C. J. Williams and Charles W. Clark Scalable quantum computation in systems with Bose-Hubbard dynamics. Journal of Modern Optics 51, 2395 (2004).
dc.relation.referencesH.J. Briegel, T. Calarco, D. Jaksch, J.I. Cirac, P. Zoller Quantum computing with neutral atoms J.Mod.Opt. 47, 415 (2000).
dc.relation.referencesR. Raussendorf, H.J. Briegel. A One-Way Quantum Computer Phys.Rev.Lett. 86, 5188 (2001).
dc.relation.referencesS. Lee, J. Thompson, S. Raeisi, P. Kurzynski and D. Kaszlikowski. Quantum information approach to Bose-Einstein condensation of composite bosons. New Journal of Physics 17, 30 (2015).
dc.relation.referencesW. Ketterle. Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131, (2002).
dc.relation.referencesD. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak. Bose-Einstein Condensation of Atomic Hydrogen. Phys. Rev. Lett. 81, 3811 (1998).
dc.relation.referencesC. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet. Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. Phys. Rev. Lett. 75, 1687 (1997).
dc.relation.referencesA. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook and A. Aspect. A Bose-Einstein Condensate of Metastable Atoms. Science 292, 461 (2001).
dc.relation.referencesG. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, and M. Inguscio. Bose- Einstein Condensation of Potassium Atoms by Sympathetic Cooling. Science 294, 1320 (2001).
dc.relation.referencesP. A. Altin et al. 85 Rb tunable-interaction Bose-Einstein condensate machine. Rev. Sci. Instrum. 81, 063103 (2010).
dc.relation.referencesD. J. McCarron, H. W. Cho, D. L. Jenkin, M. P. Köppinger, and S. L. Cornish. Dual- species Bose-Einstein condensate of 87 Rb and 133 Cs. Phys. Rev. A 84, 011603(R) (2011).
dc.relation.referencesT. Fukuhara, S. Sugawa, and Y. Takahashi. Bose-Einstein condensation of an ytterbium isotope. Phys. Rev. A 76, 051604(R) (2007).
dc.relation.referencesT. Fukuhara and S. Sugawa and Y. Takasu, and Y. Takahashi. All-optical formation of quantum degenerate mixtures. Phys. Rev. A 79, 021601(R) (2009).
dc.relation.referencesG. Salomon, L. Fouché, S. Lepoutre, A. Aspect, and T. Bourdel. All-optical cooling of 39 K to Bose-Einstein condensation. Phys. Rev. A 90, 033405. (2014).
dc.relation.referencesA. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau. Bose-Einstein Condensa- tion of Chromium. Phys. Rev. Lett. 94, 160401 . (2005).
dc.relation.referencesJ. F. Bertelsen, H. K. Andersen, S. Mai, and M. Budde. Mixing of ultracold atomic clouds by merging of two magnetic traps. Phys. Rev. A. 75, 013404 (2007).
dc.relation.referencesA. Albus, F. Illuminati, and J. Eisert. Mixtures of bosonic and fermionic atoms in optical lattices. Phys Rev A 68, 023606 (2003).
dc.relation.referencesI. Bloch. Ultracold quantum gases in optical lattices. Nature Phys. 1, 23 (2005).
dc.relation.referencesN. Gemelke, X, Zhang, C. Hung and C. Chin. In situ observation of incompressible Mott- insulating domains in ultracold atomic gases. Nature 460, 995 (2009).
dc.relation.referencesM. Greiner, C. A. Regal, and D. S. Jin. Emergence of a molecular Bose-Einstein conden- sate from a Fermi gas. Nature 426, 537 (2003).
dc.relation.referencesA. Imambekov, M. Lukin and E. Demler. Applications of exact solution for strongly interacting one dimensional bose-fermi mixture: low-temperature correlation functions, density profiles and collective modes. Phys. Rev. A 68, 063602 (2003).
dc.relation.referencesR. Jördens, N. Strohmaier, et al. A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204 (2008).
dc.relation.referencesC. Regal, M. Greiner, and D. Jin. Observation of Resonance Condensation of Fermionic Atom Pairs. Phys. Rev. Lett. 92, 040403 (2004).
dc.relation.referencesM. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H. Denschlag, and R. Grimm. Crossover from a Molecular Bose-Einstein Condensate to a Degenerate Fermi Gas. Phys. Rev. Lett. 92, 120401 (2004).
dc.relation.referencesM. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman, and W. Ketterle. Condensation of pairs of fermionic atoms near a Feshbach resonance. Phys. Rev. Lett. 92, 120403 (2004).
dc.relation.referencesG. Roati, E. de Mirandes, F. Ferlaino, H. Ott, G. Modugno, and M. Inguscio. Atom Interferometry with Trapped Fermi Gases. Phys. Rev. Lett. 92, 230402 (2004).
dc.relation.referencesM. Köhl, H. Moritz, T. Stöoferle, K. Günter, and T. Esslinger. Phys. Rev. Lett. 94, 080403 (2005).
dc.relation.referencesH. Hu, L. Guan and S. Chen. Strongly interacting Bose-Fermi mixtures in one dimen- sion. New J. Phys. 18 025009 (2016).
dc.relation.referencesU. Schünemann, H. Engler, M. Zielonowski, M. Weidemüller, and R. Grimm. Magneto- optic trapping of lithium using semiconductor lasers. Opt. Comm. 158, 263 (1998)
dc.relation.referencesW. Zheng and H. Zhai. Quasiparticle Lifetime in a Mixture of Bose and Fermi Super- fluids. Phys. Rev. Lett 113, 265304 (2014).
dc.relation.referencesR. Zhang, W. Zhang, H. Zhai, and P. Zhang Calibration of the interaction energy between Bose and Fermi superfluids. Phys. Rev. A 90, 063614 (2014).
dc.relation.referencesA. Truscott and K. Strecker and W. McAlexander and G. Partridge, and R. Hulet. Observation of Fermi Pressure in a Gas of Trapped Atoms. Science 91, 2570 (2001)
dc.relation.referencesG. Roati and F. Riboli and G. Modugno, and M. Inguscio. Fermi-Bose Quantum De- generate 40 K − 87 Rb Mixture with Attractive Interaction. Phys. Rev. Lett. 89, 150403 2002.
dc.relation.referencesM. Tey and S. Stellmer and R. Grimm, and F. Schreck. Double-degenerate Bose-Fermi mixture of strontium. Phys. Rev. A 82, 11608 (2010).
dc.relation.referencesC. Silber and S. Günther and C. Marzok and B. Deh and W. Courteille, and C. Zim- mermann. Quantum-degenerate mixture of fermionic lithium and bosonic rubidium gases Phys. Rev. Lett. 95, 170408 (2005)
dc.relation.referencesB. Deh, W. Gunton, B. Klappauf, Z. Li, M. Semczuk, J. Van Dongen, and K. Madison. Giant Feshbach resonances in 6 Li − 85 Rb mixtures Phys. Rev. A 82, 020701(R) (2010).
dc.relation.referencesS. Tung and C. Parker and J. Johansen and C. Chin and Y. Wang, and P. Julienne. Ultracold mixtures of atomic 6 Li and 133 Cs with tunable interactions. Phys. Rev. A 87, 010702(R) 2013.
dc.relation.referencesY. Wu, X. Yao, H. Chen, et al. A quantum degenerate Bose-Fermi mixture of J. Phys. B 50, 094001 (2017).
dc.relation.referencesH. Edri, B. Raz, N. Matzliah, N. Davidson and R. Ozeri. Observation of spin- spin fermion-mediated interactions between ultra-cold bosons. arXiv:1910.01341v1 [physics.atom-ph] . (2019).
dc.relation.referencesA. Auerbach. Interacting electrons and quantum magnetism. Springer, New York (1994).
dc.relation.referencesG. Kotliar and D. Vollhardt. Strongly correlated materials: insights from dynamical mean-field theory. Physics Today, 57, 53 (2004).
dc.relation.referencesJ. Hubbard. Electron correlations in narrow energy bands. Proc. R. Soc. London, Ser A 276, 238 (1963).
dc.relation.referencesC. Pethick and H. Smith. Bose-Einstein Condensation inDilute Gases. Cambridge Uni- versity Press, (2002).
dc.relation.referencesV. V. Meshkov, A. V. Stolyarov, and R. J. Le Roy. Rapid Accurate Calculation of the s-wave Scattering Length J. Chem. Phys. 135, 154108. (2011).
dc.relation.referencesM. Lewenstein, A. Sanpera, V. Ahufinger. Ultracold Atoms in Optical Lattices Simulating quantum many-body systems. Oxford University press (2012).
dc.relation.referencesQuantum Degenerate Fermi-Bose Mixtures of 40 K and 87 Rb in 3D Optical Lattices. S. Ospelkaus Dissertation zur Erlangung des Doktorgrades des Departments Physik der Universität Hamburg. (2006).
dc.relation.referencesC. Kim and Z.-X. Shen. Separation of spin and charge excitations in one-dimensional SrCuO 2 . Phys. Rev. B. 56, 15589. (1997).
dc.relation.referencesK. Held, G. Keller, V. Eyert, D. Vollhardt, and V. I. Anisimov. Mott-Hubbard metal- insulator transition in paramagnetic V 2 O 3 : an LDA+DMFT(QMC) Study. Phys. Rev. Lett. 86, 5345 (2001).
dc.relation.referencesD. K. Campbell, J. Tinka Gammel, and E. Y. Loh, Jr. Modeling electron-electron interac- tions in reduced-dimensional materials: Bond-charge Coulomb repulsion and dimerization in Peierls-Hubbard models. Phys. Rev. B 42, 11608 (1990).
dc.relation.referencesM. J. Rozenberg. Integer-filling metal-insulator transitions in the degenerate Hubbard model. Phys. Rev. B 55, R4855 (1997).
dc.relation.referencesE. H. Lieb, and F. Y. Wu. Absence of Mott transition in an exact solution of the short- range one-band model in one dimension. Phys. Rev. Lett. 20, 1445. (1968).
dc.relation.referencesE. H. Lieb, and F. Y. Wu,. The one-dimensional hubbard model: a reminiscence. Physica A: Statistical Mechanics and its Applications 321, 1. (2003).
dc.relation.referencesB. Kumar. Exact solution of the infinite-U Hubbard problem and other models in one dimension. Phys. Rev. B 79, 155121 (2009).
dc.relation.referencesR. T. Scalettar. An Introduction to the Hubbard Hamiltonian. in: quantum materials: experiments and theory 6 (2016).
dc.relation.referencesS. Ejima, H. Fehske, and F. Gebhard. Dynamic properties of the one-dimensional Bose- Hubbard model. EPL. 93, 30002 (2011).
dc.relation.referencesD.S. Petrov, C. Salomon, G. V. Shlyapnikov . Weakly bound dimers of fermionic atoms. Phys. Rev. Lett. 93, 090404 (2004).
dc.relation.referencesY. Murakami, P. Werner, N. Tsuji, and H. Aoki. Supersolid phase accompanied by a quantum critical point in the intermediate coupling regime of the Holstein model. Phys. Rev. Lett. 113, 266404 (2014).
dc.relation.referencesP. Anders, P. Werner, M. Troyer, M. Sigrist, and L. Pollet. From the Cooper problem to canted supersolids in Bose-Fermi mixtures. Phys. Rev. Lett. 109, 206401. (2012).
dc.relation.referencesI.V. Stasyuk and I.R. Dulepa. Density of states of one-dimensional Pauli ionic conduc- tor. Cond. Matt. Phys. 10, 259 (20078).
dc.relation.referencesK. Sengupta, N. Dupuis, and P. Majumdar. Bose-Fermi mixtures in an optical lattice. Phys. Rev. A. 75, 063625. (2007).
dc.relation.referencesT. Ozawa, A. Recati, M. Delehaye,F. Chevy, and S. Stringari. Chandrasekhar-Clogston limit and critical polarization in a Fermi-Bose superfluid mixture. Phys. Rev. A 90, 043608 (2014).
dc.relation.referencesL. Mathey, S.-W. Tsai, and A. H. C. Neto. Competing types of order in two-dimensional Bose-Fermi mixtures. Phys. Rev. Lett. 97, 030601. (2006).
dc.relation.referencesF. Klironomos and S. Tsai. Pairing and density-wave phases in boson-fermion mixtures at fixed filling. Phys. Rev. Lett. 99, 100401 (2007).
dc.relation.referencesT. Bilitewski. Exotic superconductivity through bosons in a dynamical cluster approxi- mation. Phys. Rev. B 92, 184505 (2015).
dc.relation.referencesX.-W. Guan, M. T. Batchelor, and C. Lee. Fermi gases in one dimension: From Bethe ansatz to experiments. Rev. Mod. Phys. 85, 1633 (2013).
dc.relation.referencesN. Nygaard and K. Molmer. Component separation in harmonically trapped boson- fermion mixtures. Phys. Rev. A 59, 2974 (1999).
dc.relation.referencesK. Wilson. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773 (1975).
dc.relation.referencesJ. W. Bray, S.T. Chui. Computer renormalization-group calculations of 2k F and 4k F co- rrelation functions of the one-dimensional Hubbard model. Phys. Rev. B 19, 4876 (1979).
dc.relation.referencesS. J. Gu. Fidelity approach to quantum phase transitions. Int. J. Mod. Phys. B 24, 4371 (2010).
dc.relation.referencesU. Schollwöck. The density-matrix renormalization group. Rev. Mod. Phys. 77, 259 (2005).
dc.relation.referencesC. Lanczos, J. Res. Nat. Bur. Stand. 45, 255 (1950). Res. Nat. Bur. Stand. 45, 255 (1950).
dc.relation.referencesE. R. Davidson. The iterative calculation of a few of the lowest eigenvalues and corres- ponding eigenvectors of large real- symmetric matrices. J. Comput. Phys. 17, 87 (1975).
dc.relation.referencesK. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. H. Denschlang, A. J. Daley, A. Kantian, H. P. Büchler, and P. Zoller. Repulsively bound atom pairs in an optical lattice. Nature 441, 853. (2006).
dc.relation.referencesT. D. Kühner, S. R. White, H. Monien. One-dimensional Bose-Hubbard model with nearest-neighbor interaction. Phys. Rev. B 61, 063602 (2000).
dc.relation.referencesS. Sugawa, K. Inaba, S. Taie, R. Yamazaki, M. Ya- mashita, and Y. Takahashi Nat. Phys. 7, 642. (2011).
dc.relation.referencesR. Avella, J. J. Mendoza-Arenas, R. Franco, and J. Silva-Valencia. Insulator phases of a mixture of spinor fermions and hard-core bosons. Phys. Rev. A 100, 063620 (2019).
dc.relation.referencesE. K. Laird, Z.-Y. Shi, M. M. Parish, and J. Levinsen. SU(N) fermions in a one- dimensional harmonic trap. Phys. Rev. A 96, 032701 (2017).
dc.relation.referencesG. K. Campbell, J. Mun, M. Boyd, P. Medley, A. E. Leanhardt, L. G. Marcassa, D. E. Pritchard, and W. Ketterle. Imaging the Mott insulator shells by using atomic clock shifts. Science 313, 649 (2006).
dc.relation.referencesS. Fölling, A. Widera, T. Mueller, F. Gerbier, and I. Bloch, Formation of spatial shell structure in the superfluid to Mott insulator transition. Phys. Rev. Lett. 97, 060403 (2006).
dc.relation.referencesG. G. Batrouni, F. F. Assaad, R. T. Scalettar, and P. J. H. Denteneer Many-body expansion dynamics of a Bose-Fermi mixture confined in an optical lattice. Phys. Rev. A 72, 031601(R)(2005).
dc.relation.referencesF. Gerbier, A. Widera, S. Fölling, O. Mandel, T. Gericke, and I. Bloch. Phase coherence of an atomic Mott insulator. Phys. Rev. Lett. 95, 050404 (2005).
dc.relation.referencesT. Grining, M. Tomza, M. Lesiuk, M. Przybytek, M. Musia l, R. Moszynski, M. Le- wenstein, and P. Massignan. Crossover between Few and Many Fermions in a Harmonic Trap. Phys. Rev. A 92, 061601 (2015).
dc.relation.referencesA. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe and S. Jochim. From few to many: observing the formation of a Fermi sea one atom at a time. Science 342, 457 (2013).
dc.relation.referencesY. Zhong, Y. Liu, and H.-G. Luo. Simulating heavy fermion physics in optical latti- ce: Periodic Anderson model with harmonic trapping potential. Front. Phys 12, 127502 (2017).
dc.relation.referencesJ. Silva-Valencia and A. M. C. Souza. Ground state of alkaline-earth fermionic atoms in one-dimensional optical lattices. Eur. Phys. J. B85, 5 (2012).
dc.relation.referencesJ. Silva-Valencia and A. M. C. Souza. Entanglement of alkaline-earth-metal fermionic atoms confined in optical lattices. Phys. Rev. A 85, 033612 (2012).
dc.relation.referencesR. C. Caro, R. Franco, and J. Silva-Valencia. Spin-liquid state in an inhomogeneous periodic Anderson model. Phys. Rev. A 97, 023630 (2018).
dc.relation.referencesJ. Silva-Valencia, R. Franco, M.S. Figueira. Entanglement and the ground state of fer- mions trapped in optical lattices. Physica B 404, 3332 (2009).
dc.relation.referencesT. Bergeman, M. G. Moore, and M. Olshanii. Atom-atom scattering under cylindrical harmonic confinement: numerical and analytic studies of the confinement induced reso- nance. Phys. Rev. Lett. 91, 163201 (2003).
dc.relation.referencesD. Greif, M. F. Parsons, A. Mazurenko, C. S. Chiu , S. Blatt, F. Huber , G. Ji and M. Greiner. Site-resolved imaging of a fermionic Mott insulator. Science 351, 953 (2016).
dc.relation.referencesShi-Guo Peng, Hui Hu, Xia-Ji Liu, and Peter D. Drummond. Confinement-induced re- sonances in anharmonic waveguides. Phys. Rev. A 84, 043619 (2011).
dc.relation.referencesV. G. Rousseau, G. G. Batrouni, D. E. Sheehy, J. Moreno and M. Jarrell. Pure Mott phases in confined ultracold atomic systems. Phys. Rev. Lett. 104, 167201 (2010).
dc.relation.referencesW. Geist, L. You, and T. A. B. Kennedy. Sympathetic cooling of an atomic Bose-Fermi gas mixture. Phys Rev A 59 1500 (1999).
dc.relation.referencesZ. Akdeniz, P. Vignolo, A. Minguzzi, M.P. Tosi. Phase separation in a boson-fermion mixture of lithium atoms. J. Phys. B 35, L105 (2002).
dc.relation.referencesC. Klempt et al.. Transport of a quantum degenerate heteronuclear Bose-Fermi mixture in a harmonic trap. Eur. Phys. J. D 48, 121 (2008).
dc.relation.referencesT. Karpiuk, M. Brewczyk, and K. Bright solitons in Bose-Fermi mixtures. Phys Rev A 73, 053602 (2006).
dc.relation.referencesL. Vichi et al. Quantum degeneracy and interaction effects in spin-polarized Fermi-Bose mixtures. J. Phys. B 31 L899 (1998).
dc.relation.referencesR. S. Lous, I. Fritsche, M. Jag, F. Lehmann and E. Kirilov. Probing the Interface of a Phase-Separated State in a Repulsive Bose-Fermi Mixture. Phys. Rev. Lett. 120, 243403 (2018).
dc.relation.referencesH. Hu, L. Pan, and S. Chen. Strongly interacting one-dimensional quantum gas mixtures with weak p-wave interactions. Phys Rev A 93, 033636 (2016)
dc.relation.referencesF. Deuretzbacher, D. Becker, J. Bjerlin, S. M. Reimann, and L. Santos. Spin-chain model for strongly interacting one-dimensional Bose-Fermi mixtures. Phys Rev A 95, 043630 (2017).
dc.relation.referencesA S Dehkharghani et al. Hard-core Bose-Fermi mixture in one-dimensional split traps. J. Phys. B: At. Mol. Opt. Phys 50, 144002 (2017).
dc.relation.referencesJ. Decamp et al. Strongly correlated one-dimensional Bose-Fermi quantum mixtures: symmetry and correlations. New J. Phys. 19, 125001 (2017).
dc.relation.referencesP. Siegl, S. I. Mistakidis, and P. Schmelcher. Many-body expansion dynamics of a Bose- Fermi mixture confined in an optical lattice. Phys. Rev. A 97, 053626 (2018).
dc.relation.referencesS. Peil, et al. Patterned loading of a Bose-Einstein condensate into an optical lattice. Phys. Rev. A 67, 051603 (2003).
dc.relation.referencesJ. H. Denschlang, et al. A Bose-Einstein condensate in an optical lattice. J. Phys. B 35, 3095 (2002).
dc.relation.referencesP. L. Gould, G. A. Ruff y D. E. Pritchard, Diffraction of atoms by light: The near- resonant Kapitza-Dirac effect. Phys. Rev. Lett. 56, 827 (1998).
dc.relation.referencesP. J. Martin, B. G. Oldaker, A. H. Miklich, and D. E. Pritchard. Scattering of atoms from a standing light wave. Phys. Rev. Lett. 60, 515 (1988).
dc.relation.referencesC. S. Adams, M. Siegel y J. Mlynek. Atom optics. Phys. Rev. Rep. 240, 143 (1994).
dc.relation.referencesA. Hemmerich, and T. W. Hänsch. Two-dimesional atomic crystal bound by light. Phys. Rev. Lett. 70, 410 (1993).
dc.relation.referencesM. Weidmller, A. Hemmerich, A. Gorlitzz, T. Esslinger, and T. W. Hänsch. Bragg diffraction in an atomic lattice bound by light. Phys. Rev. Lett. 75, 4583 (1995).
dc.relation.referencesD. Yamamoto, T. Ozaki, C. A. R. S ́a de Melo, and I. Danshita. First-order phase transition and anomalous hysteresis of binary Bose mixtures in an optical lattice. Phys. Rev. A 88, 033624 (2013).
dc.relation.referencesTarruell, L. and Sanchez-Palencia, L. Quantum simulation of the Hubbard model with ultracold fermions in optical lattices. C. R. Phys. 19, 365 (2018).
dc.relation.referencesG. G. Batrouni y V. Rousseau Mott Domains of Bosons Confined on Optical Lattices. Phys. Rev. Lett. 89, 117203 (2002).
dc.relation.referencesB. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah, J. Struck and M. W. Zwierlein. Homogeneous atomic Fermi gases. Phys. Rev. Lett. 118, 123401 (2017).
dc.relation.referencesM. Cramer, J. Eisert and F. Illuminati Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices. Phys. Rev. Lett. 93, 190405(2004).
dc.relation.referencesM. Greiner, O. Mandel, T. Esslinger, T. Hänsch, and I. Bloch. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 415, 39 (2003).
dc.relation.referencesY. Takasu and Y. Takahashi. Condensed phase of Bose-Fermi mixtures with a pairing interaction. J. Phys. Soc. Jpn. 78, 012001 (2009).
dc.relation.referencesC. Gross, T. Zibold, E. Nicklas, J. Estéve, M. K. Oberthaler. Nonlinear atom interfero- meter surpasses classical precision limit. Nature 464, 1165 (2010).
dc.relation.referencesH. Moritz , T. Stöferle , M. Köhl and T. Esslinger. Exciting collective oscillations in a trapped 1d gas. Phys. Rev. Lett. 91, 250402 (2003).
dc.relation.referencesB. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyapnikov, T. W. Hänsch and I. Bloch. Tonks-Girardeau gas of ultracold atoms in an optical lattice. Nature. 429, 277 (2004).
dc.relation.referencesD. Clément, N. Fabbri, L. Fallani, C. Fort and M. Inguscio. Exploring correlated 1d Bose gases from the superfluid to the Mott-insulator state by inelastic light scattering. Phys. Rev. Lett. 102, 155301 (2009).
dc.relation.referencesF. Serwane, G. Zürn, T. Lompe, T. B. Ottenstein, A. N. Wenz and S. Jochim. Deter- ministic preparation of a tunable few-fermion system. Nature Phys. 332, 336 (2011).
dc.relation.referencesG. Pagano et al. A one-dimensional liquid of fermions with tunable spin. Nature Phys. 10, 198 (2014).
dc.relation.referencesM. A. Cazalilla and A. M. Rey . Ultracold Fermi gases with emergent SU(N) symmetry. Rep. Prog. Phys. 77, 124401 (2014).
dc.relation.referencesS. Laurent, M. Pierce, M. Delehaye, T. Yefsah, F. Chevy, and C. Salomon. Connecting few-body inelastic decay to quantum correlations in a many-body system: A weakly coupled impurity in a resonant Fermi gas. Phys. Rev. Lett. 118, 103403 (2017).
dc.relation.referencesM. A. Cazalilla and A. F. Ho. Instabilities in binary mixtures of one-dimensional quan- tum degenerate gases. Phys. Rev. Lett. 91, 150403 (2003).
dc.relation.referencesF. Schreck, G. Ferrari, K. L. Corwin, J. Cubizolles, L. Khaykovich, M. O. Mewes, and C. Salomon. Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy. Phys. Rev. A 64, 011402(R)) (2001).
dc.relation.referencesM. Fisher, P. Weichman, G. Grinstein and D. Fisher. Boson localization and the super- fluid insulator transition. Phys. Rev. B 40, 546 (1989).
dc.relation.referencesI. Stasyuk, T. Mysakovych, V. Krasnov Phase diagrams of the Bose-Fermi-Hubbard model: Hubbard operator approach. Condens. Matter Phys, 13, 13003 (2010)
dc.relation.referencesG. Bertaina, E. Fratini, S. Giorgini, and P. Pieri. Quantum Monte Carlo Study of a Resonant Bose-Fermi Mixture. Phys. Rev. Lett. 110, 115303. (2013).
dc.relation.referencesC.-H. Wu, I. Santiago, J. W. Park, P. Ahmadi, and M. W. Zwierlein. Strongly interacting isotopic Bose-Fermi mixture immersed in a Fermi sea. Phys. Rev. A 84, 011601(R) (2011).
dc.relation.referencesA. J. Leggett. Bose-Einstein condensation in the alkali gases: Some fundamental con- cepts. Rev. Mod. Phys. 73 333, (2001).
dc.relation.referencesZ. Hadzibabic, S. Gupta, C. A. Stanm, C. H. Schunck, M. W. Zwierlein, K. Dieckmann, and W. Ketterle. Fiftyfold improvement in the number of quantum degenerate fermionic atoms. Phys. Rev. Lett. 91, 160401 (2003).
dc.relation.referencesI. Bloch, J. Dailbard, and W. Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008).
dc.relation.referencesHoubiers, M., H. Stoof, W. McAlexander y R. Hulet. Elastic and inelastic collisions of 6 Li atoms in magnetic and optical traps. Phys. Rev. A 57, R1497. (1998).
dc.relation.referencesA. Mering. The one-dimensional Bose-Fermi-Hubbard model in the ultrafast-fermion li- mit: Charge density wave phase and MI-CDW phase separation. arXiv:1408.4472v1 [cond- mat.quant-gas].
dc.relation.referencesV. G. Rousseau, G. G. Batrouni, D. E. Sheehy, J. Moreno and M. Jarrell. Pure Mott phases in confined ultracold atomic systems. Phys. Rev. Lett. 104, 167201 (2010).
dc.relation.referencesK. Targonska and K. Sacha. Self-localization of a small number of Bose particles in a superfluid Fermi system. Phys. Rev. A 82, 033601. (2010).
dc.relation.referencesH. F. Hess, G. P. Kochanski, J. M. Doyle, N. Masuhara, D. Kleppner and T. J. Greytak Magnetic trapping of spin-polarized atomic hydrogen. Phys. Rev.Lett. 59, 672 (1987).
dc.relation.referencesI. Stasyuk V. Krasnov. Phase transitions in the hard-core Bose-Fermi-Hubbard model at non-zero temperatures in the heavy-fermion limit. Condensed Matter 511, 109 (2017).
dc.relation.referencesI. Stasyuk V. Krasnov. Phase transitions in Bose-Fermi-Hubbard model in the heavy fermion limit: Hard-core boson approach. Condensed Matter Physics, 18, 43702 (2015).
dc.relation.referencesT. Polak. Zero-temperature phase diagram of Bose-Fermi gaseous mixtures in optical lattices. Phys. Rev. A 81, 043612 (2010).
dc.relation.referencesN. Oelkers, M. Batchelor, M. Bortz and X. Guan. Bethe Ansatz study of one-dimensional Bose and Fermi gases with periodic and hard wall boundary conditions. J. Phys. A. Math. 39, 1073 (2006).
dc.relation.referencesF. Zhou. Mott states under the influence of fermion-boson conversion. Phys. Rev. B 72, 220501(R) (2005).
dc.relation.referencesK. Sacha, K. Targonska, and J. Zakrzewski. Frustration and time reversal symmetry breaking for Fermi and Bose-Fermi systems. Phys. Rev. A 85, 053613 (2012).
dc.relation.referencesS. Modak, S. Tsai, and K. Sengupta. Renormalization group approach to spinor Bose- Fermi mixtures in a shallow optical lattice. Phys. Rev. B 84, 134508 (2011).
dc.relation.referencesL. Wen and J. Li. Exotic superconductivity through bosons in a dynamical cluster ap- proximation. Phys. Rev. A 90, 053621 (2014).
dc.relation.referencesD. van Oosten, P. van der Straten, and H.T.C. Stoof. Quantum phases in an optical lattice. Phys. Rev. A. 63, 053601, (2001).
dc.relation.referencesJ. Ruostekoski, G. V. Dunne, and J. Javanainen. Particle number fractionalization of an atomic Fermi-Dirac gas in an optical lattice. Phys. Rev. 88, 180401 (2002).
dc.relation.referencesJ. Van Leeuwen and E. Cohen. Phase separation in isotopic Fermi-Bose mixtures. Phys. Rev. 176, 385 (1968).
dc.relation.referencesM. Tylutki, A. Recati, F. Dalfovo and S. Stringari. Dark-bright solitons in a superfluid Bose-Fermi mixture. New J. Phys. 18, 053014 (2016).
dc.relation.referencesC. Recher and H. Kohler. From Hardcore Bosons to Free Fermions with Painlevé V. J. Stat. Phys. 147, 542 (2012).
dc.relation.referencesL. Carr and M. Holland. Quantum phase transitions in the Fermi-Bose Hubbard model. Phys. Rev. A 72, 031604 (R) (2005).
dc.relation.referencesS. Bhongale and H. Pu. Phase separation in a mixture of a Bose-Einstein condensate and a two-component Fermi gas as a probe of Fermi superfluidity. Phys. Rev. A 78, 061606 (R) (2008).
dc.relation.referencesI. Peschel, X. Wang, M. Kaulke and K. Hallberg. Density Matrix Renormalization, Series: Lecture Notes in Physics. Springer, Berlin, Germany (1999).
dc.relation.referencesHui Hu and Xia-Ji Liu. Thermodynamics of a trapped Bose-Fermi mixture. Phys Rev A 68, 023608 (2003).
dc.relation.referencesL. Salasnich and F. Toigo. Bright solitons in Bose-Fermi mixtures. Phys Rev A 75, 013623 (2007).
dc.relation.referencesM. D. Girardeau, and A. Minguzzi. Soluble models of strongly interacting ultracold gas mixtures in tight waveguides. Phys. Rev. Lett. 99, 230402 (2007).
dc.relation.referencesS. K. Adhikari and L. Salasnich. Superfluid Bose-Fermi mixture from weak coupling to unitarity. Phys. Rev. A 78, 043616 (2008).
dc.relation.referencesX. La, X. Yin, and Y. Zhang. Hard-core Bose-Fermi mixture in one-dimensional split traps. Phys. Rev. A 81, 043607 (2010).
dc.relation.referencesB. Fang, P. Vignolo, M. Gattobigio, C. Miniatura, and A. Minguzzi. Exact solution for the degenerate ground-state manifold of a strongly interacting one-dimensional Bose- Fermi mixture. Phys. Rev. A 84, 023626 (2011).
dc.relation.referencesM. Snoek, I. Titvinidze, I. Bloch, and W. Hofstetter. Effect of interactions on harmo- nically confined Bose-Fermi mixtures in optical lattices. Phys. Rev. Lett. 106, 155301 (2011).
dc.relation.referencesJ. Chen, J. M. Schurer, and P. Schmelcher. Bunching-antibunching crossover in harmo- nically trapped few-body Bose-Fermi mixtures. Phys Rev A 98, 023602 (2018).
dc.relation.referencesJ. Sakuray. Modern Quantum Mechanics. Addison-Wesley Publishing Company. Estados Unidos (1994).
dc.relation.referencesSchneider, U. and Hackermüller, L. and Will, S. and Best, Th. and Bloch, I. and Costi, T. A. and Helmes, R. W. and Rasch, D. and Rosch, A. Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice Science 322, 5907 (2008).
dc.relation.referencesC.-H. Wu, I. Santiago, J. W. Park, P. Ahmadi, and M. W.Zwierlein Metallic and Insu- lating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice Phys. Rev. A 84, 011601 (2011).
dc.relation.referencesC. Chin, R. Grimm, P. Julienne and E. Tiesinga Feshbach Resonances in Ultracold Gases Rev. Mod. Phys 82, 1225 (2010).
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalpartı́culas fermiónicas
dc.subject.proposalfermionic particles
dc.subject.proposalpartı́culas bosónicas
dc.subject.proposalbosonic particles
dc.subject.proposalfermi-Hubbard Model
dc.subject.proposalmezclas Bose-Fermi
dc.subject.proposalmodelo Bose-Fermi-Hubbard
dc.subject.proposalbose-Fermi-Hubbard model
dc.subject.proposalgrupo de renormalización de la matriz densidad
dc.subject.proposaldensity matrix renormalization group
dc.subject.proposalquantum phase transitions
dc.subject.proposaltransiciones de fase cuánticas
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito