Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorCristancho Mejía, Edgar Emigdio
dc.contributor.authorBorda Flórez, Adriana Marcela
dc.date.accessioned2020-08-13T00:04:53Z
dc.date.available2020-08-13T00:04:53Z
dc.date.issued2020-06-03
dc.identifier.citationCristancho E, Borda A. (2020). Cambios ventilatorios y hematológicos en universitarios: aclimatación a altura moderada. Universidad Nacional de Colombia; Sede Bogotá. Facultad de Medicina; Departamento de Medicina Física y Rehabilitación.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78012
dc.description.abstractIntroduction: Globalized human activities have forced human beings to migrate to different places, occasionally of higher altitude to live. The body must make adjustments to its metabolic processes through the acclimatization of its organs and systems to hypoxia (Bell, 2000). This research deepens the knowledge on hematological and ventilatory variables in university students who come from the lowlands in order to identify trends that allow expanding knowledge about the population's response to acute changes in altitude. Objective: To establish the time course in ventilatory and hematological changes in university students from the lowlands during a short period of time. Methodology: The present study is descriptive longitudinal and observational type. The ventilatory variables such as respiratory rate (Rf), tidal volume (Vt), respiratory quotient (QR), partial pressure of oxygen (PetO2) and partial pressure of carbon dioxide (PetCO2) at the end of the exhalation at rest will be recorded (gas analyzer Cosmed) and hematological variables such as hemoglobin concentration ([Hb], OSM3 hemoximeter), hematocrit (Hct, microcentrifugation), total hemoglobin mass (Hbt, CO re-inhalation method) and blood volumes. Results and Discussion: Statistical significance was found in variables such as hematocrit (p=0.03), plasma volume (p=0.02), mean corpuscular hemoglobin concentration (p = 0.05), carbon dioxide pressure (p=0.02), quotient respiratory (p=0.02) in some elements of the determination. Conclusion The findings of this study show slight ventilatory and hematological alterations with acute changes at moderate height in the university student population. Total hemoglobin mass (Hbt) increased non-significantly, which differs from that reported in previous studies, possibly due to less altitude change or limitations of the sample used. Key words: total hemoglobin mass, ventilatory frequency, respiratory quotient, moderate height; acclimatization to hypoxia.
dc.description.abstractIntroducción: Las actividades humanas globalizadas han obligado al ser humano a migrar por diferentes razones a sitios, ocasionalmente de mayor altitud para vivir. El cuerpo debe realizar ajustes de sus procesos metabólicos mediante la aclimatación de sus órganos y sistemas a la hipoxia (Bell, 2000). En esta investigación se profundizan los conocimientos sobre las variables hematológicas y ventilatorias en universitarios que provienen de tierras bajas a fin de poder identificar tendencias que permitan ampliar el conocimiento sobre la respuesta de la población a cambios agudos en la altura. Objetivo: Establecer el transcurso de tiempo en los cambios ventilatorios y hematológicos en universitarios provenientes de tierras bajas durante un periodo corto de tiempo. Metodología: El presente estudio es de tipo descriptivo longitudinal y observacional. Se registrarán las variables ventilatorias como son frecuencia respiratoria (Rf), volumen tidal (Vt), cociente respiratorio (CR), presión parcial de oxígeno (PetO2) y presión parcial de dióxido de carbono (PetCO2) al final de la exhalación en reposo (analizador de gases Cosmed) y las variables hematológicas como son concentración de hemoglobina ([Hb], hemoxímetro OSM3), hematocrito (Hct, micro centrifugación), masa total de hemoglobina (Hbt, método de re inhalación de CO) y volúmenes sanguíneos. Resultados y Discusión: : Se encontrón significancia estadística en variables como hematocrito (p=0.03), volumen plasmático (p=0.02), concentración de hemoglobina corpuscular media (p=0.05), presión de dióxido de carbono (p=0.02), cociente respiratorio (p=0.02) en algunos momentos de la determinación. Conclusión Los hallazgos de esta estudio muestran alteraciones ventilatorias y hematológicas leves con cambios agudos a la altura moderada en población estudiantil universitaria. La masa total de hemoglobina (Hbt) aumentó en forma no significativa, lo cual difiere de lo reportado en estudios previos, debido posiblemente al menor cambio altitudinal o a limitaciones de la muestra utilizada. Palabras clave: masa total de hemoglobina, frecuencia ventilatoria, cociente respiratorio altura moderada; aclimatación a la hipoxia.
dc.description.sponsorshipUniversidad Nacional de Colombia
dc.format.extent66
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc610 - Medicina y salud
dc.subject.ddc378 - Educación superior (Educación terciaria)
dc.subject.ddc615 - Farmacología y terapéutica
dc.subject.ddc796 - Deportes y juegos al aire libre y deportivos
dc.titleCambios ventilatorios y hematológicos en universitarios: aclimatación a altura moderada
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectCambios ventilatorios y hematológicos en universitarios: aclimatación a altura moderada
dc.description.additionalLínea de Investigación: Fisiología del Ejercicio
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Fisioterapia del Deporte y la Actividad Física
dc.contributor.corporatenameUniversidad Nacional de Colombia
dc.contributor.corporatenameDepartamento de Movimiento Corporal Humano
dc.contributor.researchgroupAdaptaciones al ejercicio y a la hipoxia
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAsociación Médica Mundial. (2013, octubre). Declaración de Helsinki: Principios éticos para las investigaciones médicas en seres humanos. En: 64a Asamblea General. Fortaleza, Brasil.
dc.relation.referencesBalabana D.Y., Duffinb J., Preiss D., et al (2013). The in-vivo oxyhaemoglobin dissociation curve at sea level and high altitude. Resp. Physiol & Neurobiol.186: 45 – 52.
dc.relation.referencesBärtsch, P., & Saltin, B. (2008). General introduction to altitude adaptation and mountain sickness. Scandinavian Journal of Medicine & Science in Sports, 18, 1– 10. doi:10.1111/j.1600-0838.2008.00827.x
dc.relation.referencesBasset F.A., Joanisse D.R., Boivin F., et al (2006) Effects of short-term normobaric hypoxia on haematology, muscle phenotypes and physical performance in highly trained athletes. Exp. Physiol. 91:391–402.
dc.relation.referencesBeall C (1999) Tibetan and andean contrasts in adaptation to high-altitude hipoxia. Oxygen Sensing. Molecule to man. Adv. Exp. Med. & Biol. 45:63 – 74.
dc.relation.referencesBeall C.B., Almasy L.A., Blangero J., et (1999a). Percent of Oxygen Saturation of Arterial Hemoglobin Among Bolivian Aymara at 3,900–4,000 m. Am. J. Phys. Anthropol.108:41–51.
dc.relation.referencesBeall C. (2006). Andean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia. Integrative and Comparative Biology, 46(1):18–24. Doi:10.1093/icb/icj004.
dc.relation.referencesBeall C. et al. (2010). Natural selection on EPAS (HIF2a) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci U S A., 107(25):11459- 11464. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/20534544.
dc.relation.referencesBöning D. et. al. (2001). Hemoglobin mass and peak oxygen uptake in untrained and trained residents of moderate altitude. Int J Sports Med;22(8):572-578. Recuperado de https://www.thieme-connect.com/DOI/DOI?10.1055/s-2001-18530.
dc.relation.referencesBöning, D, et. al. (2004). Hemoglobin mass and peak oxygen uptake in untrained and trained female altitude residents. Hemoglobin Int J Sports Med, 25(8):1-9. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/15531997.
dc.relation.referencesBrown S.J., Barnes M.J., Mündel T.(2014). Effects of hypoxia and hypercapnia on human HRV and respiratory sinus arrhythmia. Acta Physiolog. Hung.101:263–272.
dc.relation.referencesBurge C. & Skinner S. (1995). Determination of haemoglobin mass and blood volume with CO: evaluation and application of a method. J Appl Physiol,;79(2):623-631. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/7592227.
dc.relation.referencesBurtscher M., Philadelphy M., Gatterer H., et al. (2019) Physiological Responses in Humans Acutely Exposed to High Altitude (3480 m): Minute Ventilation and Oxygenation Are Predictive for the Development of Acute Mountain Sickness. High Alt. Med. & Biol. 20:192-197.
dc.relation.referencesCristancho E. (2004) Höhen und Trainingseffekte auf die Erythropoese bei Frauen. Vergleichende Untersuchungen in Kolumbien und Deutschland. Tesis doctoral. Frei Universität Berlín. 86 pags.
dc.relation.referencesCristancho E., Reyes O., Serrato M., et al. (2007). Arterial Oxygen Saturation and Hemoglobin Mass in Postmenopausal Untrained and Trained Altitude Residents High Alt. Biol. Med. 8:296 – 306.
dc.relation.referencesCristancho E., Riveros A., Sánchez A., et al. (2016). Diurnal changes of arterial oxygen saturation and erythropoietin concentration in male and female highlanders. Physiol Rep. 4:1 – 7.
dc.relation.referencesCristancho E, Benavides W, Trompetero A, Duque L & Serrato M. (2017). Umbral altitudinal para la estimulación de la masa total de hemoglobina. Blog Researchgate; 1-14. Recuperado de https://www.researchgate.net/publication/292135365.
dc.relation.referencesCristancho E., Serrato M., Böning D. (2019) Simplified method for determination of the Oxygen Dissociation Curve (ODC). Acta BIol. Col. 24:354 – 360.
dc.relation.referencesDANE (2018). Censo Nacional de población y vivienda de 2018. Colombia. Recuperado de https://sitios.dane.gov.co/cnpv/#!/
dc.relation.referencesDANE (2020) Demografía y población – Movilidad y migración. Recuperado de https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y- poblacion/movilidad-y-migracion
dc.relation.referencesDebevec T. (2017). Hypoxia-Related Hormonal Appetite Modulation in Humans during Rest and Exercise: Mini Review Front Physiol. 8:366.
dc.relation.referencesDua S., Singh S., Chawla A., et al (2019) Ventilatory parameters at rest after months of stay at 3300 m: A comparison between acclimatized lowlanders and natives at Leh. Med J Armed Forces India. 75:274-281.
dc.relation.referencesDuffin J & Mahamed S. (2003). Adaptation in the respiratory control system. Can. J. Physiol. Pharmacol; 81(8):765–773. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/12897805.
dc.relation.referencesFalz, R., Fikenzer, S., Hoppe, S., & Busse, M. (2019). Normal Values of Hemoglobin Mass and Blood Volume in Young, Active Women and Men. Int J Sports Med; 40(4):236- 244. doi:10.1055/a-0826-9235
dc.relation.referencesFaulhaber M, Wille M, Gatterer H, Heinrich D, and Burtscher M. (2014). Resting arterial oxygen saturation and breathing frequency as predictors for acute mountain sickness development: A prospective cohort study. Sleep Breath 18: 669–674.
dc.relation.referencesFundación de Investigación Biosanitaria de Andalucía Oriental. (2017). Eritrocito. Blog FIBAO; 1-11. Recuperado de http://medmol.es/imprimir_pdf.cfm.
dc.relation.referencesGao, C, et. al. (2018). Reference values for lung function screening in 10- to 81-year-old, healthy, never-smoking residents of Southeast China. Medicine (Baltimore); 97(34): e11904. doi:10.1097/md.0000000000011904
dc.relation.referencesGe R. et. al. (2002). Determinants of erythropoietin release in response to short-term hypobaric hypoxia. Journal of Applied Physiology;92(6):2361-2367. Recuperado de http://jap.physiology.org/content/92/6/2361.long.
dc.relation.referencesGrover R. (1945) Effects of hypoxia on ventilation and cardiac output. Ann. New York Acad. Sci. 24: 62 – 73.
dc.relation.referencesHeinicke K., Prommer N., Cajigal J, et al (2003). Long-term exposure to intermittent hypoxia results in increased hemoglobin mass, reduced plasma volume, and elevated erythropoietin plasma levels in man. Eur. J. Appl. Physiol. 88: 535–543.
dc.relation.referencesHurtado A., Merino C., Delgado E. (1945) influence of anoxemia on the hemopoietic acti- vity. Arch. Internal. Med. 75:248-323.
dc.relation.referencesHütler M, Beneke R & Böning D. (2000). Determination of circulating hemoglobin mass and related quantities by using capillary blood. Med Sci Sports Exerc;32(5):1024- 1027. Recuperado de https://insights.ovid.com/pubmed?pmid=10795796.
dc.relation.referencesKlausen T., Moht T., Ghisler U., Nielsen O. J. (1991) Maximal oxygen uptake and erythropoietic responses after training at moderate altitude. Eur. J. Appl. Physiol. 62:376-9.
dc.relation.referencesLehninger A. (2005) Principles of Biochemistry, Fourth Edition. Freeman and Company, New York. Lindo J., Haas R., Hofman C. et al (2018). The genetic prehistory of the Andean highlands 7,000 Years BP though European contact. Sci. Adv. 8: 1 – 10.
dc.relation.referencesMahat B., Chassé E., Clare Lindon et al. (2018). No Effect of Acute Normobaric Hypoxia on Plasma Triglyceride Levels in Fasting Healthy Men. Physiol. Appl. Nutr. Metabol. 43:727 - 32.
dc.relation.referencesMauger J-F., Chassé É., Mahat B. et al (2019) The Effect of Acute Continuous Hypoxia on Triglyceride Levels in Constantly Fed Healthy Men. Front Physiol. 10:1- 9.
dc.relation.referencesMilledge J. S. (1992) Salt and water control at altitude. Int J Sports Med. 1:S61-3 Suppl.
dc.relation.referencesMinisterio de Salud y Protección Social. (1993, 4 de octubre). Resolución 008430: Por la cual se establecen las normas académicas, técnicas y administrativas para la investigación en salud. Diario Oficial. Bogotá: El Ministerio; 44973, 1-20.
dc.relation.referencesMoore L., Niermeyer S., Zamudio S. (1998). Human adaptation to high altitude: Regional and life-cycle perspectives. Yearbook of Phys. Anthropol. 41:25–64.
dc.relation.referencesMoore L. (2000). Comparative human ventilatory adaptation to high altitude. Respir Physiol;121:257-276.
dc.relation.referencesMoore L, Young D., McCullough R.E., Droma T. and Zamudio S. (2001) Tibetan Protection From Intrauterine Growth Restriction (IUGR) and Reproductive Loss at High Altitude. Am. J. Hum. Biol. 13:635–644.
dc.relation.referencesMorris L, Flück D, Ainslie P & McManus A. (2017). Cerebrovascular and ventilatory responses to acute normobaric hypoxia in girls and women. Physiol Rep;5(15):1-9.
dc.relation.referencesMuscat, K. Kotrach, H. Wilkinson-Maitland, C. et. al. (2015). Physiological and perceptual responses to incremental exercise testing in healthy men: effect of exercise test modality. Appl Physiol Nutr Metab; 40(11):1199-209.
dc.relation.referencesNiermeyer S., Yang P., Shanmina M.D., et al. (1995). Arterial oxygen saturation in Tibetan and Han infants born in Lhasa, Tibet. N. Engl. J. Med.333:1248 – 52.
dc.relation.referencesRyan B.J., Wachsmuth N., Schmidt W., et al. (2014) AltitudeOmics: Rapid Hemoglobin Mass Alterations with Early Acclimatization to and De-Acclimatization from 5260 m in Healthy Humans. PLOS 9:1 – 12.
dc.relation.referencesRichalet JP, Souberbille JC, Antezana AM et al (1994). Control of erythropoiesis in humans during prolonged exposure to the altitude of 6,542 m. Am. J. Physiol. 266:R756– R764.
dc.relation.referencesSchmidt W., Heinicke K., Rojas J., Gomez J. M., Serrato M, Mora M, Wolfarth B, Schmid A, Keul J. (2002) Blood volume and hemoglobin mass in endurance athletes from moderate altitude. Med. Sci. Sports Exerc.34:1934-40.
dc.relation.referencesSchmidt W & Prommer N. (2005). The optimized CO-rebreathing method: a new tool to determine total haemoglobin mass routinely. Eur J Appl Physiol;95(5-6):486-495.
dc.relation.referencesSchmidt W & Prommer N. (2008). Effects of various training modalities on blood volume. Scand J Med Sci Sports 18 (Suppl 1): 59–71.
dc.relation.referencesSiqués, P., Brito, J., León-Velarde, F., Barrios, L., De La Cruz, J. J., López, V., & Herruzo, R. (2007). Hematological and Lipid Profile Changes in Sea-Level Natives after Exposure to 3550-m Altitude for 8 Months. High Altitude Medicine & Biology, 8(4), 286–295. doi:10.1089/ham.2007.8405
dc.relation.referencesSteel R., & Torrie J. (2006). Bioestadística y procedimientos. 2 ed. Bogotá: Mc Graw Hill Latinoamericana. ISBN 968-451495-6.
dc.relation.referencesSpiegel K., Tasali E., Penev P., et al (2007) Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med. 14:846-50.
dc.relation.referencesThomsen J, Fogh-Andersen N, Bülow K & Devantier A. (1991). Blood and plasma volumes determined by carbon monoxide gas, 99mTc-labelled erythrocytes, 125I-albumin and the T 1824 technique. Scand J Clin Lab Invest:51(2):185-190. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/2042022.
dc.relation.referencesTorrance J. C., Lenfant C., Cruz J., Marticorena E. (1971) Oxygen transport mechanisms in residents at high altitude. Resp. Physiol. 10:1-12.
dc.relation.referencesWagner P., Araoz., Robert B., et al. (2002). Pulmonary gas exchange and acid-base state at 5,260 m in high-altitude Bolivians and acclimatized lowlanders. J. Appl. Physiol. 92: 1393–1400.
dc.relation.referencesWang W., Liu F., Zhang Z., et al (2016). The Growth Pattern of Tibetan Infants at High Altitudes: a cohort study in rural Tibet Region. Sci. Rep. 6: 1–9.
dc.relation.referencesWeil J. F., Jamieson G., Brown D. W., Grover R. F. (1968) The red cell mass–arterial oxygen relationship in normal man. J. Clin. Invest. 48:1627-1639
dc.relation.referencesWiley A. (1994). Neonatal Size and Infant Mortality at High Altitude in the Western Himalaya. Am. J. Phys. Anthropol. 94:289-305.
dc.relation.referencesWorld Health Organization. (2001). Iron Deficiency Anaemia Assessment, Prevention, and Control: a guide for programme managers. Recuperado de: https://www.who.int/nutrition/publications/micronutrients/anaemia_iron_deficiency/ WHO_NHD_01.3/en/
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalmasa total de hemoglobina
dc.subject.proposalrespiratory quotient
dc.subject.proposaltotal hemoglobin mass
dc.subject.proposalfrecuencia ventilatoria
dc.subject.proposalcociente respiratorio
dc.subject.proposalventilatory frequency
dc.subject.proposalaltura moderada
dc.subject.proposalmoderate height
dc.subject.proposalacclimatization to hypoxia
dc.subject.proposalaclimatación a la hipoxia
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito