Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRamírez Hernández, María Helena
dc.contributor.authorSuárez Jurado, Aravy Geohanna
dc.date.accessioned2020-08-12T21:59:35Z
dc.date.available2020-08-12T21:59:35Z
dc.date.issued2020-04-23
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78006
dc.description.abstractGiardia duodenalis is a protozoan of medical interest since it is the causative agent of giardiasis, the gastrointestinal disease with the highest incidence worldwide, for which there is still no vaccine or efficient treatment. In order to find new pharmacological targets against this parasite, the study of enzymes of its energy metabolism such as sirtuins, adenine dinucleotide-dependent nicotinamide (NAD) have been addressed. Previously, in the Basic Research Laboratory in Biochemistry - LIBBIQ, G. duodenalis sirtuins have been studied and GdSir2.1 was identified as a NAD-dependent cytoplasmic deacetylase, in parallel, GdSir2.2 was also identified as a dependent deacetylase of NAD, but nuclear subcellular location. In this work, we studied another candidate for sirtuin (GdSir2.3) through the use of bioinformatics tools for the construction of structural models; and the development of experimental tools such as the recombinant protein and the production of antibodies that allowed the identification of the endogenous protein in the parasite. With the bioinformatics tools, typical characteristics of the Sirtuine family were identified in the candidate's sequence. On the other hand, with the experimental tools the recombinant protein 6xHisGdSir2.3 was obtained, which when evaluated enzymatically demonstrated NADdependent deacetylase activity; and that served as an antigen in the production of IgY-α6xHisGdSir2.3 for the identification of endogenous protein in trophozoites and cysts of G. duodenalis finding a cytoplasmic distribution in both stages. The above corresponds to what is documented in other studies where GdSir2.3 is pointed out as an important regulator of encysting due to its increased expression during this stage of the life cycle, constituting it as a promising pharmacological target for the control of this parasitemia
dc.description.abstractGiardia duodenalis es un protozoario de interés médico ya que es el agente causal de la giardiasis, la enfermedad gastrointestinal de mayor incidencia a nivel mundial, para la cual no se cuenta aún con una vacuna o un tratamiento eficiente. En aras de buscar nuevos blancos farmacológicos contra este parásito se ha abordado el estudio de las enzimas de su metabolismo energético como las sirtuinas, deacetilasas dependientes del dinucleótido de adenina y nicotinamida (NAD). Previamente en el Laboratorio de Investigaciones Básicas en Bioquímica – LIBBIQ se han estudiado las sirtuinas de G. duodenalis y se identificó a la GdSir2.1 como una deacetilasa citoplasmática dependiente de NAD, paralelamente, se identificó a GdSir2.2 también como una deacetilasa dependiente de NAD, pero de localización subcelular nuclear. En este trabajo se estudió otro candidato a sirtuina (GdSir2.3) mediante el uso de herramientas bioinformáticas para la construcción de modelos estructurales; y el desarrollo de herramientas experimentales como la proteína recombinante y la producción de anticuerpos que permitieron identificar la proteína endógena en el parásito. Con las herramientas bioinformáticas se identificaron características típicas de la familia sirtuina en la secuencia del candidato. Por otra parte, con las herramientas experimentales se obtuvo la proteína recombinante 6xHis – GdSir2.3 que al ser evaluada enzimáticamente demostró actividad deacetilasa dependiente de NAD; y que sirvió como antígeno en la producción de los IgY – α – 6xHisGdSir2.3 para la identificación de la proteína endógena en trofozoítos y quistes de G. duodenalis encontrando una distribución citoplasmática en ambos estadios. Lo anterior corresponde por lo documentado en otros estudios donde se señala a GdSir2.3 como un importante regulador de la enquistación debido a su aumento de expresión durante esta etapa del ciclo de vida, constituyéndola como un blanco farmacológico promisorio para el control de esta parasitemia
dc.format.extent102
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc572 - Bioquímica
dc.subject.ddc576 - Genética y evolución
dc.subject.ddc579 - Historia natural microorganismos, hongos, algas
dc.titleAproximación al estudio de las sirtuinas de g. Duodenalis: Evaluación y caracterización de un nuevo candidato
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagíster en Ciencias – Bioquímica. Línea de Investigación: Metabolismo energético de parásitos protozoarios
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.contributor.researchgroupLIBBIQ UN
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Química
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAnsell BRE, McConville MJ, Ma’ayeh SY, et al. Drug resistance in Giardia duodenalis. Biotechnol Adv. 2015;33(6):888-901. doi:10.1016/j.biotechadv.2015.04.009
dc.relation.referencesLujan HD, Svard S. Giardia A Model Organism.; 2011. doi:10.1017/CBO9781107415324.004
dc.relation.referencesAdam RD. Biology of Giardia lamblia . Clin Microbiol Rev . 2001;14(3):447-475. doi:10.1128/CMR.14.3.447-475.2001
dc.relation.referencesCarranza PG, Lujan HD. New insights regarding the biology of Giardia lamblia. Microbes Infect. 2010;12(1):71-80. doi:10.1016/j.micinf.2009.09.008
dc.relation.referencesErlandsen SL, Macechko PT, Keulen H V, Jarrol EL. Formation of the Giardia Cyst Wall: Studies on Extracellular Assembly Using lmmunogold Labeling and High Resolution Field Emission SEM. J Eukariotic Microbiol. 1996;43(5):416-429. doi:10.1111/j.1550-7408.1996.tb05053.x
dc.relation.referencesInstituto Nacional de Salud. Investigadores del Instituto Nacional de Salud desarrollaron prueba diagnóstica para la detección de la giardiasis, enfermedad intestinal que afecta principalmente a la población en edad escolar. 2017.
dc.relation.referencesFeng Y, Xiao L. Zoonotic Potential and Molecular Epidemiology of Giardia Species and Giardiasis †. 2011;24(1):110-140. doi:10.1128/CMR.00033-10
dc.relation.referencesVázquez O, Campos T. Giardiasis. La parasitosis más frecuente a nivel mundial. Rev del Cent Investig Univ La Salle. 2009;8(31):75-90.
dc.relation.referencesRobertson LJ, Hanevik K, Escobedo AA, Mørch K, Langeland N. Giardiasis – why do the symptoms sometimes never stop? Trends Parasitol. 2010;26(2):75-82. doi:10.1016/J.PT.2009.11.010
dc.relation.references. Escobedo AA, Lalle M, Hrastnik NI, et al. Combination therapy in the management of giardiasis: What laboratory and clinical studies tell us, so far. Acta Trop. 2016;162(616):196-205. doi:10.1016/j.actatropica.2016.06.026
dc.relation.referencesHernández Ceruelos A, Romero-Quezada LC, Ruvalcaba Ledezma JC, López Contreras L. Therapeutic uses of metronidazole and its side effects: An update. Eur Rev Med Pharmacol Sci. 2019;23(1):397-401. doi:10.26355/eurrev_201901_16788
dc.relation.referencesNabarro LEB, Lever RA, Armstrong M, Chiodini PL. Increased incidence of nitroimidazole-refractory giardiasis at the Hospital for Tropical Diseases, London: 2008–2013. Clin Microbiol Infect. 2015;21(8):791-796. doi:10.1016/j.cmi.2015.04.019
dc.relation.referencesFlick F, L??scher B. Regulation of sirtuin function by posttranslational modifications. Front Pharmacol. 2012;3 FEB(February):1-13. doi:10.3389/fphar.2012.00029
dc.relation.referencesFrye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 2000;273(2):793-798. doi:10.1006/bbrc.2000.3000
dc.relation.referencesSanders BD, Jackson B, Marmorstein R. Structural basis for sirtuin function: What we know and what we don’t. Biochim Biophys Acta - Proteins Proteomics. 2010;1804(8):1604-1616. doi:10.1016/j.bbapap.2009.09.009
dc.relation.referencesSauve AA, Wolberger C, Schramm VL, Boeke JD. The Biochemistry of Sirtuins. Annu Rev Biochem. 2006;75(1):435-465. doi:10.1146/annurev.biochem.74.082803.133500
dc.relation.referencesMin J, Landry J, Sternglanz R, Xu RM. Crystal structure of a SIR2 homolog-NAD complex. Cell. 2001;105(2):269-279. doi:10.1016/S0092-8674(01)00317-8
dc.relation.referencesSherman JM, Stone EM, Freeman-cook LL, Brachmann CB, Boeke JD, Pillus L. The Conserved Core of a Human SIR2 Homologue Functions in Yeast Silencing. 1999;10(September):3045-3059.
dc.relation.referencesParenti Marco, Bruzzone Santina, Nencioni Alessio DRA. Selectivity hot-spots of sirtuin catalytic cores Authors. Mol Biosyst. 2015;11(8):2263-2272. doi:10.1039/b717819k
dc.relation.referencesAvalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol Cell. 2002;10(3):523- 535. doi:10.1016/S1097-2765(02)00628-7
dc.relation.referencesSasaki T, Maier B, Koclega KD, et al. Phosphorylation regulates SIRT1 function. PLoS One. 2008;3(12). doi:10.1371/journal.pone.0004020
dc.relation.referencesSauve AA. Sirtuin chemical mechanisms. Biochim Biophys Acta - Proteins Proteomics. 2010;1804(8):1591-1603. doi:10.1016/j.bbapap.2010.01.021
dc.relation.referencesGreiss S, Gartner A. Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation. Mol Cells. 2009;28(5):407-415. doi:10.1007/s10059-009- 0169-x
dc.relation.referencesMichan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007;404(1):1-13. doi:10.1042/BJ20070140
dc.relation.referencesBheda P, Jing H, Wolberger C, Lin H. The Substrate Specificity of Sirtuins. 2016. doi:10.1146/annurev-biochem-060815-014537
dc.relation.referencesRack JGM, Morra R, Barkauskaite E, et al. Identification of a Class of Protein ADPRibosylating Sirtuins in Microbial Pathogens. Mol Cell. 2015;59(2):309-320. doi:10.1016/j.molcel.2015.06.013
dc.relation.referencesKowieski TM, Lee S, Denu JM. Acetylation-dependent ADP-ribosylation by Trypanosoma brucei Sir2. J Biol Chem. 2008;283(9):5317-5326. doi:10.1074/jbc.M707613200
dc.relation.referencesDu J, Jiang H, Lin H. Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and32P-NAD. Biochemistry. 2009;48(13):2878-2890. doi:10.1021/bi802093g
dc.relation.referencesAvalos JL, Bever KM, Wolberger C. Mechanism of sirtuin nhibition by nicotinamide: Altering the NAD + cosubstrate specificity of a Sir2 enzyme. Mol Cell. 2005;17(6):855-868. doi:10.1016/j.molcel.2005.02.022
dc.relation.referencesVillalba JM, Alcaín FJ. Sirtuin activators and inhibitors. BioFactors. 2012;38(5):349- 359. doi:10.1002/biof.1032
dc.relation.referencesAjami M, Pazoki-Toroudi H, Amani H, et al. Therapeutic role of sirtuins in neurodegenerative disease and their modulation by polyphenols. Neurosci Biobehav Rev. 2017;73:39-47. doi:10.1016/j.neubiorev.2016.11.022
dc.relation.referencesDai H, Kustigian L, Carney D, et al. SIRT1 activation by small molecules:Kinetic and biophysical evidence for direct interaction of enzyme and activator. J Biol Chem. 2010;285(43):32695-32703. doi:10.1074/jbc.M110.133892
dc.relation.referencesKim S, Benguria A, Lai C-Y, Jazwinski SM. Modulation of Life-span by Histone Deacetylase Genes in Saccharomyces cerevisiae. Mol Biol Cell. 1999;10(10):3125- 3136. doi:10.1091/mbc.10.10.3125
dc.relation.referencesBerger F, Ramírez-Hernández MH, Ziegler M. The new life of a centenarian: Signalling functions of NAD(P). Trends Biochem Sci. 2004;29(3):111-118. doi:10.1016/j.tibs.2004.01.007
dc.relation.referencesDali-Youcef N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J. Sirtuins: The «magnificent seven», function, metabolism and longevity. Ann Med. 2007;39(5):335-345. doi:10.1080/07853890701408194
dc.relation.referencesWątroba M, Dudek I, Skoda M, Stangret A, Rzodkiewicz P, Szukiewicz D. Sirtuins, epigenetics and longevity. Ageing Res Rev. 2017;40:11-19. doi:10.1016/j.arr.2017.08.001
dc.relation.referencesFeser J, Tyler J. Chromatin structure as a mediator of aging. FEBS Lett. 2011;585(13):2041-2048. doi:10.1016/j.febslet.2010.11.016
dc.relation.referencesYoshino J, Baur JA, Imai S ichiro. NAD+Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metab. 2017;2(2017). doi:10.1016/j.cmet.2017.11.002
dc.relation.referencesWebster BR, Lu Z, Sack MN, Scott I. The role of sirtuins in modulating redox stressors. Free Radic Biol Med. 2012;52(2):281-290. doi:10.1016/j.freeradbiomed.2011.10.484
dc.relation.referencesSablina AA, Budanov A V., Ilyinskaya G V., Agapova LS, Kravchenko JE, Chumakov PM. The antioxidant function of the p53 tumor suppressor. Nat Med. 2005;11(12):1306-1313. doi:10.1038/nm1320
dc.relation.referencesKume S, Haneda M, Kanasaki K, et al. Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation. Free Radic Biol Med. 2006;40(12):2175-2182. doi:10.1016/j.freeradbiomed.2006.02.014
dc.relation.referencesWebster BR, Lu Z, Sack MN, Scott I. The role of sirtuins in modulating redox stressors. Free Radic Biol Med. 2012;52(2):281-290. doi:10.1016/j.freeradbiomed.2011.10.484
dc.relation.referencesSomeya S, Yu W, Hallows WC, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under Caloric Restriction. Cell. 2010;143(5):802-812. doi:10.1016/j.cell.2010.10.002
dc.relation.referencesQiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010;12(6):662- 667. doi:10.1016/j.cmet.2010.11.015
dc.relation.referencesImai S ichiro, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014;24(8):464-471. doi:10.1016/j.tcb.2014.04.002
dc.relation.referencesWorld Health Organization. World Malaria Report 2017.; 2017. doi:http://www.who.int/malaria/publications/world-malaria-report-2017/report/en/
dc.relation.referencesMerrick CJ, Dzikowski R, Imamura H, Chuang J, Deitsch K, Duraisingh MT. The effect of Plasmodium falciparum Sir2a histone deacetylase on clonal and longitudinal variation in expression of the var family of virulence genes. Int J Parasitol. 2010;40(1):35-43. doi:10.1016/j.ijpara.2009.06.012
dc.relation.referencesTonkin CJ, Carret CK, Duraisingh MT, et al. Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum. PLoS Biol. 2009;7(4):0771-0788. doi:10.1371/journal.pbio.1000084
dc.relation.referencesDam S, Lohia A. Entamoeba histolytica sirtuin EhSir2a deacetylates tubulin and regulates the number of microtubular assemblies during the cell cycle. Cell Microbiol. 2010;12(7):1002-1014. doi:10.1111/j.1462-5822.2010.01449.x
dc.relation.referencesReliga AA, Waters AP. Sirtuins of parasitic protozoa: In search of function(s). Mol Biochem Parasitol. 2012;185(2):71-88. doi:10.1016/j.molbiopara.2012.08.003
dc.relation.referencesAlsford S, Kawahara T, Isamah C, Horn D. A sirtuin in the African trypanosome is involved in both DNA repair and telomeric gene silencing but is not required for antigenic variation. Mol Microbiol. 2007;63(3):724-736. doi:10.1111/j.1365- 2958.2006.05553.x
dc.relation.referencesCarranza PG, Gargantini PR, Prucca CG, et al. Specific histone modifications play critical roles in the control of encystation and antigenic variation in the earlybranching eukaryote Giardia lamblia. Int J Biochem Cell Biol. 2016;81:32-43. doi:10.1016/j.biocel.2016.10.010
dc.relation.referencesHerrera E, Contreras LE, Suárez AG, Diaz GJ. GlSir2 . 1 of Giardia lamblia is a NAD D -dependent cytoplasmic deacetylase. 2019;(February):1-17. doi:10.1016/j.heliyon.2019.e01520
dc.relation.referencesWang Y-H, Zheng G-X, Li Y-J. Giardia duodenalis GlSir2.2, homolog of SIRT1, is a nuclear-located and NAD+-dependent deacethylase. Exp Parasitol. 2016;169:28- 33. doi:10.1016/j.exppara.2016.07.002
dc.relation.referencesForero-Baena N, S??nchez-Lancheros D, Buitrago JC, Bustos V, Ram??rezHern??ndez MH. Identification of a nicotinamide/nicotinate mononucleotide adenylyltransferase in Giardia lamblia (GlNMNAT). Biochim Open. 2015;1:61-69. doi:10.1016/j.biopen.2015.11.001
dc.relation.referencesWang YH, Zheng GX, Li YJ. Giardia duodenalis GlSir2.2, homolog of SIRT1, is a nuclear-located and NAD+-dependent deacethylase. Exp Parasitol. 2016;169:28- 33. doi:10.1016/j.exppara.2016.07.002
dc.relation.referencesCarranza P, Gargantini P, Prucca C, et al. Specific histone modifications play critical roles in the control of encystation and antigenic variation in the earlybranching eukaryote Giardia lamblia. Int J Biochem Cell Biol. 2016;81:32-43. doi:10.1016/j.biocel.2016.10.010
dc.relation.referencesAnderson KA, Madsen AS, Olsen CA, Hirschey MD. Metabolic control by sirtuins and other enzymes that sense NAD+, NADH, or their ratio. Biochim Biophys Acta - Bioenerg. 2017;1858(12):991-998. doi:10.1016/j.bbabio.2017.09.005
dc.relation.referencesMarchler-Bauer A, Bo Y, Han L, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017;45(D1):D200-D203. doi:10.1093/nar/gkw1129
dc.relation.referencesEl-Gebali S, Mistry J, Bateman A, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2018;47(D1):D427-D432. doi:10.1093/nar/gky995
dc.relation.referencesWaterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-W303. http://dx.doi.org/10.1093/nar/gky427.
dc.relation.referencesYang J, Yan R, Roy A, Xu D, J P, Zhang Y. The I-TASSER Suite: Protein structure and function prediction. Nat Methods. 2015;12(1):7-8. doi:10.1038/nmeth.3213
dc.relation.referencesKim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004;32(Web Server issue):W526-W531. doi:10.1093/nar/gkh468
dc.relation.referencesLovell SC, Davis IW, Adrendall WB, et al. Structure validation by C alpha geometry: phi,psi and C beta deviation. Proteins-Structure Funct Genet. 2003;50(August 2002):437-450. doi:10.1002/prot.10286
dc.relation.referencesPettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera - A visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605- 1612. doi:10.1002/jcc.20084
dc.relation.referencesBlom N, Gammeltoft S, Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol. 1999;294(5):1351-1362. doi:10.1006/jmbi.1999.3310
dc.relation.referencesXue Y, Liu Z, Cao J, et al. GPS 2.1: Enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection. Protein Eng Des Sel. 2011;24(3):255-260. doi:10.1093/protein/gzq094
dc.relation.referencesQIAGEN. Blood Mini Handbook QIAGEN Sample and Assay Technologies. 2012;(June). http://www.qiagen.com/knowledge-and-support/resourcecenter/resource-download.aspx?id=67893a91-946f-49b5-8033- 394fa5d752ea&lang=en.
dc.relation.referencesGallego E, Alvarado M, Wasserman M. Identification and expression of the protein ubiquitination system in Giardia intestinalis. Parasitol Res. 2007;101(1):1-7. doi:10.1007/s00436-007-0458-2
dc.relation.referencesNieto-Clavijo CA, Marín-Mogollón CY, Contreras-Rodríguez LE, RamírezHernández MH. Study of Specific Region of Plasmodium falciparum Nicotinamide/Nicotinate Mononucleotide Adenylyl Transferase (PfNMNAT): Characterizing a Possible Therapeutic Target. J Mol Genet Med. 2017;11(4). doi:10.4172/1747-0862.1000311
dc.relation.referencesInvitrogen TM. User Manual ChampionTM pET Directional TOPO® Expression Kits. Invit User Guid. 2010;(25).
dc.relation.referencesChung CT, Miller RH. [43] Preparation and storage of competent Escherichia coli cells. Methods Enzymol. 1993;218:621-627. doi:10.1016/0076-6879(93)18045-E
dc.relation.referencesAU - Froger A, AU - Hall JE. Transformation of Plasmid DNA into E. coli Using the Heat Shock Method. JoVE. 2007;(6):e253. doi:doi:10.3791/253
dc.relation.referencesEhrt S, Schnappinger D. Isolation of Plasmids from E. coli by Alkaline Lysis BT - E. coli Plasmid Vectors: Methods and Applications. En: Casali N, Preston A, eds. Totowa, NJ: Humana Press; 2003:75-78. doi:10.1385/1-59259-409-3:75
dc.relation.referencesThermoFisher. Eco32I (EcoRV). :8-10.
dc.relation.referencesNiño CH, Forero-Baena N, Contreras LE, Sánchez-Lancheros D, Figarella K, Ramírez MH. Identification of the nicotinamide mononucleotide adenylyltransferase of Trypanosoma cruzi. Mem Inst Oswaldo Cruz. 2015;110(7):890-897. doi:10.1590/0074-02760150175
dc.relation.referencesHerrera E. Estudio molecular y bioquímico de un candidato a sirtuina en Giardia duodenalis. 2017
dc.relation.referencesBrunelle JL, Green R. Chapter Twelve - One-dimensional SDS-Polyacrylamide Gel Electrophoresis (1D SDS-PAGE). En: Lorsch JBT-M in E, ed. Laboratory Methods in Enzymology: Protein Part C. Vol 541. Academic Press; 2014:151-159. doi:https://doi.org/10.1016/B978-0-12-420119-4.00012-4
dc.relation.referencesMahmood T, Yang PC. Western blot: Technique, theory, and trouble shooting. N Am J Med Sci. 2012;4(9):429-434. doi:10.4103/1947-2714.100998
dc.relation.referencesBornhorst JA, Falke JJ. [16] Purification of proteins using polyhistidine affinity tags. Methods Enzymol. 2000;326:245-254. doi:10.1016/S0076-6879(00)26058
dc.relation.referencesMoreno-González, Paula A.; Diaz, Gonzalo J.; Ramírez-Hernández MH. Producción y purificación de anticuerpos aviares (IgYs) a partir de cuerpos de inclusión de una proteína recombinante central en el metabolismo del NAD+. Rev Colomb Química. 2013;42(2):27. doi:10.1002/bdm.565
dc.relation.referencesMBL International Corporation. CycLex® SIRT2 Deacetylase Fluorometric Assay Kit Ver.2.
dc.relation.referencesSacconnay L, Carrupt PA, Nurisso A. Human sirtuins: Structures and flexibility. J Struct Biol. 2016;196(3):534-542. doi:10.1016/j.jsb.2016.10.008
dc.relation.referencesAvalos JL, Boeke JD, Wolberger C. Structural basis for the mechanism and regulation of Sir2 enzymes. Mol Cell. 2004;13(5):639-648. doi:10.1016/S1097- 2765(04)00082-6
dc.relation.referencesNasrin N, Kaushik VK, Fortier E, et al. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS One. 2009;4(12). doi:10.1371/journal.pone.0008414
dc.relation.referencesNorth BJ, Verdin E. Mitotic regulation of SIRT2 by cyclin-dependent kinase 1- dependent phosphorylation. J Biol Chem. 2007;282(27):19546-19555. doi:10.1074/jbc.M702990200
dc.relation.referencesOlsen J V., Vermeulen M, Santamaria A, et al. Quantitative phosphoproteomics revealswidespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010;3(104). doi:10.1126/scisignal.2000475
dc.relation.referencesYadav GS, Ravala SK, Malhotra N, Chakraborti PK. Phosphorylation modulates catalytic activity of mycobacterial sirtuins. Front Microbiol. 2016;7(MAY):1-13. doi:10.3389/fmicb.2016.00677
dc.relation.referencesChini CCS, Tarrag MG, Chini EN. NAD and the aging process: Role in life, death and everything in between. Mol Cell Endocrinol. 2016:1-13. doi:10.1016/j.mce.2016.11.003
dc.relation.referencesBittencourt-Silvestre J, Lemgruber L, De Souza W. Encystation process of Giardia lamblia: Morphological and regulatory aspects. Arch Microbiol. 2010;192(4):259- 265. doi:10.1007/s00203-010-0554-z
dc.relation.referencesAbel ES, Davids BJ, Robles LD, Loflin CE, Gillin FD, Chakrabarti R. Possible Roles of Protein Kinase A in Cell Motility and Excystation of the Early Diverging Eukaryote Giardia lamblia. J Biol Chem. 2001;276(13):10320-10329. doi:10.1074/jbc.M006589200
dc.relation.referencesHashimoto A, Gao C, Mastio J, et al. Inhibition of casein kinase 2 disrupts differentiation of myeloid cells in cancer and enhances the efficacy of immunotherapy in mice. Cancer Res. 2018;78(19):5644-5655. doi:10.1158/0008- 5472.CAN-18-1229
dc.relation.referencesJung SI, Rodriguez N, Irrizary J, et al. Yeast casein kinase 2 governs morphology, biofilm formation, cell wall integrity, and host cell damage of Candida albicans. PLoS One. 2017;12(11):1-20. doi:10.1371/journal.pone.0187721
dc.relation.referencesSugantha priya, S., Gowri Shankar, J., Thirumalaisamy , R., Kavitha, P., Prakash, B., Arunachalam, G., Selvamuthukumar S. Over Expression of IPTG inducible GST protein in E . coli BL21. J Biomed Sci Res. 2010;2(1):54-59.
dc.relation.referencesJoseph BC, Pichaimuthu S, Srimeenakshi S. An Overview of the Parameters for Recombinant Protein Expression in Escherichia coli. J Cell Sci Ther. 2015;06(05). doi:10.4172/2157-7013.1000221
dc.relation.referencesLobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M. SHuffle , a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. 2012:1-16.
dc.relation.referencesGopal GJ, Kumar A. Strategies for the production of recombinant protein in escherichia coli. Protein J. 2013;32(6):419-425. doi:10.1007/s10930-013-9502-5
dc.relation.referencesNorth BJ, Schwer B, Ahuja N, Marshall B, Verdin E. Preparation of enzymatically active recombinant class III protein deacetylases. Methods. 2005;36(4):338-345. doi:10.1016/j.ymeth.2005.03.004
dc.relation.referencesGaberc-Porekar V, Menart V. Potential for using histidine tags in purification of proteins at large scale. Chem Eng Technol. 2005;28(11):1306-1314. doi:10.1002/ceat.200500167
dc.relation.referencesBirkeland SR, Preheim SP, Davids BJ, et al. Transcriptome analyses of the Giardia lamblia life cycle. Mol Biochem Parasitol. 2010;174(1):62-65. doi:10.1016/j.molbiopara.2010.05.010
dc.relation.referencesSonda S, Morf L, Bottova I, et al. Epigenetic mechanisms regulate stage differentiation in the minimized protozoan Giardia lamblia. Mol Microbiol. 2010;76(1):48-67. doi:10.1111/j.1365-2958.2010.07062.x
dc.relation.referencesInoue T, Hiratsuka M, Osaki M, Oshimura M. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle. 2007;6(9):1011-1018. doi:10.4161/cc.6.9.4219
dc.relation.referencesWang Y, Yang J, Hong T, Chen X, Cui L. SIRT2: Controversy and multiple roles in disease and physiology. Ageing Res Rev. 2019;55(September):100961.
dc.relation.referencesXu Y, Li F, Lv L, et al. Oxidative stress activates sirt2 to deacetylate and stimulate phosphoglycerate mutase. Cancer Res. 2014;74(13):3630-3642. doi:10.1158/0008-5472.CAN-13-3615
dc.relation.referencesRitagliati C, Alonso VL, Manarin R, Cribb P, Serra EC. Overexpression of Cytoplasmic TcSIR2RP1 and Mitochondrial TcSIR2RP3 Impacts on Trypanosoma cruzi Growth and Cell Invasion. PLoS Negl Trop Dis. 2015;9(4):1-22. doi:10.1371/journal.pntd.0003725
dc.relation.referencesEvans-Osses I, Mojoli A, Monguió-Tortajada M, et al. Microvesicles released from Giardia intestinalis disturb host-pathogen response in vitro. Eur J Cell Biol. 2017;96(2):131-142. doi:10.1016/j.ejcb.2017.01.005
dc.relation.referencesMa’ayeh SY, Liu J, Peirasmaki D, et al. Characterization of the Giardia intestinalis secretome during interaction with human intestinal epithelial cells: The impact on host cells. Vol 11.; 2017. doi:10.1371/journal.pntd.0006120
dc.relation.referencesYoon YK, Ali MA, Wei AC, Shirazi AN, Parang K, Choon TS. Benzimidazoles as new scaffold of sirtuin inhibitors: Green synthesis, in vitro studies, molecular docking analysis and evaluation of their anti-cancer properties. Eur J Med Chem. 2014;83:448-454. doi:10.1016/j.ejmech.2014.06.060
dc.relation.referencesSacconnay L, Smirlis D, Queiroz EF, et al. Structural insights of SIR2rp3 proteins as promising biotargets to fight against Chagas disease and leishmaniasis. Mol Biosyst. 2013;9(9):2223-2230. doi:10.1039/c3mb70180h
dc.relation.referencesZheng W. Sirtuins as emerging anti-parasitic targets. Eur J Med Chem. 2013;59:132-140. doi:10.1016/j.ejmech.2012.11.014
dc.relation.referencesMoniot S, Weyand M, Steegborn C. Structures, substrates, and regulators of mammalian Sirtuins - opportunities and challenges for drug development. Front Pharmacol. 2012;3 FEB(February):1-5. doi:10.3389/fphar.2012.00016
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalHistone deacetylases
dc.subject.proposalDeacetilasas de histonas
dc.subject.proposalDinucleótido de adenina y nicotinamida (NAD)
dc.subject.proposalAdenine and nicotinamide dinucleotide (NAD)
dc.subject.proposalEnergy metabolism
dc.subject.proposalMetabolismo energético
dc.subject.proposalProtozoan parasites
dc.subject.proposalParásitos protozoarios
dc.subject.proposalSir2
dc.subject.proposalSir2
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito