Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorMaldonado Villamil, Mauricio
dc.contributor.authorCasas Hinestroza, José Luis
dc.date.accessioned2020-08-12T17:51:37Z
dc.date.available2020-08-12T17:51:37Z
dc.date.issued2020-07-14
dc.identifier.citationJosé Luis Casas-Hinestroza
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77999
dc.description.abstractIn this research work, our attention was focused on synthesis, characterization, and study of the molecular interaction of C-alkyl and C-phenyl-pyrogallol[4]arenes with three important biological important organic cations known as neurotransmitters. In this sense, the polyphenolic macrocycles tetra(propyl)-pyrogallol[4]arene, tetra(phenyl)-pyrogallol[4]arene and tetra(4-hidroxyphenyl)-pyrogallol[4]arene were synthesized using butanal, benzaldehyde, and 4-hidroxybenzaldehyde respectively in reaction with pyrogallol in ethanol as solvent in all cases, afterward, the isomers mixture was characterized employing spectroscopic methods (1H-NMR, 13C-RMN, 2D-NMR, and FT-IR) and mass spectrometry(ESI-MS) and, a methodology was developed that allows an efficient separation of each isomer. The three macrocycles were derivatized on the upper rim with acetyl and benzoyl groups employing acetic anhydride and benzoyl chloride achieved a total functionalization of each isomer. Finally, the molecular interaction between the neurotransmitters choline, betaine and carnitine with the macrocycles functionalized and without functionalization in cone and boat conformation was carried out in gas phase and solution. The interaction studies indicated that the macrocycles functionalized form 1:1 complexes host-guest with the three neurotransmitters in the gas phase, while the macrocycles without functionalized, only the tetra(propyl)-pyrogallol[4]arene formed complexes with the neurotransmitters. The noncovalent interactions studies in solution indicated that the cone and boat conformers are affective hosts for the three neurotransmitters and some hosts with potential applications in host-guest systems and supramolecular assemblies.
dc.description.abstractEn este trabajo de investigación, nuestro interés estuvo centrado en la síntesis, caracterización y estudio de la interacción molecular de C-alquil y C-fenil-pirogalol[4]arenos frente a tres cationes orgánicos de interés biológico conocidos por su acción como neurotransmisores. En este sentido se establecieron las mejores condiciones de reacción para la síntesis de tres polifenoles macrocíclicos tetra(propil)-pirogalol[4]areno, tetra(fenil)-pirogalol[4]areno y tetra(4-hidroxifenil)pirogalol[4]areno a partir de butanal, benzaldehído y p-hidroxi-benzaldehído respectivamente en reacción con pirogalol usando etanol como disolvente. Posteriormente, se determinó y caracterizó completamente por métodos espectroscópicos (RMN-1H, RMN-13C, RMN-2D y FT-IR) y espectrometría de masas(ESI-MS) la identidad de la mezcla de isómeros obtenida en la síntesis de los derivados aromáticos, y además se desarrolló una metodología que permitió la separación eficiente de cada isómero. Los tres macrociclos fueron derivatizados con grupos carboxilo usando anhídrido acético y cloruro de benzoilo logrando su funcionalización total. Finalmente, se evaluó la interacción molecular entre los cationes de interés biológico colina, carnitina y betaína frente a los macrociclos sin funcionalizar y funcionalizados en fase gaseosa y en disolución logrando demostrar que todos los macrociclos derivatizados en el borde superior con los grupos acetil y benzoilo forman complejos en estequiometria 1:1 en fase gaseosa con los tres cationes planteados, mientras que, de los macrociclos sin funcionalizar, solamente el tetra(propil)-pirogalol[4]areno forma complejos estables con los tres cationes usados. De igual manera los estudios en disolución mediante titulaciones por RMN-1H permitió establecer que los confórmeros bote(rccc) y cono(rccc) de los macrociclos sin derivatizar y derivatizados son los mejores hospederos de los neurotransmisores planteados con potencial aplicación en el diseño de sistemas huésped-hospedero y ensambles supramoleculares.
dc.format.extent200
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.subject.ddc543 - Química analítica
dc.subject.ddc547 - Química orgánica
dc.titleSíntesis, caracterización de c-aquil y c-fenil-pirogalol[4]arenos funcionalizados con grupos carboxilo en el borde superior y evaluación de su interacción con cationes orgánicos de interés biológico
dc.typeTrabajo de grado - Doctorado
dc.rights.spaAcceso abierto
dc.description.projectSÍNTESIS, CARACTERIZACIÓN DE C-ALQUIL Y C-FENIL-PIROGALOL[4]ARENOS FUNCIONALIZADOS CON GRUPOS CARBOXILO EN EL BORDE SUPERIOR Y EVALUACIÓN DE SU INTERACCIÓN CON CATIONES ORGÁNICOS DE INTERÉS BIOLÓGICO
dc.description.additionalLínea de Investigación: Química Analítica y Síntesis Orgánica
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Química
dc.contributor.corporatenameUniversidad Nacional de Colombia
dc.contributor.researchgroupAplicaciones Analíticas de Compuesto Orgánicos
dc.description.degreelevelDoctorado
dc.publisher.departmentDepartamento de Química
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesSteed, J. W.; Atwood, J. L.; Gale, P. A. Definition and Emergence of Supramolecular ChemistryAdapted in Part from Supramolecular Chemistry , J. W. Steed and J. L. Atwood, Wiley: Chichester, 2nd Ed., 2009. In Supramolecular Chemistry; John Wiley & Sons, Ltd: Chichester, UK, 2012
dc.relation.referencesLehn, J.-M. Towards Complex Matter: Supramolecular Chemistry and Self-Organization. Eur. Rev. 2009, 17 (2), 263–280.
dc.relation.referencesStrekowski, L.; Wilson, B. Noncovalent Interactions with DNA: An Overview. Mutat. Res. Mol. Mech. Mutagen. 2007, 623 (1–2), 3–13.
dc.relation.referencesHarada, A.; Takashima, Y.; Yamaguchi, H. Cyclodextrin-Based Supramolecular Polymers. Chemical Society Reviews. 2009, pp 875–882.
dc.relation.referencesLiu, Z.; Nalluri, S. K. M.; Fraser Stoddart, J. Surveying Macrocyclic Chemistry: From Flexible Crown Ethers to Rigid Cyclophanes. Chem. Soc. Rev. 2017, 46 (9), 2459–2478.
dc.relation.referencesKumari, H.; Deakyne, C. A.; Atwood, J. L. Solution Structures of Nanoassemblies Based on Pyrogallol[4]Arenes. Acc. Chem. Res. 2014, 47 (10), 3080–3088.
dc.relation.referencesJordan, J. H.; Gibb, B. C. Molecular Containers Assembled through the Hydrophobic Effect. Chem. Soc. Rev. 2015, 44 (2), 547–585
dc.relation.referencesBeyeh, N. K.; Rissanen, K. Dimeric Resorcin[4]Arene Capsules in the Solid State. Isr. J. Chem. 2011, 51 (7), 769–780.
dc.relation.referencesZhang, Q.; Tiefenbacher, K. Hexameric Resorcinarene Capsule Is a Brønsted Acid: Investigation and Application to Synthesis and Catalysis. J. Am. Chem. Soc. 2013, 135 (43), 16213–16219.
dc.relation.referencesZhang, C.; Wang, F.; Patil, R. S.; Barnes, C. L.; Li, T.; Atwood, J. L. Hierarchical Self-Assembly of Supramolecular Coordination Polymers Using Giant Metal-Organic Nanocapsules as Building Blocks. Chem. - A Eur. J. 2018, 24 (54), 14335–14340.
dc.relation.referencesCohen, Y.; Slovak, S.; Avram, L. Hydrogen Bond Hexameric Capsules: Structures, Host-Guest Interactions, Guest Affinities, and Catalysis. In Calixarenes and Beyond; Neri, P., Sessler, J. L., Wang, M.-X., Eds.; Springer International Publishing: Cham, 2016; pp 811–842.
dc.relation.referencesSherman, J. C.; Knobler, C. B.; Cram, J. Syntheses and Properties of Soluble Carceplexes. J. Am. Chem. Soc. 1991, 2204 (4), 2194–2204.
dc.relation.referencesTanaka, Y.; Miyachi, M.; Kobuke, Y. Selective Vesicle Formation from Calixarenes by Self-Assembly. Angew. Chemie - Int. Ed. 1999, 38 (4), 504–506.
dc.relation.referencesYan, C.; Chen, W.; Chen, J.; Jiang, T.; Yao, Y. Microwave Irradiation Assisted Synthesis , Alkylation Reaction , and Configuration Analysis of Aryl Pyrogallol [ 4 ] Arenes. 2007, 63, 9614–9620
dc.relation.referencesFunck, M.; Guest, D. P.; Cave, G. W. V. Microwave-Assisted Synthesis of Resorcin[4]Arene and Pyrogallol[4]Arene Macrocycles. Tetrahedron Lett. 2010, 51, 6399–6402.
dc.relation.referencesYasmin, L.; Coyle, T.; Stubbs, K. A.; Raston, C. L. Stereospecific Synthesis of Resorcin[4]Arenes and Pyrogallol[4]Arenes in Dynamic Thin Films. Chem. Commun. 2013, 49 (93), 10932–10934.
dc.relation.referencesJain, V. K.; Kanaiya, P. H. Chemistry of Calix[4]Resorcinarenes. Russ. Chem. Rev. 2011, 80 (1), 75–102.
dc.relation.referencesSzumna, A.; Wierzbicki, M.; Iwanek, W.; Stefa, K. Solvent-Free Synthesis and Structure of 2-Naphthol Derivatives of Resorcinarenes. 2015, 71, 2222–2225.
dc.relation.referencesThomas, H. M.; Kumari, H.; Maddalena, J.; Mayhan, C. M.; Ellis, L. T.; Adams, J. E.; Deakyne, C. A. Conformational Preference and Dynamics of Pyrogallol[4]Arene: Stability, Interconversion, and Solvent Influence. Supramol. Chem. 2018, 30 (5–6), 520–532.
dc.relation.referencesManzano, S.; Zambrano, C. H.; Mendez, M. A.; Dueno, E. E.; Cazar, R. A.; Torres, F. J. A Theoretical Study of the Conformational Preference of Alkyl- and Aryl-Substituted Pyrogallol[4]Arenes and Evidence of the Accumulation of Negative Electrostatic Potential within the Cavity of Their Rccc Conformers. Mol. Simul. 2014, 40 (4), 327–334.
dc.relation.referencesGutsche, C. D.; Dhawan, B.; Levine, J. A.; Hyun No, K.; Bauer, L. J. Calixarenes 9. Tetrahedron 1983, 39 (3), 409–426.
dc.relation.referencesWeinelt, F.; Schneider, H. J. Host-Guest Chemistry. 27. Mechanisms of Macrocycle Genesis. The Condensation of Resorcinol with Aldehydes. J. Org. Chem. 1991, 56 (19), 5527–5535.
dc.relation.referencesMann, G.; Weinelt, F.; Hauptmann, S. Influence of Aromatic Substituents on the Configuration and Conformation of Calix[4]Areneoctols. J. Phys. Org. Chem. 1989, 2 (7), 531–539.
dc.relation.referencesGerkensmeier, T.; Agena, C.; Iwanek, W.; Fröhlich, R.; Kotila, S.; Näther, C.; Mattay, J. Synthesis and Structural Studies of 5, 11, 17, 23-Tetrahydroxyresorc[4]Arenes. Zeitschrift für Naturforsch. B 2001, 56 (10), 1063–1073.
dc.relation.referencesSchiel, C.; Hembury, G. A.; Borovkov, V. V.; Klaes, M.; Agena, C.; Wada, T.; Grimme, S.; Inoue, Y.; Mattay, J. New Insights into the Geometry of Resorc[4]Arenes: Solvent-Mediated Supramolecular Conformational and Chiroptical Control. J. Org. Chem. 2006, 71 (3), 976–982.
dc.relation.referencesPatil, R. S.; Drachnik, A. M.; Kumari, H.; Barnes, C. L.; Deakyne, C. A.; Atwood, J. L. Solvent-Induced Manipulation of Supramolecular Organic Frameworks. Cryst. Growth Des. 2015, 15 (6), 2781–2786.
dc.relation.referencesAlshahateet, S. F.; Kooli, F.; Messali, M.; Judeh, Z. M. A.; ElDouhaibi, A. S. Synthesis and Supramolecularity of C -Phenylcalix[4] Pyrogallolarenes: Temperature Effect on the Formation of Different Isomers. Mol. Cryst. Liq. Cryst. 2007, 474 (1), 89–110.
dc.relation.referencesCasas-Hinestroza, J.; Maldonado, M. Conformational Aspects of the O-Acetylation of C-Tetra(Phenyl)Calixpyrogallol[4]Arene. Molecules 2018, 23 (5), 1225.
dc.relation.referencesVelásquez-Silva, A.; Cortés, B.; Rivera-Monroy, Z. J.; Pérez-Redondo, A.; Maldonado, M. Crystal Structure and Dynamic NMR Studies of Octaacetyl-Tetra(Propyl)Calix[4]Resorcinarene. J. Mol. Struct. 2017, 1137, 380–386.
dc.relation.referencesKulikov, O. V; Negin, S.; Rath, N. P.; Gokel, G. W. Morphologies of Branched-Chain Pyrogallol[4]Arenes in the Solid State. Supramol. Chem. 2014, 26 (7–8), 506–516.
dc.relation.referencesDalgarno, S. J.; Power, N. P.; Antesberger, J.; Mckinlay, R. M.; Atwood, J. L. Synthesis and Structural Characterisation of Lower Rim Halogenated Pyrogallol [ 4 ] Arenes : Bi-Layers and Hexameric Nano-Capsules. Chem. Commun. 2006, 3803–3805.
dc.relation.referencesGibb, B. C.; Chapman, R. G.; Sherman, J. C. Synthesis of Hydroxyl-Footed Cavitands. J. Org. Chem. 1996, 61 (4), 1505–1509.
dc.relation.referencesKobayashi, K.; Asakawa, Y.; Kato, Y.; Aoyama, Y. Complexation of Hydrophobic Sugars and Nucleosides in Water with Tetrasulfonate Derivatives of Resorcinol Cyclic Tetramer Having a Polyhydroxy Aromatic Cavity: Importance of Guest-Host CH-.Pi. Interaction. J. Am. Chem. Soc. 1992, 114 (26), 10307–10313.
dc.relation.referencesBarrett, E. S.; Dale, T. J.; Rebek, J. Synthesis and Assembly of Monofunctionalized Pyrogallolarene Capsules Monitored by Fluorescence Resonance Energy Transfer. Chem. Commun. 2007, 0 (41), 4224.
dc.relation.referencesFujimoto, T.; Yanagihara, R.; Kobayashi, K.; Aoyama, Y. C–H··· π Hydrogen Bonding between Electron-Rich Benzene Rings and Polarized C–H Bonds: Selectivity in the Complexation of Highly Hydrophilic Guest Molecules with Calix[4]Resorcarene Hosts in Water. Bull. Chem. Soc. Jpn. 1995, 68, 2113–2124.
dc.relation.referencesBarrett, E. S.; Dale, T. J.; Rebek, J. Assembly and Exchange of Resorcinarene Capsules Monitored by Fluorescence Resonance Energy Transfer. J. Am. Chem. Soc. 2007, 129 (13), 3818–3819.
dc.relation.referencesFairfull-Smith (née Elson), K.; Redon, P. M. J.; Haycock, J. W.; Williams, N. H. Monofunctionalised Resorcinarenes. Tetrahedron Lett. 2007, 48 (8), 1317–1319.
dc.relation.referencesBowley, N. D.; Funck, M.; Laventine, D. M.; Dalgarno, S. J.; Cave, G. W. V; Bowley, N. D.; Funck, M.; Laventine, D. M.; Dalgarno, S. J. Pyridinium Encapsulation within a Novel Cyano- Footed Pyrogallol [ 4 ] Arene Nanocapsule. Supramol. Chem. 2014, 0278 (March 2017), 1–5.
dc.relation.referencesSchröder, T.; Geisler, T.; Walhorn, V.; Schnatwinkel, B.; Anselmetti, D.; Mattay, J. Single-Molecule Force Spectroscopy of Supramolecular Heterodimeric Capsules. Phys. Chem. Chem. Phys. 2010, 12 (36), 10981.
dc.relation.referencesRafai Far, A.; Lag Cho, Y.; Rang, A.; Rudkevich, D. M.; Rebek, J. Polymer-Bound Self-Folding Cavitands. Tetrahedron 2002, 58 (4), 741–755.
dc.relation.referencesSaitoh, M.; Fukaminato, T.; Irie, M. Photochromism of a Diarylethene Derivative in Aqueous Solution Capping with a Water-Soluble Nano-Cavitand. J. Photochem. Photobiol. A Chem. 2009, 207 (1), 28–31.
dc.relation.referencesSaito, S.; Rudkevich, D. M.; Rebek, J. Lower Rim Functionalized Resorcinarenes: Useful Modules for Supramolecular Chemistry. Org. Lett. 1999, 1 (8), 1241–1244.
dc.relation.referencesNaumann, C.; Román, E.; Peinador, C.; Ren, T.; Patrick, B. O.; Kaifer, A. E.; Sherman, J. C. Expanding Cavitand Chemistry: The Preparation and Characterization of [n]Cavitands Withn≥4. Chemistry (Easton). 2001, 7 (8), 1637–1645.
dc.relation.referencesÅhman, A.; Luostarinen, M.; Schalley, C. A.; Nissinen, M.; Rissanen, K. Derivatisation of Pyrogallarenes. European J. Org. Chem. 2005, 2005 (13), 2793–2801.
dc.relation.referencesPodyachev, S. N.; Syakaev, V. V.; Sudakova, S. N.; Shagidullin, R. R.; Osyanina, D. V.; Avvakumova, L. V.; Buzykin, B. I.; Latypov, S. K.; Bauer, I.; Habicher, W. D.; et al. Synthesis of New Calix[4]Arenes Functionalizated by Acetylhydrazide Groups. J. Incl. Phenom. Macrocycl. Chem. 2007, 58 (1–2), 55–61.
dc.relation.referencesPashirova, T. N.; Leonova, M. V.; Podyachev, S. N.; Sudakova, S. N.; Zakharova, L. Y.; Kudryavtseva, L. A.; Konovalov, A. I. Effect of Structural Preorganization on the Reactivity of Carbazoylmethyl Derivatives of Pyrogallol and Calix[4]Pyrogallol. Russ. Chem. Bull. 2007, 56 (12), 2394–2399.
dc.relation.referencesLuostarinen, M.; Åhman, A.; Nissinen, M.; Rissanen, K. Ethyl Pyrogall[6]Arene and Pyrogall[4]Arene: Synthesis, Structural Analysis and Derivatization. Supramol. Chem. 2004, 16 (7), 505–512.
dc.relation.referencesHan, J.; Song, X.; Liu, L.; Yan, C. Synthesis, Crystal Structure and Configuration of Acetylated Aryl Pyrogallol[4]Arenes. J. Incl. Phenom. Macrocycl. Chem. 2007, 59 (3–4), 257–263.
dc.relation.referencesKrause, T.; Gruner, M.; Kuckling, D.; Habicher, W. D. Novel Starshaped Initiators for the Controlled Radical Polymerization Based on Resorcin[4]- and Pyrogallol[4]Arenes. Tetrahedron Lett. 2004, 45 (52), 9635–9639.
dc.relation.referencesJordan, J. H.; Gibb, B. C. Water-Soluble Cavitands ☆. In Comprehensive Supramolecular Chemistry II; Elsevier, 2017; Vol. 1, pp 387–404.
dc.relation.referencesTero, T.-R.; Nissinen, M. Resorcinarene Crowns ☆. In Comprehensive Supramolecular Chemistry II; Elsevier, 2017; pp 375–386.
dc.relation.referencesSalorinne, K.; Nissinen, M. Calixcrowns: Synthesis and Properties. J. Incl. Phenom. Macrocycl. Chem. 2008, 61 (1–2), 11–27.
dc.relation.referencesBiedermann, F.; Schneider, H. J. Experimental Binding Energies in Supramolecular Complexes. Chem. Rev. 2016, 116 (9), 5216–5300.
dc.relation.referencesMahadevi, A. S.; Sastry, G. N. Cooperativity in Noncovalent Interactions. Chem. Rev. 2016, 116 (5), 2775–2825.
dc.relation.referencesSalonen, L. M.; Ellermann, M.; Diederich, F. Aromatic Rings in Chemical and Biological Recognition: Energetics and Structures. Angew. Chemie - Int. Ed. 2011, 50 (21), 4808–4842.
dc.relation.referencesCasas-Hinestroza, J. L.; Bueno, M.; Ibáñez, E.; Cifuentes, A. Recent Advances in Mass Spectrometry Studies of Non-Covalent Complexes of Macrocycles - A Review. Anal. Chim. Acta 2019.
dc.relation.referencesWaters, M. L. Aromatic Interactions in Model Systems. Curr. Opin. Chem. Biol. 2002, 6 (6), 736–741.
dc.relation.referencesWaters, M. L. Aromatic Interactions in Peptides: Impact on Structure and Function. Biopolymers 2004, 76 (5), 435–445.
dc.relation.referencesPrzybylski, M.; Glocker, M. O. Electrospray Mass Spectrometry of Biomacromolecular Complexes with Noncovalent Interactions—New Analytical Perspectives for Supramolecular Chemistry and Molecular Recognition Processes. Angew. Chemie Int. Ed. English 1996, 35 (8), 806–826.
dc.relation.referencesBanerjee, S.; Mazumdar, S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. Int. J. Anal. Chem. 2012, 2012, 1–40.
dc.relation.referencesVenter, A.; Nefliu, M.; Graham Cooks, R. Ambient Desorption Ionization Mass Spectrometry. TrAC Trends Anal. Chem. 2008, 27 (4), 284–290.
dc.relation.referencesChen, F.; Mädler, S.; Weidmann, S.; Zenobi, R. MALDI-MS Detection of Noncovalent Interactions of Single Stranded DNA with Escherichia Coli Single-Stranded DNA-Binding Protein. J. Mass Spectrom. 2012, 47 (5), 560–566.
dc.relation.referencesDownard, K. M. Indirect Study of Non-Covalent Protein Complexes by MALDI Mass Spectrometry: Origins, Advantages, and Applications of the “Intensity-Fading” Approach. Mass Spectrom. Rev. 2016, 35 (5), 559–573.
dc.relation.referencesTong, W.; Wang, G. How Can Native Mass Spectrometry Contribute to Characterization of Biomacromolecular Higher-Order Structure and Interactions? Methods 2018, 144 (April), 3–13.
dc.relation.referencesDaniel, J. M.; Friess, S. D.; Rajagopalan, S.; Wendt, S.; Zenobi, R. Quantitative Determination of Noncovalent Binding Interactions Using Soft Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2002, 216 (1), 1–27.
dc.relation.referencesWyttenbach, T.; Bowers, M. T. Intermolecular Interactions in Biomolecular Systems Examined by Mass Spectrometry. Annu. Rev. Phys. Chem. 2007, 58 (1), 511–533.
dc.relation.referencesChen, F.; Gülbakan, B.; Weidmann, S.; Fagerer, S. R.; Ibáñez, A. J.; Zenobi, R. Applying Mass Spectrometry to Study Non-Covalent Biomolecule Complexes. Mass Spectrom. Rev. 2016, 35 (1), 48–70.
dc.relation.referencesErba, E. B.; Zenobi, R. Mass Spectrometric Studies of Dissociation Constants of Noncovalent Complexes. Annu. Reports Sect. “C” (Physical Chem. 2011, 107, 199.
dc.relation.referencesFinn, M. G. Emerging Methods for the Rapid Determination of Enantiomeric Excess. Chirality 2002, 14 (7), 534–540.
dc.relation.referencesSharafutdinova, D. R.; Bazanova, O. B.; Murav´ev, A. A.; Solov´eva, S. E.; Antipin, I. S.; Konovalov, A. I. Composition of Thiacalix[4]Arene Complexes with Monovalent Metal Ions in the Gas Phase: MALDI Mass Spectrometry. Russ. Chem. Bull. 2015, 64 (8), 1823–1828.
dc.relation.referencesCameron, K. S.; Fielding, L. NMR Diffusion Spectroscopy as a Measure of Host - Guest Complex Association Constants and as a Probe of Complex Size. J. Org. Chem. 2001, 66 (4), 6891–6895.
dc.relation.referencesKovrigin, E. L. NMR Line Shapes and Multi-State Binding Equilibria. J. Biomol. NMR 2012, 53, 257–270.
dc.relation.referencesFunasaki, N.; Nomura, M.; Ishikawa, S.; Neya, S. NMR Chemical Shift References for Binding Constant Determination in Aqueous Solutions. J. Phys. Chem. B 2001, 105 (30), 7361–7365.
dc.relation.referencesKemmer, G.; Keller, S. Nonlinear Least-Squares Data Fitting in Excel Spreadsheets. Nat. Protoc. 2010, 5 (2), 267–281.
dc.relation.referencesLowe, A. J.; Pfeffer, F. M.; Thordarson, P. Determining Binding Constants from 1 H NMR Titration Data Using Global and Local Methods: A Case Study Using [ n ]Polynorbornane-Based Anion Hosts. Supramol. Chem. 2012, 24 (8), 585–594.
dc.relation.referencesHynes, M. J. EQNMR: A Computer Program for the Calculation of Stability Constants from Nuclear Magnetic Resonance Chemical Shift Data. J. Chem. Soc. Dalt. Trans. 1993, No. 2, 311.
dc.relation.referencesBeyeh, N. K.; Pan, F.; Ras, R. H. A. N -Alkyl Ammonium Resorcinarene Chloride Receptors for Guest Binding in Aqueous Environment. Asian J. Org. Chem. 2016, 1–7.
dc.relation.referencesKharlamov, S. V; Latypov, S. K. Modern Diffusion-Ordered NMR Spectroscopy in Chemistry of Supramolecular Systems: The Scope and Limitations. Russ. Chem. Rev. 2010, 79 (8), 635–653.
dc.relation.referencesSlovak, S.; Evan-Salem, T.; Cohen, Y. Self-Assembly of a Hexameric Aggregate of a Lipophilic Calix[4]Pyrrole−Resorcinarene Hybrid in Solution: A Diffusion NMR Study. Org. Lett. 2010, 12 (21), 4864–4867.
dc.relation.referencesMacchioni, A.; Ciancaleoni, G.; Zuccaccia, C.; Zuccaccia, D. Determining Accurate Molecular Sizes in Solution through NMR Diffusion Spectroscopy. Chem. Soc. Rev. 2008, 37 (3), 479–489.
dc.relation.referencesHorin, I.; Adiri, T.; Zafrani, Y.; Cohen, Y. Bis-Resorcin[4]Arene Selectively Forms Hexameric Capsules in Apolar Solvents: Evidence from Diffusion NMR. Org. Lett. 2018, 20 (13), 3958–3961.
dc.relation.referencesSpäth, A.; König, B. Molecular Recognition of Organic Ammonium-Ions in Solution Using Synthetic Receptors. Beilstein J. Org. Chem. 2010, 6, 32–133.
dc.relation.referencesÅhman, A.; Luostarinen, M.; Rissanen, K.; Nissinen, M. Complexation of C-Methyl Pyrogallarene with Small Quaternary and Tertiary Alkyl Ammonium Cations. New J. Chem. 2007, 31 (1), 169–177.
dc.relation.referencesSchnatwinkel, B.; Rekharsky, M. V.; Brodbeck, R.; Borovkov, V. V.; Inoue, Y.; Mattay, J. Thermodynamic Aspects of the Host–Guest Chemistry of Pyrogallol[4]Arenes and Peralkylated Ammonium Cations. Tetrahedron 2009, 65 (13), 2711–2715.
dc.relation.referencesFujisawa, I.; Aoki, K. Glycine Betaine Recognition through Cation−π Interactions in Crystal Structures of Glycine Betaine Complexes with C-Ethyl-Pyrogallol[4]Arene and C-Ethyl-Resorcin[4]Arene as Receptors. Crystals 2013, 3 (2), 306–314.
dc.relation.referencesSchnatwinkel, B.; Rekharsky, M. V.; Borovkov, V. V.; Inoue, Y.; Mattay, J. Pyrogallol[4]Arenes as Artificial Receptors for l-Carnitine. Tetrahedron Lett. 2009, 50 (13), 1374–1376.
dc.relation.referencesBallester, P.; Shivanyuk, A.; Far, A. R.; Rebek, J. A Synthetic Receptor for Choline and Carnitine. J. Am. Chem. Soc. 2002, 124 (47), 14014–14016.
dc.relation.referencesFujisawa, I.; Kitamura, Y.; Okamoto, R.; Murayama, K.; Kato, R.; Aoki, K. Crystal Structure of Pyrogallol[4]Arene Complex with Phosphocholine: A Molecular Recognition Model for Phosphocholine through Cation–π Interaction. J. Mol. Struct. 2013, 1038, 188–193.
dc.relation.referencesFujisawa, I.; Takeuchi, D.; Kitamura, Y.; Okamoto, R.; Aoki, K. Crystal Structure of an L-Carnitine Complex with Pyrogallol[4]Arene. J. Phys. Conf. Ser. 2012, 352 (1), 012043.
dc.relation.referencesFowler, D. A.; Pfeiffer, C. R.; Teat, S. J.; Beavers, C. M.; Baker, G. A.; Atwood, J. L. Illuminating Host–Guest Cocrystallization between Pyrogallol[4]Arenes and the Ionic Liquid 1-Ethyl-3-Methylimidazolium Ethylsulfate. CrystEngComm 2014, 16 (27), 6010–6022.
dc.relation.referencesDemura, M.; Yoshida, T.; Hirokawa, T.; Kumaki, Y.; Aizawa, T.; Nitta, K.; Bitter, I.; Tóth, K. Interaction of Dopamine and Acetylcholine with an Amphiphilic Resorcinarene Receptor in Aqueous Micelle System. Bioorg. Med. Chem. Lett. 2005, 15 (5), 1367–1370.
dc.relation.referencesFowler, D. A.; Tian, J.; Barnes, C.; Teat, S. J.; Atwood, J. L. Cocrystallization of C-Butyl Pyrogallol[4]Arene and C-Propan-3-Ol Pyrogallol[4]Arene with Gabapentin. CrystEngComm 2011, 13 (5), 1446–1449.
dc.relation.referencesFujisawa, I.; Kitamura, Y.; Kato, R.; Murayama, K.; Aoki, K. Crystal Structures of Resorcin[4]Arene and Pyrogallol[4]Arene Complexes with DL-Pipecolinic Acid. Model Compounds for the Recognition of the Pipecolinyl Ring, a Key Fragment of FK506, through C–H⋯π Interaction. J. Mol. Struct. 2014, 1056–1057, 292–298.
dc.relation.referencesPfeiffer, C. R.; Fowler, D. a.; Teat, S.; Atwood, J. L. Cocrystallization of Pyrogallol[4]Arenes with 1-(2-Pyridylazo)-2-Naphthol. CrystEngComm 2014, 16 (47), 10760–10773.
dc.relation.referencesPfeiffer, C. R.; Fowler, D. A.; Atwood, J. L. Endo vs Exo Bowl: Complexation of Xanthone by Pyrogallol[4]Arenes. Cryst. Growth Des. 2014, 14 (8), 4205–4213.
dc.relation.referencesPodyachev, S. N.; Sudakova, S. N.; Syakaev, V. V.; Burmakina, N. E.; Shagidullin, R. R.; Morozov, V. I.; Avvakumova, L. V.; Konovalov, A. I. Synthesis and Properties of Potassium Salts of Per-O-Carboxymethyl-Calix[4]Pyrogallols and Their Complexes with Cu2+, Fe3+, and La3+. Russ. Chem. Bull. 2009, 58 (1), 80–88.
dc.relation.referencesNikolelis, D. P.; Raftopoulou, G.; Psaroudakis, N.; Nikoleli, G.-P. Development of an Electrochemical Chemosensor for the Rapid Detection of Zinc Based on Air Stable Lipid Films with Incorporated Calix4arene Phosphoryl Receptor. Int. J. Environ. Anal. Chem. 2009, 89 (3), 211–222.
dc.relation.referencesHof, F.; Trembleau, L.; Ullrich, E. C.; Rebek, Jr., J. Acetylcholine Recognition by a Deep, Biomimetic Pocket. Angew. Chemie Int. Ed. 2003, 42 (27), 3150–3153.
dc.relation.referencesKim, S. K.; Kang, B.; Koh, H. S.; Yoon, Y. J.; Jung, S. J.; Jeong, B.; Lee, K.; Yoon, J. A New Imidazolium Cavitand for the Recognition of Dicarboxylates. Org. Lett. 2004, 6 (25), 4655–4658.
dc.relation.referencesDalgarno, S. J. Supramolecular Chemistry. Annu. Reports Sect. “B” (Organic Chem. 2009, 105 (0), 190.
dc.relation.referencesPradeep, C. P.; Cronin, L. Supramolecular Coordination Chemistry. Annu. Reports Sect. “A” (Inorganic Chem. 2007, 103, 287.
dc.relation.referencesdos Santos, C.; Buera, P.; Mazzobre, F. Novel Trends in Cyclodextrins Encapsulation. Applications in Food Science. Curr. Opin. Food Sci. 2017, 16, 106–113.
dc.relation.referencesKim, K.; Selvapalam, N.; Ko, Y. H.; Park, K. M.; Kim, D.; Kim, J. Functionalized Cucurbiturils and Their Applications. Chem. Soc. Rev. 2007, 36 (2), 267–279.
dc.relation.referencesNegin, S.; Gokel, G. W. The Varied Supramolecular Chemistry of Pyrogallol [ 4 ] Arenes. In Organic Nanoreactors: From Molecular to Supramolecular Organic Compounds; Elsevier Inc.: Missouri, 2016; pp 235–256.
dc.relation.referencesRebek, J.; Shivanyuk, A. Hydrogen-Bonded Capsules in Polar, Protic Solvents. Chem. Commun. 2001, 2374–2375.
dc.relation.referencesZhang, Q.; Adams, R. D.; Fenske, D. Stable Hydrogen-Bonded Spherical Capsules Formed from Self-Assembly of Pyrogallol[4]Arenes. J. Incl. Phenom. Macrocycl. Chem. 2005, 53 (3–4), 275–279.
dc.relation.referencesDalgarno, S. J.; Power, N. P.; Warren, J. E.; Atwood, J. L. Rapid Formation of Metal–Organic Nano-Capsules Gives New Insight into the Self-Assembly Process. Chem. Commun. 2008, 0 (13), 1539.
dc.relation.referencesAvram, L.; Cohen, Y.; Rebek Jr., J. Recent Advances in Hydrogen-Bonded Hexameric Encapsulation Complexes. Chem. Commun. 2011, 47 (19), 5368.
dc.relation.referencesCave, G. W. V.; Dalgarno, S. J.; Antesberger, J.; Ferrarelli, M. C.; McKinlay, R. M.; Atwood, J. L. Investigations into Chain Length Control over Solid-State Pyrogallol[4]Arene Nanocapsule Packing. Supramol. Chem. 2008, 20 (1–2), 157–159.
dc.relation.referencesM. A. Gangemi, C.; Pappalardo, A.; Trusso Sfrazzetto, G. Assembling of Supramolecular Capsules with Resorcin[4]Arene and Calix[n]Arene Building Blocks. Curr. Org. Chem. 2015, 19 (23), 2281–2308.
dc.relation.referencesKumari, H.; Dennis, C. L.; Mossine, A. V; Deakyne, C. A.; Atwood, J. L. Magnetic Differentiation of Pyrogallol[4]Arene Tubular and Capsular Frameworks. J. Am. Chem. Soc. 2013, 135, 7110–7113.
dc.relation.referencesDalgarno, S. J.; Cave, G. W. V.; Atwood, J. L. Toward the Isolation of Functional Organic Nanotubes. Angew. Chemie Int. Ed. 2006, 45 (4), 570–574.
dc.relation.referencesKumari, H.; Kline, S. R.; Wycoff, W. G.; Paul, R. L.; Mossine, A. V; Deakyne, C. A.; Atwood, J. L. Solution-Phase Structures of Gallium-Containing Pyrogallol[4]Arene Scaffolds. Angew. Chemie Int. Ed. 2012, 51 (21), 5086–5091.
dc.relation.referencesPower, N. P.; Dalgarno, S. J.; Atwood, J. L. Guest and Ligand Behavior in Zinc-Seamed Pyrogallol[4]Arene Molecular Capsules. Angew. Chemie Int. Ed. 2007, 46 (45), 8601–8604.
dc.relation.referencesJin, P.; Dalgarno, S. J.; Barnes, C.; Teat, S. J.; Atwood, J. L. Ion Transport to the Interior of Metal−Organic Pyrogallol[4]Arene Nanocapsules. J. Am. Chem. Soc. 2008, 130 (51), 17262–17263.
dc.relation.referencesKumari, H.; Jin, P.; Teat, S. J.; Barnes, C. L.; Dalgarno, S. J.; Atwood, J. L. Entrapment of Elusive Guests within Metal-Seamed Nanocapsules. Angew. Chemie - Int. Ed. 2014, 53 (48), 13088–13092.
dc.relation.referencesDalgarno, S. J.; Power, N. P.; Atwood, J. L. Metallo-Supramolecular Capsules. Coord. Chem. Rev. 2008, 252 (8–9), 825–841.
dc.relation.referencesKumari, H.; Mossine, A. V.; Kline, S. R.; Dennis, C. L.; Fowler, D. A.; Teat, S. J.; Barnes, C. L.; Deakyne, C. A.; Atwood, J. L. Controlling the Self-Assembly of Metal-Seamed Organic Nanocapsules. Angew. Chemie Int. Ed. 2012, 51 (6), 1452–1454.
dc.relation.referencesKumari, H.; Dennis, C. L.; Mossine, A. V; Deakyne, C. A.; Atwood, J. L. Exploring the Magnetic Behavior of Nickel-Coordinated Pyrogallol[4]Arene Nanocapsules. ACS Nano 2012, 6 (1), 272–275.
dc.relation.referencesAdriaenssens, L.; Ballester, P. Hydrogen Bonded Supramolecular Capsules with Functionalized Interiors: The Controlled Orientation of Included Guests. Chem. Soc. Rev. 2013, 42 (8), 3261.
dc.relation.referencesFowler, D. A.; Mossine, A. V.; Beavers, C. M.; Teat, S. J.; Dalgarno, S. J.; Atwood, J. L. Coordination Polymer Chains of Dimeric Pyrogallol[4]Arene Capsules. J. Am. Chem. Soc. 2011, 133 (29), 11069–11071.
dc.relation.referencesGangemi, C. M. A.; Pappalardo, A.; Trusso Sfrazzetto, G. Applications of Supramolecular Capsules Derived from Resorcin[4]Arenes, Calix[n]Arenes and Metallo-Ligands: From Biology to Catalysis. RSC Adv. 2015, 5 (64), 51919–51933.
dc.relation.referencesScott, M. P.; Sherburn, M. S. Resorcinarenes and Pyrogallolarenes. In Comprehensive Supramolecular Chemistry II; Elsevier, 2017; Vol. 1, pp 337–374.
dc.relation.referencesChakraborty, S.; Saha, A.; Basu, K.; Saha, C. Solid-Phase Benzoylation of Phenols and Alcohols in Microwave Reactor: An Ecofriendly Protocol. Synth. Commun. 2015, 45 (20), 2331–2343.
dc.relation.referencesAbrash, H. I.; Shih, D.; Elias, W.; Malekmehr, F. A Kinetic Study of the Air Oxidation of Pyrogallol and Purpurogallin. Int. J. Chem. Kinet. 1989, 21 (6), 465–476.
dc.relation.referencesCohen, Y.; Evan-Salem, T.; Avram, L. Hydrogen-Bonded Hexameric Capsules of Resorcin[4]Arene, Pyrogallol[4]Arene and Octahydroxypyridine[4]Arene Are Abundant Structures in Organic Solvents: A View from Diffusion NMR. Supramol. Chem. 2008, 20 (1–2), 71–79.
dc.relation.referencesKass, J. P.; Zambrano, C. H.; Zeller, M.; Hunter, A. D.; Dueno, E. E. 2,8,14,20-Tetraphenylpyrogallol[4]Arene Dimethylformamide Octasolvate. Acta Crystallogr. Sect. E Struct. Reports Online 2006, 62 (8), o3179–o3180.
dc.relation.referencesPatil, R. S.; Zhang, C.; Atwood, J. L. Process Development for Separation of Conformers from Derivatives of Resorcin[4]Arenes and Pyrogallol[4]Arenes. Chem. - A Eur. J. 2016, 22 (43), 15202–15207.
dc.relation.referencesDueno, E. E.; Ray, T.; Salvatore, R. N.; Hunter, A. D. 2,8,14,20-Tetrakis(4-Hydroxyphenyl)- Pyrogallol[4]Arene Dimethylformamide Hexasolvate. Acta Crystallogr. Sect. E 2007, E63, o3533–o3534.
dc.relation.referencesSheikh, M. C.; Takagi, S.; Yoshimura, T.; Morita, H. Mechanistic Studies of DCC/HOBt-Mediated Reaction of 3-Phenylpropionic Acid with Benzyl Alcohol and Studies on the Reactivities of ‘Active Ester’ and the Related Derivatives with Nucleophiles. Tetrahedron 2010, 66 (36), 7272–7278.
dc.relation.referencesFarshori, N. N.; Banday, M. R.; Zahoor, Z.; Rauf, A. DCC/DMAP Mediated Esterification of Hydroxy and Non-Hydroxy Olefinic Fatty Acids with β-Sitosterol: In Vitro Antimicrobial Activity. Chinese Chem. Lett. 2010, 21 (6), 646–650.
dc.relation.referencesWaghmare, A. A.; Hindupur, R. M.; Pati, H. N. Propylphosphonic Anhydride (T3P®): An Expedient Reagent for Organic Synthesis. Rev. J. Chem. 2014, 4 (2), 53–131.
dc.relation.referencesLin, Z.; Emge, T. J.; Warmuth, R. Multicomponent Assembly of Cavitand-Based Polyacylhydrazone Nanocapsules. Chem. - A Eur. J. 2011, 17 (34), 9395–9405.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalpirogalol[4]arenos
dc.subject.proposalpyrogallol[4]arenes
dc.subject.proposalhost-guest systems
dc.subject.proposalsistemas huésped-hospedero
dc.subject.proposalfunctionalization
dc.subject.proposalfuncionalización
dc.subject.proposalnoncovalent interactions
dc.subject.proposalinteracciones moleculares no covalentes
dc.subject.proposalensambles supramoleculares
dc.subject.proposalsupramolecular assemblies
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito