Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorParada Alfonso, Fabián
dc.contributor.advisorCifuentes Gallego, Alejandro
dc.contributor.authorBallesteros Vivas, Diego
dc.date.accessioned2020-08-12T22:41:58Z
dc.date.available2020-08-12T22:41:58Z
dc.date.issued2020-05-28
dc.identifier.citationBallesteros Vivas, D. (2020). Estudio del potencial antiproliferativo de extractos obtenidos de residuos frutícolas desde las perspectivas de la Química Verde y la Alimentómica. (Doctorado). Universidad Nacional de Colombia
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78010
dc.description.abstractEn este trabajo se presenta una estrategia multianalítica para la valorización de subproductos de frutas, entre los que se incluyen la almendra de la semilla de mango (Mangifera indica L.), el cáliz de uchuva (Physalis peruviana L.) y las semillas de curuba (Passiflora mollissima (Kunth) L. H. Bailey). La plataforma propuesta está basada en la combinación de (i) herramientas de modelamiento (parámetros de solubilidad de Hansen) para guiar los procesos de extracción; (ii) extracción verde con fluidos comprimidos, como la extracción con líquidos presurizados (PLE) y el fraccionamiento supercrítico antisolvente (SAF); (iii) la determinación de contenidos totales de fenoles y de flavonoides, así como la determinación in vitro de la actividad antioxidante; (iv) la obtención del perfil fitoquímico de los extractos empleando cromatografía líquida/gaseosa acoplada a espectrometría de masas de alta resolución; y (v) y la evaluación de la actividad antiproliferativa contra células humanas de cancer de colon (células HT-29). Adicionalmente, estudios alimentómicos exhaustivos fueron llevados a cabo para investigar los cambios inducidos a niveles de la expresión génica y metabólica en células HT-29 luego del tratamiento con los extractos de mayor potencial antiproliferativo. La extracción con PLE en dos etapas permitió obtener fracciones no polares (lípidos y ácidos grasos) y polares (polifenoles) a partir de la almendra de M. indica y de las semillas de P. mollissima. n-Heptano (20 min a 100 °C) y ciclohexano (20 min a 100 °C) fueron los solventes más apropiados para el proceso de desengrasado de la almendra de M. indica y de las semillas de P. mollissima, respectivamente. Los extractos polares obtenidos en condiciones óptimas a partir de la almendra de M. indica (100% EtOH a 150 °C), de las semillas de P. mollissima (100% EtOH a 150 °C), y del cáliz de P. peruviana (75:25 EtOH:EtOAc v/v a 125 ºC) mostraron rendimientos de extracción satisfactorios y adecuada actividad antioxidante con concentraciones notables de compuestos bioactivos. Los compuestos bioactivos más abundantes en el extracto de M. indica fueron xantonas, ácidos fenólicos, flavonoides, derivados de ácido gálico y galotaninos; en el extracto de P. mollissima fueron flavanoles, dímeros y trímeros de proantocianidinas; mientras que en el extracto de P. peruviana fueron witanólidos, ésteres de sacarosa y flavonoides. Los extractos PLE óptimos exhibieron actividad antiproliferativa contra células HT-29: almendra de M. indica (IC50 = 28.67 g/mL a 72 h), semillas de P. mollissima (IC50 = 39.29 g/mL a 48 h), y cálix de P. peruviana (IC50 = 6.17 g/mL a 48 h). La actividad antiproliferativa del extracto PLE de mango fue mejorada mediante un proceso SAF logrando un incremento del efecto inhibitorio sobre la proliferación celular (70.51%) al mismo valor de IC50. Los estudios alimentómios mostraron cambios a nivel de la expresión transcriptómica y metabólica de las células HT-29 tratadas con los extractos PLE. El extracto de P. mollissima alteró genes, como MAD2L1, involucrados en el metabolismo del glutatión y de las poliaminas, o la inactivación del factor de transcripción NUPR1 que podría estar relacionado con la alteración de los niveles intracelulares de ceramidas en respuesta al estrés del retículo endoplasmático. Por otra parte, el extracto de P. peruviana alteró procesos metabólicos importantes, sugiriendo la inactivación de la ruta del aminoacil-tRNA cargado, disfunción en el sistema de carnitina y de la beta-oxidación de ácidos grasos y deterioro de la interconversión de ribonucleótidos de pirimidina.
dc.description.abstractA multi-analytical strategy for the valorisation of fruit by-products including mango seed kernel (Mangifera indica L.), goldenberry calyx (Physalis peruviana L.), and banana passion fruit seeds (Passiflora mollissima (Kunth) L. H. Bailey) is presented in this work. The proposed platform is based on the combination of (i) modelling tools (Hansen Solubility Parameters) for guiding extraction process; (ii) green compressed fluids extraction, such as Pressurized liquid extraction (PLE) and Supercritical antisolvent fractionation (SAF); (iii) determination of total phenolic content and total flavonoids, as well as the in vitro evalution of antioxidant activity; (iv) liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for phytochemical profiling of the extracts; and (v) antiproliferative activity against human colon cancer cells (HT-29 cells). In addition, comprehensive Foodomics studies were carried out to investigate the changes induced at gene and metabolite expression levels on HT-29 cells upon treatment with the extracts with greater antiproliferative potential. Two steps PLE process allowed to recover the non-polar fraction (fatty acids and lipids) and the polar fraction (polyphenols) from M. indica kernel and P. mollissima seeds. n-Heptane (20 min at 100 °C) and cyclohexane (20 min at 100 °C) were the most suitable solvents for the defatting processes of M. indica kernel and P. mollissima seeds, respectively. The polar extracts obtained under optimal PLE conditions from M. indica kernel (100% EtOH at 150 °C), P. mollissima seeds (100% EtOH at 150 °C) and P. peruviana calyx (75:25 EtOH:EtOA v/v at 125 ºC) showed satisfactory extraction yields and good antioxidant activity with notably concentrations of bioactive compounds. The most abundant compounds in M. indica extract were xanthones, phenolic acids, flavonoids, gallate derivatives and gallotannins; while in P. mollissima extract they were flavanols, proanthocyanidins dimers and trimers; and in P. peruviana extract they were withanolides, sucrose esters and flavonoids. The optimum-PLE extracts exhibited antiproliferative activity against HT-29 cells, as follows: M. indica kernel (IC50 = 28.67 g/mL at 72 h), P. mollissima seeds (IC50 = 39.29 g/mL at 48 h), and P. peruviana calyx (IC50 = 6.17 g/mL at 48 h). The antiproliferative activity of mango PLE-extract was enhanced by a SAF process increasing the inhibitory cell proliferation effect (70.51%) at the same IC50 value. The foodomics studies showed the molecular changes induced at transcript and metabolite expression levels on HT-29 human cells treated with PLE-extracts. P. mollissima extract altered genes, such as MAD2L1, involved in the polyamine and glutathione metabolism, or the inactivation of the NUPR1 transcription factor, that might be related with the alteration of the intracellular ceramide levels in response to endoplasmic reticulum stress. On the other hand, P. peruviana extract exerted alteration on relevant metabolic processes, suggesting inactivation of aminoacyl tRNA charging pathway, dysfunction on carnitine shuttle and beta-oxidation of fatty acids, and pyrimidine ribonucleotide interconversion impairment.
dc.description.sponsorshipProyecto COOPA20145 Programa de Cooperación Científica para el Desarrollo I-COOP+ del Consejo Superior de Investigaciones Científicas-CSIC, España
dc.format.extent302
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.relation1. D. Ballesteros-Vivas, G. Alvarez-Rivera, C. León, S.J. Morantes, E. Ibánez, F. Parada-Alfonso, A. Cifuentes, A. Valdés, Foodomics evaluation of the anti-proliferative potential of Passiflora mollissima seeds, Food Res Int, 130 (2020).
dc.relation2. D. Ballesteros-Vivas, G. Álvarez-Rivera, S.J. Morantes, A.d.P. Sánchez-Camargo, E. Ibáñez, F. Parada-Alfonso, A. Cifuentes, An integrated approach for the valorization of mango seed kernel: Efficient extraction solvent selection, phytochemical profiling and antiproliferative activity assessment, Food Res Int, 126 (2019).
dc.relation3. D. Ballesteros-Vivas, G. Alvarez-Rivera, A.F. García Ocampo, S.J. Morantes, A.d.P. Sánchez Camargo, A. Cifuentes, F. Parada-Alfonso, E. Ibánez, Supercritical antisolvent fractionation as a tool for enhancing antiproliferative activity of mango seed kernel extracts against colon cancer cells, J. Supercrit. Fluids, 152 (2019).
dc.relation4. D. Ballesteros-Vivas, G. Álvarez-Rivera, A. del Pilar Sánchez-Camargo, E. Ibáñez, F. Parada-Alfonso, A. Cifuentes, A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 1: Withanolides-rich fractions from goldenberry (Physalis peruviana L.) calyces obtained after extraction optimization as case study, J. Chromatogr. A, 1584 (2019) 155-164.
dc.relation5. D. Ballesteros-Vivas, G. Alvarez-Rivera, E. Ibanez, F. Parada-Alfonso, A. Cifuentes, A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compounds from goldenberry (Physalis peruviana L.) calyx extracts using hyphenated techniques, J. Chromatogr. A, 1584 (2019) 144-154.
dc.relation6. D. Ballesteros-Vivas, G. Alvarez-Rivera, C. León, S.J. Morantes, E. Ibánez, F. Parada-Alfonso, A. Cifuentes, A. Valdés, Anti-proliferative bioactivity against HT-29 colon cancer cells of a withanolides-rich extract from golden berry (Physalis peruviana L.) calyx investigated by Foodomics, J. Funct. Foods, 63 (2019).
dc.relation7. D. Ballesteros-Vivas, G. Alvarez-Rivera, E. Ibanez, F. Parada-Alfonso, A. Cifuentes, Integrated strategy for the extraction and profiling of bioactive metabolites from Passiflora mollissima seeds combining pressurized-liquid extraction and gas/liquid chromatography-high resolution mass spectrometry, J. Chromatogr. A, 1595 (2019) 144-157.
dc.relation8. Ballesteros-Vivas, D., Alvarez-Rivera, G., Ibánez, E., Parada-Alfonso, F., & Cifuentes, A. B. T.-R. M. in F. S. (2020). Foodomics of Bioactive Compounds From Tropical Fruits By-Products. Elsevier.
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.subject.ddc634 - Huertos, frutas, silvicultura
dc.subject.ddc616 - Enfermedades
dc.titleEstudio del potencial antiproliferativo de extractos obtenidos de residuos frutícolas desde las perspectivas de la química verde y la alimentómica
dc.title.alternativeStudy of the antiproliferative potential of fruit by-product extracts from the perspectives of Green Chemistry and Foodomics
dc.typeTrabajo de grado - Doctorado
dc.rights.spaAcceso abierto
dc.description.projectEstudio de la actividad antiproliferativa de extractos obtenidos a partir de residuos frutícolas
dc.description.additionalDoctorado en Ciencias – Química
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Química
dc.contributor.researchgroupGRUPO DE INVESTIGACIÓN EN QUÍMICA DE ALIMENTOS
dc.description.degreelevelDoctorado
dc.publisher.departmentDepartamento de Química
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] A.P. Da Fonseca Machado, M. Rueda, G.F. Barbero, Á. Martín, M.J. Cocero, J. Martínez, Co-Precipitation of Anthocyanins of the Extract Obtained From Blackberry Residues By Pressurized Antisolvent Process, J. Supercrit. Fluids, 137 (2018) 81-92.
dc.relation.references[2] N. Conde-Martínez, D.C. Sinuco, C. Osorio, Chemical studies on curuba (Passiflora mollissima (Kunth) L. H. Bailey) fruit flavour, Food Chem., 157 (2014) 356-363.
dc.relation.references[3] D. Ballesteros-Vivas, G. Alvarez-Rivera, E. Ibanez, F. Parada-Alfonso, A. Cifuentes, Integrated strategy for the extraction and profiling of bioactive metabolites from Passiflora mollissima seeds combining pressurized-liquid extraction and gas/liquid chromatography-high resolution mass spectrometry, J. Chromatogr. A, 1595 (2019) 144-157.
dc.relation.references[4] P.M. Aron, J.A. Kennedy, Flavan-3-ols: nature, occurrence and biological activity, Mol Nutr Food Res, 52 (2008) 79-104.
dc.relation.references[5] V. Knaze, R. Zamora-Ros, L. Lujan-Barroso, I. Romieu, A. Scalbert, N. Slimani, E. Riboli, C.T. van Rossum, H.B. Bueno-de-Mesquita, A. Trichopoulou, V. Dilis, K. Tsiotas, G. Skeie, D. Engeset, J.R. Quiros, E. Molina, J.M. Huerta, F. Crowe, E. Wirfal, U. Ericson, P.H. Peeters, R. Kaaks, B. Teucher, G. Johansson, I. Johansson, R. Tumino, H. Boeing, D. Drogan, P. Amiano, A. Mattiello, K.T. Khaw, R. Luben, V. Krogh, E. Ardanaz, C. Sacerdote, S. Salvini, K. Overvad, A. Tjonneland, A. Olsen, M.C. Boutron-Ruault, G. Fagherazzi, F. Perquier, C.A. Gonzalez, Intake estimation of total and individual flavan-3-ols, proanthocyanidins and theaflavins, their food sources and determinants in the European Prospective Investigation into Cancer and Nutrition (EPIC) study, Br J Nutr, 108 (2012) 1095-1108.
dc.relation.references[6] M. Rossi, E. Negri, R. Talamini, C. Bosetti, M. Parpinel, P. Gnagnarella, S. Franceschi, L. Dal Maso, M. Montella, A. Giacosa, C. La Vecchia, Flavonoids and colorectal cancer in Italy, Cancer Epidemiol Biomarkers Prev, 15 (2006) 1555-1558.
dc.relation.references[7] L. Lei, Y. Yang, H. He, E. Chen, L. Du, J. Dong, J. Yang, Flavan-3-ols consumption and cancer risk: a meta-analysis of epidemiologic studies, Oncotarget, 7 (2016) 73-92.
dc.relation.references[8] B. Benarba, A. Pandiella, Colorectal cancer and medicinal plants: Principle findings from recent studies, Biomed Pharmacother, 107 (2018) 408-423.
dc.relation.references[9] D. Hang, A.D. Joshi, X. He, A.T. Chan, M. Jovani, M.K. Gala, S. Ogino, P. Kraft, C. Turman, U. Peters, S.A. Bien, Y. Lin, Z. Hu, H. Shen, K. Wu, E.L. Giovannucci, M. Song, Colorectal cancer susceptibility variants and risk of conventional adenomas and serrated polyps: results from three cohort studies, Int J Epidemiol, (2019).
dc.relation.references[10] S. Gothai, K. Muniandy, C. Gnanaraj, I.A.A. Ibrahim, N. Shahzad, S.S. Al-Ghamdi, N. Ayoub, V.P. Veeraraghavan, S.S. Kumar, N.M. Esa, P. Arulselvan, Pharmacological insights into antioxidants against colorectal cancer: A detailed review of the possible mechanisms, Biomed Pharmacother, 107 (2018) 1514-1522.
dc.relation.references[11] IARC. Cancer, Cancer Today: Colorectal cancer, in, World of Health Organization, 2019. https://gco.iarc.fr/today/data/factsheets/cancers/10_8_9-Colorectum-fact-sheet.pdf. Accessed 25 January 2019.
dc.relation.references[12] J. Kaur, G. Kaur, An insight into the role of citrus bioactives in modulation of colon cancer, J. Funct. Foods, 13 (2015) 239-261.
dc.relation.references[13] M. Asif, A. Shafaei, A.S. Abdul Majid, M.O. Ezzat, S.S. Dahham, M.B.K. Ahamed, C.E. Oon, A.M.S. Abdul Majid, Mesua ferrea stem bark extract induces apoptosis and inhibits metastasis in human colorectal carcinoma HCT 116 cells, through modulation of multiple cell signalling pathways, Chin. J. Nat. Med., 15 (2017) 505-514.
dc.relation.references[14] V. Graziani, M. Scognamiglio, V. Belli, A. Esposito, B. D'Abrosca, A. Chambery, R. Russo, M. Panella, A. Russo, F. Ciardiello, T. Troiani, N. Potenza, A. Fiorentino, Metabolomic approach for a rapid identification of natural products with cytotoxic activity against human colorectal cancer cells, Sci. Rep., 8 (2018) 1-11.
dc.relation.references[15] Y. Frion-Herrera, D. Gabbia, A. Diaz-Garcia, O. Cuesta-Rubio, M. Carrara, Chemosensitizing activity of Cuban propolis and nemorosone in doxorubicin resistant human colon carcinoma cells, Fitoterapia, 136 (2019) 104173.
dc.relation.references[16] C. Ibanez, A. Valdes, V. Garcia-Canas, C. Simo, M. Celebier, L. Rocamora-Reverte, A. Gomez-Martinez, M. Herrero, M. Castro-Puyana, A. Segura-Carretero, E. Ibanez, J.A. Ferragut, A. Cifuentes, Global Foodomics strategy to investigate the health benefits of dietary constituents, J. Chromatogr. A, 1248 (2012) 139-153.
dc.relation.references[17] A. Valdes, V. Garcia-Canas, C. Simo, C. Ibanez, V. Micol, J.A. Ferragut, A. Cifuentes, Comprehensive foodomics study on the mechanisms operating at various molecular levels in cancer cells in response to individual rosemary polyphenols, Anal Chem, 86 (2014) 9807-9815.
dc.relation.references[18] A. Valdés, V. García-Cañas, E. Koçak, C. Simó, A. Cifuentes, Foodomics study on the effects of extracellular production of hydrogen peroxide by rosemary polyphenols on the anti-proliferative activity of rosemary polyphenols against HT-29 cells, Electrophoresis, 37 (2016) 1795-1804.
dc.relation.references[19] A. Cifuentes, Foodomics, foodome and modern food analysis, TrAC Trends Anal. Chem., 96 (2017).
dc.relation.references[20] A. Valdés, A. Cifuentes, C. León, Foodomics evaluation of bioactive compounds in foods, TrAC Trends Anal. Chem., 96 (2017) 2-13.
dc.relation.references[21] C. Ibáñez, C. Simó, M. Palazoglu, A. Cifuentes, GC-MS based metabolomics of colon cancer cells using different extraction solvents, Anal. Chim. Acta, 986 (2017) 48-56.
dc.relation.references[22] C. Ibáñez, C. Simó, A. Valdés, L. Campone, A.L. Piccinelli, V. García-Cañas, A. Cifuentes, Metabolomics of adherent mammalian cells by capillary electrophoresis-mass spectrometry: HT-29 cells as case study, J. Pharm. Biomed. Anal., 110 (2015) 83-92.
dc.relation.references[23] G.K. Smyth, limma: Linear Models for Microarray Data, in: R. Gentleman, V.J. Carey, W. Huber, R.A. Irizarry, S. Dudoit (Eds.) Bioinformatics and Computational Biology Solutions Using R and Bioconductor, Springer New York, New York, NY, 2005, pp. 397-420.
dc.relation.references[24] Y. Benjamini, Y. Hochberg, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J R Stat Soc Series B Stat Methodol, 57 (1995) 289-300.
dc.relation.references[25] A. Krämer, J. Green, J. Pollard, Jr, S. Tugendreich, Causal analysis approaches in Ingenuity Pathway Analysis, Bioinformatics, 30 (2013) 523-530.
dc.relation.references[26] R.B. Badisa, S.F. Darling-Reed, P. Joseph, J.S. Cooperwood, L.M. Latinwo, C.B. Goodman, Selective Cytotoxic Activities of Two Novel Synthetic Drugs on Human Breast Carcinoma MCF-7 Cells, Anticancer Res., 29 (2009) 2993-2996.
dc.relation.references[27] M. Asif, A.H.S. Yehya, M.A. Al-Mansoub, V. Revadigar, M.O. Ezzat, M.B. Khadeer Ahamed, C.E. Oon, V. Murugaiyah, A.S. Abdul Majid, A.M.S. Abdul Majid, Anticancer attributes of Illicium verum essential oils against colon cancer, S. African J. Bot., 103 (2016) 156-161.
dc.relation.references[28] D. Raffa, B. Maggio, M.V. Raimondi, F. Plescia, G. Daidone, Recent discoveries of anticancer flavonoids, Eur J Med Chem, 142 (2017) 213-228.
dc.relation.references[29] D. Ravishankar, A.K. Rajora, F. Greco, H.M. Osborn, Flavonoids as prospective compounds for anti-cancer therapy, Int J Biochem Cell Biol, 45 (2013) 2821-2831.
dc.relation.references[30] G.J. Du, Z. Zhang, X.D. Wen, C. Yu, T. Calway, C.S. Yuan, C.Z. Wang, Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea, Nutrients, 4 (2012) 1679-1691.
dc.relation.references[31] S. Koosha, M.A. Alshawsh, C.Y. Looi, A. Seyedan, Z. Mohamed, An Association Map on the Effect of Flavonoids on the Signaling Pathways in Colorectal Cancer, Int J Med Sci, 13 (2016) 374-385.
dc.relation.references[32] X. Guo, E. Goessl, E.S.R. Collie-Duguid, J. Cassidy, W. Wang, V. O'Brien, Cell cycle perturbation and acquired 5-fluorouracil chemoresistance, Anticancer Res., 28 (2008) 9-14.
dc.relation.references[33] L. Ouyang, Z. Shi, S. Zhao, F.T. Wang, T.T. Zhou, B. Liu, J.K. Bao, Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis, Cell Prolif., 45 (2012) 487-498.
dc.relation.references[34] O.D. Schärer, Nucleotide excision repair in eukaryotes, Cold Spring Harb Perspect Biol, 5 (2013) a012609-a012609
dc.relation.references[35] S. Lukasiak, C. Schiller, P. Oehlschlaeger, G. Schmidtke, P. Krause, D.F. Legler, F. Autschbach, P. Schirmacher, K. Breuhahn, M. Groettrup, Proinflammatory cytokines cause FAT10 upregulation in cancers of liver and colon, Oncogene, 27 (2008) 6068.
dc.relation.references[36] F. Xue, L. Zhu, Q.-W. Meng, L. Wang, X.-S. Chen, Y.-B. Zhao, Y. Xing, X.-Y. Wang, L. Cai, FAT10 is associated with the malignancy and drug resistance of non-small-cell lung cancer, Onco Targets Ther, 9 (2016) 4397-4409.
dc.relation.references[37] Y.C. Liu, J. Pan, C. Zhang, W. Fan, M. Collinge, J.R. Bender, S.M. Weissman, A MHC-encoded ubiquitin-like protein (FAT10) binds noncovalently to the spindle assembly checkpoint protein MAD2, Proc Natl Acad Sci U S A, 96 (1999) 4313-4318.
dc.relation.references[38] P. Lara-Gonzalez, Frederick G. Westhorpe, Stephen S. Taylor, The Spindle Assembly Checkpoint, Curr. Biol., 22 (2012) R966-R980.
dc.relation.references[39] T. Alfonso-Pérez, D. Hayward, J. Holder, U. Gruneberg, F.A. Barr, MAD1-dependent recruitment of CDK1-CCNB1 to kinetochores promotes spindle checkpoint signaling, J. Cell Biol., 218 (2019) 1108.
dc.relation.references[40] M. Pagano, R. Pepperkok, F. Verde, W. Ansorge, G. Draetta, Cyclin A is required at two points in the human cell cycle, EMBO J., 11 (1992) 961-971.
dc.relation.references[41] D. Gong, J.E. Ferrell, Jr., The roles of cyclin A2, B1, and B2 in early and late mitotic events, Mol Biol Cell, 21 (2010) 3149-3161.
dc.relation.references[42] W. Rozpędek, D. Pytel, B. Mucha, H. Leszczyńska, J.A. Alan Diehl, I. Majsterek, The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress, Curr. Mol. Med., 16 (2016) 533-544.
dc.relation.references[43] I. Tirado-Hurtado, W. Fajardo, J.A. Pinto, DNA Damage Inducible Transcript 4 Gene: The Switch of the Metabolism as Potential Target in Cancer, Front Oncol, 8 (2018) 106.
dc.relation.references[44] C.E. Cano, T. Hamidi, M.J. Sandi, J.L. Iovanna, Nupr1: the Swiss-knife of cancer, J. Cell. Physiol., 226 (2011) 1439-1443.
dc.relation.references[45] S.-B. Su, Y. Motoo, J.L. Iovanna, M.-J. Xie, H. Mouri, K. Ohtsubo, Y. Yamaguchi, H. Watanabe, T. Okai, F. Matsubara, N. Sawabu, Expression of p8 in Human Pancreatic Cancer, Clin. Cancer Res., 7 (2001) 309.
dc.relation.references[46] Y. Ito, H. Yoshida, Y. Motoo, J.L. Iovanna, Y. Nakamura, K. Kakudo, T. Uruno, Y. Takamura, A. Miya, S. Noguchi, K. Kuma, A. Miyauchi, Expression of P8 Protein in Breast Carcinoma; an Inverse Relationship with Apoptosis, Anticancer Res., 25 (2005) 833-837.
dc.relation.references[47] M.L. Davies, C. Parr, A.J. Sanders, O. Fodstad, W.G. Jiang, The Transcript Expression and Protein Distribution Pattern in Human Colorectal Carcinoma Reveal a Pivotal Role of COM-1/p8 as a Tumour Suppressor, Cancer Genom. Proteom., 7 (2010) 75-80.
dc.relation.references[48] T. Hamidi, C.E. Cano, D. Grasso, M.N. Garcia, M.J. Sandi, E.L. Calvo, J.C. Dagorn, G. Lomberk, R. Urrutia, S. Goruppi, A. Carracedo, G. Velasco, J.L. Iovanna, Nupr1-aurora kinase A pathway provides protection against metabolic stress-mediated autophagic-associated cell death, Clin. Cancer Res., 18 (2012) 5234-5246.
dc.relation.references[49] P. Santofimia-Castaño, W. Lan, J. Bintz, O. Gayet, A. Carrier, G. Lomberk, J.L. Neira, A. González, R. Urrutia, P. Soubeyran, J. Iovanna, Inactivation of NUPR1 promotes cell death by coupling ER-stress responses with necrosis, Sci. Rep., 8 (2018) 16999.
dc.relation.references[50] N. Ohoka, S. Yoshii, T. Hattori, K. Onozaki, H. Hayashi, TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death, EMBO J, 24 (2005) 1243-1255.
dc.relation.references[51] M. Gabay, Y. Li, D.W. Felsher, MYC activation is a hallmark of cancer initiation and maintenance, Cold Spring Harb Perspect Med, 4 (2014) a014241.
dc.relation.references[52] R. Zhao, B.Y. Choi, M.-H. Lee, A.M. Bode, Z. Dong, Implications of Genetic and Epigenetic Alterations of CDKN2A (p16(INK4a)) in Cancer, EBioMedicine, 8 (2016) 30-39.
dc.relation.references[53] R.A. Casero, T. Murray Stewart, A.E. Pegg, Polyamine metabolism and cancer: treatments, challenges and opportunities, Nat. Rev. Cancer, 18 (2018) 681-695.
dc.relation.references[54] T.R. Murray-Stewart, P.M. Woster, R.A. Casero, Jr., Targeting polyamine metabolism for cancer therapy and prevention, Biochem. J, 473 (2016) 2937-2953.
dc.relation.references[55] Jia M. Loo, A. Scherl, A. Nguyen, Fung Y. Man, E. Weinberg, Z. Zeng, L. Saltz, Philip B. Paty, Sohail F. Tavazoie, Extracellular Metabolic Energetics Can Promote Cancer Progression, Cell, 160 (2015) 393-406.
dc.relation.references[56] J.F. Leal, I. Ferrer, C. Blanco-Aparicio, J. Hernandez-Losa, Y.C.S. Ramon, A. Carnero, M.E. Lleonart, S-adenosylhomocysteine hydrolase downregulation contributes to tumorigenesis, Carcinogenesis, 29 (2008) 2089-2095.
dc.relation.references[57] T. Chujo, T. Suzuki, Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs, RNA, 18 (2012) 2269-2276.
dc.relation.references[58] M.L. Circu, T.Y. Aw, Glutathione and apoptosis, Free Radic Res, 42 (2008) 689-706.
dc.relation.references[59] M.L. Circu, T.Y. Aw, Glutathione and modulation of cell apoptosis, Biochim Biophys Acta, 1823 (2012) 1767-1777.
dc.relation.references[60] D. Prochazkova, I. Bousova, N. Wilhelmova, Antioxidant and prooxidant properties of flavonoids, Fitoterapia, 82 (2011) 513-523.
dc.relation.references[61] H. Nakagawa, K. Hasumi, J.T. Woo, K. Nagai, M. Wachi, Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (-)-epigallocatechin gallate, Carcinogenesis, 25 (2004) 1567-1574.
dc.relation.references[62] M. Fenech, P. Baghurst, W. Luderer, J. Turner, S. Record, M. Ceppi, S. Bonassi, Low intake of calcium, folate, nicotinic acid, vitamin E, retinol, beta-carotene and high intake of pantothenic acid, biotin and riboflavin are significantly associated with increased genome instability-results from a dietary intake and micronucleus index survey in South Australia, Carcinogenesis, 26 (2005) 991-999.
dc.relation.references[63] U. Wenzel, A. Nickel, H. Daniel, Increased carnitine-dependent fatty acid uptake into mitochondria of human colon cancer cells induces apoptosis, J. Nutr., 135 (2005) 1510-1514.
dc.relation.references[64] C.B. Newgard, Interplay between lipids and branched-chain amino acids in development of insulin resistance, Cell metabolism, 15 (2012) 606-614.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalColon cancer
dc.subject.proposalCáncer de colon
dc.subject.proposalFruit by-products valorisation
dc.subject.proposalValorización de residuos frutícolas
dc.subject.proposalMangifera indica L
dc.subject.proposalMangifera indica L
dc.subject.proposalPhysalis peruviana L
dc.subject.proposalPhysalis peruviana L
dc.subject.proposalPassiflora mollissima
dc.subject.proposalPassiflora mollissima
dc.subject.proposalPressurized liquid extraction
dc.subject.proposalExtracción con líquidos presurizados
dc.subject.proposalActividad antiproliferativa
dc.subject.proposalAntiproliferative activity
dc.subject.proposalFoodomics
dc.subject.proposalAlimentómica
dc.subject.proposalTranscriptómica
dc.subject.proposalTranscriptomics
dc.subject.proposalMetabolómica
dc.subject.proposalMetabolomics
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito