Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorMolina Velasco, Daniel Ricardo
dc.contributor.advisorOspina Sánchez, Sonia Amparo
dc.contributor.advisorDoucet, Nicolas
dc.contributor.authorRueda Rueda, Andrés Mauricio
dc.date.accessioned2020-08-13T15:44:01Z
dc.date.available2020-08-13T15:44:01Z
dc.date.issued2019-04-02
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78022
dc.description.abstractBasidiomycete fungi are the most important organisms involved in wood recycling in nature trough production of ligninolytic enzymes able to degrade lignocellulose to obtain energy. Bioprospection of basidiomycete fungi and their ligninolytic enzymes is a valuable asset for the development of biotechnological delignification processes. Now, lignocellulolytic residue accumulation has been increasing over the years due to worldwide population growth and lignocellulose is one of the most promising renewable sources for bioethanol production. It encourages the use of by-products derived from the agro-industry as a practical alternative strategy for handling the accumulation of waste products with high energetic value. Bioethanol production using lignocellulose necessitates a selective pretreatment removing lignin to release cellulose and hemicellulose, which are then hydrolyzed to obtain sugars that can then be fermented to produce ethanol. Until now, the pretreatment process is the only step that has been supported by an effective biotechnological strategy, and still depends on chemicals or high energy demand strategies. Enzymatic pretreatment of lignocellulose would be a green alternative for the delignification process that occurs within cellulosic ethanol industry. Among basidiomycete oxido-reductase enzymes, peroxidases, such as lignin peroxidases, manganese peroxidases and versatile peroxidases, and catalases as laccases are ligninolytic enzymes that oxidize lignin present in wood that could offer an environmental-friendly alternative for the exploitation of lignocellulosic by-products. Various agroindustries generate such by-products but oil palm (Elaeis guineensis) is the principal source of oil in the world, with Malaysia and Indonesia being the main producers followed by Nigeria, Thailand and Colombia. This specific culture generates important quantities of residues and for instance for Colombia, it means that in 2014 from 1.1 million tons of palm oil obtained, 3.3 million tons of wastes were generated. Thus, the objective of this research project was to perform bioprospection of white-rot native Colombian basidiomycete fungi with ligninolytic activity and explore their genome to identify enzymes capable of handling the pretreatment of palm oil tree lignocellulosic residues. Selection of basidiomycete fungi with ligninolytic activity was achieved using Solid State Fermentation and delignification capacity of enzymatic extracts was evaluated over lignocellulose from oil palm. It arose from this study that the isolation of a Colombian native Dictyopanus pusillus-LMB4 basidiomycete fungus showed a relevant laccase activity (267.6 U.L-1 after 28 days of fermentation). Interestingly, this specie had not yet been reported as an efficient ligninolytic organism. Enzymatic crude extract with laccase activity from native D. pusillus-LMB4 was used for a pretreatment process of empty fruit bunches lignocellulose to obtain reducing sugars. Ligninolytic protein characterization, mainly laccases, of this enzymatic crude extract showed the presence of at least one enzyme with laccase activity by zymogram analysis and mass spectrometry peptide identification. Genomic exploration of D. pusillus-LMB4 revealed the existence of 14 genes that have similarity with other reported laccase enzymes. To our knowledge this work presents the first genomic exploration of a Dictyopanus species with an emphasis on laccase enzymes that could be used for lignocellulose pretreatment during cellulosic ethanol production and bioremediation of soils and wastewaters, among others. Hence, these results report Dictyopanus pusillus-LMB4 as a new ligninolytic species, and its laccase enzymes as possible future green alternatives for the pretreatment of lignocellulose biomass from the agroindustry.
dc.description.abstractLos hongos basidiomicetos son los organismos más importantes en el reciclaje de la madera en la naturaleza a través de la producción de enzimas ligninolíticas capaces de degradar lignocelulosa para la obtención de energía. La bioprospección de hongos basidiomicetos y sus respectivas enzimas ligninolíticas son de gran valor para el desarrollo del proceso biotecnológico de deslignifcación. Actualmente la acumulación de residuos ligninolíticos ha incrementado en los últimos años, como consecuencia del crecimiento de la población mundial, siendo la lignocelulosa una de las más prometedoras fuentes renovables para la producción de bioetanol. Lo anterior incentiva el uso de subproductos provenientes de la agroindustria como una alternativa estratégica para el manejo y la acumulación de productos de desecho de alto valor energético. Para la producción de bioetanol es necesario un pretratamiento para la remoción de la lignina y así permitir la liberación de la celulosa y hemicelulosa, que permite la hidrolisis de estos carbohidratos para la obtención de azúcares que finalmente son fermentados para la producción de etanol. Hasta el momento, el pretratamiento es la única etapa que no ha sido soportada por una estrategia biotecnológica efectiva, dependiendo de compuestos químicos o procesos que demandan alta energía. El pretratamiento enzimático de la lignocelulosa podría ser una alternativa verde para el proceso de deslignificación en la industria del bioetanol celulósico. Entre las enzimas de los hongos basidiomicetos se encuentran peroxidasas como manganeso peroxidasas, lignina peroxidasas y versátil peroxidasas, y catalasas como las lacasas, estas enzimas ligninolíticas son capaces de oxidar la lignina presente en la madera, ofreciendo una alternativa amigable con el medio ambiente para la explotación de subproductos lignocelulósicos. Existen varias agroindustrias que generan subproductos lignocelulósicos, un ejemplo es la industria de la palma aceitera (Elaeis guineensis), que es la principal fuente de aceite a nivel mundial, siendo Malasia e Indonesia los mayores productores de aceite, seguidos por Nigeria, Tailandia y Colombia. El cultivo de palma genera importantes cantidades de residuos, como sucede en Colombia, donde se produjeron 1.1 millones de toneladas de aceite de palma, generando 3.3 millones de toneladas de desechos lignocelulósicos para el año 2014. Con base a lo anterior, el objetivo de este proyecto de investigación fue realizar la bioprospección de hongos basidiomicetos nativos colombianos con actividad ligninolítica y explorar su genoma para identificar enzimas con la capacidad de realizar el pretratamiento de residuos lignocelulósicos de la palma aceitera. Aislamiento y selección de hongos basidiomicetos con actividad ligninolítica fueron logrados por medio de fermentación en estado sólido, al igual que la capacidad ligninolítica de los extractos enzimáticos obtenidos sobre lignocelulosa de palma aceitera. Como resultado de esta investigación se obtuvo el hongo basidiomiceto colombiano Dictyopanus pusillus-LMB4, el cual mostró una relevante actividad lacasa, interesantemente, esta especie no ha sido aún reportada como un eficiente organismo ligninolítico. El extracto enzimático crudo con actividad lacasa del asilamiento nativo D. pusillus-LMB4 fue usado para el pretratamiento de lignocelulosa de racimos vacíos de palma aceitera para la obtención de azúcares reductores; la caracterización de las proteínas de este extracto enzimático crudo mostró la presencia de al menos una enzima con actividad lacasa; la exploración genómica de D. pusillus-LMB4 mostró la existencia de 14 genes que poseen similitud con otras enzimas lacasas reportadas. A nuestro conocimiento esté trabajo muestra la primera exploración genética de una especie de Dictyopanus con énfasis en enzimas lacasas. Enzimas que podrían para el pretratamiento de lignocelulosa en la producción de etanol celulósico. Por consiguiente, estos resultados reportan a la especie Dictyopanus pusillus como un nuevo organismo lignolítico y sus enzimas lacasas como una posible alternativa verde para el pretratamiento de biomasa lignocelulósica de la agroindustria.
dc.format.extent212
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc660 - Ingeniería química
dc.subject.ddc577 - Ecología
dc.titleIdentification of Dictyopanus pusillus as a promising candidate for enzymatic lignocellulose pretreatment of oil palm tree residues
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Bioprocesos y Bioprospección
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Biotecnología
dc.contributor.researchgroupBiopolímeros y Biofuncionales
dc.description.degreelevelDoctorado
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbbas A, Koc H, Liu F & Tien M (2005) Fungal degradation of wood: initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Current Genetics 47(1):49-56.
dc.relation.referencesAbdelaziz OY, Brink DP, Prothmann J, Ravi K, Sun M, García-Hidalgo J, Sandahl M, Hulteberg CP, Turner C, Lidén G & Gorwa-Grauslund MF (2016) Biological valorization of low molecular weight lignin. Biotechnology Advances 34(8):1318-1346.
dc.relation.referencesAbdul PM, Jahim JM, Harun S, Markom M, Lutpi NA, Hassan O, Balan V, Dale BE & Mohd Nor MT (2016) Effects of changes in chemical and structural characteristic of ammonia fibre expansion (AFEX) pretreated oil palm empty fruit bunch fibre on enzymatic saccharification and fermentability for biohydrogen. Bioresource Technology 211:200-208.
dc.relation.referencesAditiya HB, Mahlia TMI, Chong WT, Nur H & Sebayang AH (2016) Second generation bioethanol production: A critical review. Renewable and Sustainable Energy Reviews 66:631-653.
dc.relation.referencesAgrawal K, Chaturvedi V & Verma P (2018) Fungal laccase discovered but yet undiscovered. Bioresources and Bioprocessing 5(1):4.
dc.relation.referencesAlaswad A, Dassisti M, Prescott T & Olabi AG (2015) Technologies and developments of third generation biofuel production. Renewable and Sustainable Energy Reviews 51:1446-1460.
dc.relation.referencesAlthuri A, Gujjala LKS & Banerjee R (2017) Partially consolidated bioprocessing of mixed lignocellulosic feedstocks for ethanol production. Bioresource Technology 245:530-539.
dc.relation.referencesAltschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schäffer AA & Yu Y-K (2005) Protein database searches using compositionally adjusted substitution matrices. The FEBS Journal 272(20):5101-5109.
dc.relation.referencesAmorim HV, Lopes ML, de Castro Oliveira JV, Buckeridge MS & Goldman GH (2011) Scientific challenges of bioethanol production in Brazil. Applied Microbiology and Biotechnology 91(5):1267.
dc.relation.referencesAntorini M, Herpoël-Gimbert I, Choinowski T, Sigoillot J-C, Asther M, Winterhalter K & Piontek K (2002) Purification, crystallisation and X-ray diffraction study of fully functional laccases from two ligninolytic fungi. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1594(1):109-114.
dc.relation.referencesAntošová Z & Sychrová H (2016) Yeast Hosts for the Production of Recombinant Laccases: A Review. Molecular Biotechnology 58(2):93-116.
dc.relation.referencesAntunes FAF, Santos JC, Chandel AK, Milessi TSS, Peres GFD & da Silva SS (2016) Hemicellulosic Ethanol Production by Immobilized Wild Brazilian Yeast Scheffersomyces shehatae UFMG-HM 52.2: Effects of Cell Concentration and Stirring Rate. Current Microbiology 72(2):133-138.
dc.relation.referencesArfi Y, Shamshoum M, Rogachev I, Peleg Y & Bayer EA (2014) Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. Proceedings of the National Academy of Sciences 111(25):9109-9114.
dc.relation.referencesArtzi L, Bayer EA & Moraïs S (2016) Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nature Reviews Microbiology 15:83.
dc.relation.referencesAsif MB, Hai FI, Singh L, Price WE & Nghiem LD (2017) Degradation of Pharmaceuticals and Personal Care Products by White-Rot Fungi—a Critical Review. Current Pollution Reports 3(2):88-103.
dc.relation.referencesAvanthi A & Banerjee R (2016) A strategic laccase mediated lignin degradation of lignocellulosic feedstocks for ethanol production. Industrial Crops and Products 92:174-185.
dc.relation.referencesAyuso-Fernández I, Martínez AT & Ruiz-Dueñas FJ (2017) Experimental recreation of the evolution of lignin-degrading enzymes from the Jurassic to date. Biotechnology for Biofuels 10(1):67.
dc.relation.referencesAyuso-Fernández I, Ruiz-Dueñas FJ & Martínez AT (2018) Evolutionary convergence in lignin-degrading enzymes. Proceedings of the National Academy of Sciences 115(25):6428-6433.
dc.relation.referencesBaldrian P (2006) Fungal laccases – occurrence and properties. FEMS Microbiology Reviews 30(2):215-242. Baldrian P & Gabriel J (2002) Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiology Letters 206(1):69-74.
dc.relation.referencesBechara Etelvino JH (2015) Bioluminescence: A Fungal Nightlight with an Internal Timer. Current Biology 25(7):R283-R285.
dc.relation.referencesBeckham GT, Johnson CW, Karp EM, Salvachúa D & Vardon DR (2016) Opportunities and challenges in biological lignin valorization. Current Opinion in Biotechnology 42:40-53.
dc.relation.referencesBehera S, Arora R, Nandhagopal N & Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews 36:91-106.
dc.relation.referencesBenkert P, Biasini M & Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27(3):343-350.
dc.relation.referencesBertrand G (1896) Sur la presence simultanee de la laccase et de la tyrosinase dans le suc de quelques champignons. C. R. Hebd. Seances Acad Sci 123:463 -465.
dc.relation.referencesBertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C & Mougin C (2002) Crystal Structure of a Four-Copper Laccase Complexed with an Arylamine:  Insights into Substrate Recognition and Correlation with Kinetics. Biochemistry 41(23):7325-7333.
dc.relation.referencesBi P, Wang J, Zhang Y, Jiang P, Wu X, Liu J, Xue H, Wang T & Li Q (2015) From lignin to cycloparaffins and aromatics: Directional synthesis of jet and diesel fuel range biofuels using biomass. Bioresource Technology 183:10-17.
dc.relation.referencesBinder M, Justo A, Riley R, Salamov A, Lopez-Giraldez F, Sjökvist E, Copeland A, Foster B, Sun H, Larsson E, Larsson K-H, Townsend J, Grigoriev IV & Hibbett DS (2013) Phylogenetic and phylogenomic overview of the Polyporales. Mycologia 105(6):1350-1373.
dc.relation.referencesBinod P, Satyanagalakshmi K, Sindhu R, Janu KU, Sukumaran RK & Pandey A (2012) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renewable Energy 37(1):109-116.
dc.relation.referencesBinod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK & Pandey A (2010) Bioethanol production from rice straw: An overview. Bioresource Technology 101(13):4767-4774.
dc.relation.referencesBlackwell M (2011) The Fungi: 1, 2, 3 … 5.1 million species? American Journal of Botany 98(3):426-438. Blanchette RA (1984) Screening Wood Decayed by White Rot Fungi for Preferential Lignin Degradation. Applied and Environmental Microbiology 48(3):647-653.
dc.relation.referencesBlanchette RA (1991) Delignification by Wood-Decay Fungi. Annual Review of Phytopathology 29(1):381-403. Boddy L (2000) Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiology Ecology 31(3):185-194.
dc.relation.referencesBoddy L & Hiscox J (2016) Fungal Ecology: Principles and Mechanisms of Colonization and Competition by Saprotrophic Fungi. Microbiology Spectrum 4(6).
dc.relation.referencesBoerjan W, Ralph J & Baucher M (2003) Lignin Biosynthesis. Annual Review of Plant Biology 54(1):519-546.
dc.relation.referencesBrandizzi F, Fricker M & Hawes C (2002) A greener world: The revolution in plant bioimaging. Nature Reviews Molecular Cell Biology 3:520.
dc.relation.referencesBriving C, Gandvik E-K & Nyman PO (1980) Structural studies around cysteine and cystine residues in the “blue” oxidase fungal laccase B. Similarity in amino acid sequence with ceruloplasmin. Biochemical and Biophysical Research Communications 93(2):454-461.
dc.relation.referencesBrown ME & Chang MCY (2014) Exploring bacterial lignin degradation. Current Opinion in Chemical Biology 19:1-7.
dc.relation.referencesBrown ME, Walker MC, Nakashige TG, Iavarone AT & Chang MCY (2011) Discovery and Characterization of Heme Enzymes from Unsequenced Bacteria: Application to Microbial Lignin Degradation. Journal of the American Chemical Society 133(45):18006-18009.
dc.relation.referencesBrown RM (2004) Cellulose structure and biosynthesis: What is in store for the 21st century? Journal of Polymer Science Part A: Polymer Chemistry 42(3):487-495.
dc.relation.referencesBushell ME (1995) Fungal physiology (2nd Edition). By David H. Griffin, J. Wiley & Sons, Inc., New York, 1994, x + 458 pp., price £66.00, US$92.50. ISBN 0 471 59586 1. Journal of Chemical Technology & Biotechnology 64(1):105-105.
dc.relation.referencesCadoche L & López GD (1989) Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biological Wastes 30(2):153-157.
dc.relation.referencesCamarero S, Pardo I, Cañas AI, Molina P, Record E, Martínez AT, Martínez MJ & Alcalde M (2012) Engineering Platforms for Directed Evolution of Laccase from Pycnoporus cinnabarinus. Applied and Environmental Microbiology 78(5):1370-1384.
dc.relation.referencesCambria M, Cambria A, Ragusa S & Rizzarelli E (2000) Production, Purification, and Properties of an Extracellular Laccase from Rigidoporus lignosus. Protein Expression and Purification 18(2):141-147.
dc.relation.referencesCardona CA, Quintero JA & Paz IC (2010) Production of bioethanol from sugarcane bagasse: Status and perspectives. Bioresource Technology 101(13):4754-4766.
dc.relation.referencesCastaño JD, Zhang J, Anderson CE & Schilling JS (2018) Oxidative Damage Control during Decay of Wood by Brown Rot Fungus Using Oxygen Radicals. Applied and Environmental Microbiology 84(22):e01937-01918.
dc.relation.referencesCastiblanco C, Moreno A & Etter A (2015) Impact of policies and subsidies in agribusiness: The case of oil palm and biofuels in Colombia. Energy Economics 49:676-686.
dc.relation.referencesChambergo FS & Valencia EY (2016) Fungal biodiversity to biotechnology. Applied Microbiology and Biotechnology 100(6):2567-2577.
dc.relation.referencesChang SH (2014) An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass and Bioenergy 62:174-181.
dc.relation.referencesChen G-G, Qi X-M, Guan Y, Peng F, Yao C-L & Sun R-C (2016) High Strength Hemicellulose-Based Nanocomposite Film for Food Packaging Applications. ACS Sustainable Chemistry & Engineering 4(4):1985-1993.
dc.relation.referencesChen H & Fu X (2016) Industrial technologies for bioethanol production from lignocellulosic biomass. Renewable and Sustainable Energy Reviews 57:468-478.
dc.relation.referencesChen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H & Han S (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Processing Technology 160:196-206.
dc.relation.referencesChen Z & Wan C (2017) Biological valorization strategies for converting lignin into fuels and chemicals. Renewable and Sustainable Energy Reviews 73:610-621.
dc.relation.referencesChintagunta AD, Ray S & Banerjee R (2017) An integrated bioprocess for bioethanol and biomanure production from pineapple leaf waste. Journal of Cleaner Production 165:1508-1516.
dc.relation.referencesChoi J-M, Han S-S & Kim H-S (2015) Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnology Advances 33(7):1443-1454.
dc.relation.referencesChoi YW, Hyde KD & Ho WH (1999) Single spore isolation of fungi. Fungal Diversity 3:29.
dc.relation.referencesChoinowski T, Blodig W, Winterhalter KH & Piontek K (1999) The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxy group on the Cβ of tryptophan 171: A novel radical site formed during the redox cycle11Edited by R. Huber. Journal of Molecular Biology 286(3):809-827.
dc.relation.referencesChristopher LP, Yao B & Ji Y (2014) Lignin Biodegradation with Laccase-Mediator Systems. Frontiers in Energy Research 2(12).
dc.relation.referencesColavolpe MB, Mejía SJ & Albertó E (2014) Efficiency of treatments for controlling Trichoderma spp during spawning in cultivation of lignicolous mushrooms. Brazilian Journal of Microbiology 45:1263-1270.
dc.relation.referencesCollins T, Gerday C & Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews 29(1):3-23.
dc.relation.referencesCragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JEM & Zimmer M (2015) Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology 29:108-119.
dc.relation.referencesCyril Heitner DD, John Schmidt ( 2010 ) lignin and Lignans, Taylor & Francis Group, Boca Raton. p 1 - 10. Damborsky J & Brezovsky J (2014) Computational tools for designing and engineering enzymes. Current Opinion in Chemical Biology 19:8-16.
dc.relation.referencesDashtban M, Schraft H, Syed TA & Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemistry and Molecular Biology 1(1):36-50.
dc.relation.referencesDavidi L, Moraïs S, Artzi L, Knop D, Hadar Y, Arfi Y & Bayer EA (2016) Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome. Proceedings of the National Academy of Sciences 113(39):10854-10859.
dc.relation.referencesDe Corato U, De Bari I, Viola E & Pugliese M (2018) Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: A review. Renewable and Sustainable Energy Reviews 88:326-346.
dc.relation.referencesDe la Mora E, Lovett JE, Blanford CF, Garman EF, Valderrama B & Rudino-Pinera E (2012) Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase. Acta Crystallographica Section D 68(5):564-577.
dc.relation.referencesDe La Torre M, Martín-Sampedro R, Fillat Ú, Eugenio ME, Blánquez A, Hernández M, Arias ME & Ibarra D (2017) Comparison of the efficiency of bacterial and fungal laccases in delignification and detoxification of steam-pretreated lignocellulosic biomass for bioethanol production. Journal of Industrial Microbiology & Biotechnology 44(11):1561-1573.
dc.relation.referencesDhiman SS, Haw J-R, Kalyani D, Kalia VC, Kang YC & Lee J-K (2015) Simultaneous pretreatment and saccharification: Green technology for enhanced sugar yields from biomass using a fungal consortium. Bioresource Technology 179:50-57.
dc.relation.referencesDionisi D (2013) Analysis of the Effect of Cellulose Particle Size on the Rate of Microbial Hydrolysis for Bioethanol Production. Energy Technology 1(11):675-684.
dc.relation.referencesDonegan T & Huertas B (2005) Threatened species of Serranía de los Yariguíes: final report. Colombian EBA Project Report Series 5:27-35.
dc.relation.referencesDucros V, Brzozowski AM, Wilson KS, Brown SH, Østergaard P, Schneider P, Yaver DS, Pedersen AH & Davies GJ (1998) Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 Å resolution. Nature Structural Biology 5:310.
dc.relation.referencesDwivedi P, Alavalapati JRR & Lal P (2009) Cellulosic ethanol production in the United States: Conversion technologies, current production status, economics, and emerging developments. Energy for Sustainable Development 13(3):174-182.
dc.relation.referencesEastwood DC (2014) Evolution of Fungal Wood Decay. Deterioration and Protection of Sustainable Biomaterials, (ACS Symposium Series: 1158) American Chemical Society, Vol 1158. p 93-112.
dc.relation.referencesEastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M, Blumentritt M, Coutinho PM, Cullen D, de Vries RP, Gathman A, Goodell B, Henrissat B, Ihrmark K, Kauserud H, Kohler A, LaButti K, Lapidus A, Lavin JL, Lee Y-H, Lindquist E, Lilly W, Lucas S, Morin E, Murat C, Oguiza JA, Park J, Pisabarro AG, Riley R, Rosling A, Salamov A, Schmidt O, Schmutz J, Skrede I, Stenlid J, Wiebenga A, Xie X, Kües U, Hibbett DS, Hoffmeister D, Högberg N, Martin F, Grigoriev IV & Watkinson SC (2011) The Plant Cell Wall–Decomposing Machinery Underlies the Functional Diversity of Forest Fungi. Science 333(6043):762-765.
dc.relation.referencesElisashvili V & Kachlishvili E (2009) Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. Journal of Biotechnology 144(1):37-42. Ellabban O, Abu-Rub H & Blaabjerg F (2014) Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews 39:748-764.
dc.relation.referencesEllilä S, Fonseca L, Uchima C, Cota J, Goldman GH, Saloheimo M, Sacon V & Siika-aho M (2017) Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnology for Biofuels 10(1):30.
dc.relation.referencesEriksson KE (1978) Enzyme mechanisms involved in cellulose hydrolysis by the rot fungus Sporotrichum pulverulentum. Biotechnology and Bioengineering 20(3):317-332.
dc.relation.referencesFache M, Boutevin B & Caillol S (2016) Vanillin Production from Lignin and Its Use as a Renewable Chemical. ACS Sustainable Chemistry & Engineering 4(1):35-46.
dc.relation.referencesFalade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV & Okoh AI (2017) Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen 6(1):e00394.
dc.relation.referencesFAO (2016) FAOSTAT, Food and agriculture stadistic data. Édit Division S).
dc.relation.referencesFedepalma (2015) The Oil Palm Agroindustry in Colombia and the World, Statistical Yearbook. Colombia
dc.relation.referencesFernández-Fueyo E, Ruiz-Dueñas FJ, López-Lucendo MF, Pérez-Boada M, Rencoret J, Gutiérrez A, Pisabarro AG, Ramírez L & Martínez AT (2016) A secretomic view of woody and nonwoody lignocellulose degradation by Pleurotus ostreatus. Biotechnology for Biofuels 9(1):49.
dc.relation.referencesFerraroni M, Matera I, Chernykh A, Kolomytseva M, Golovleva LA, Scozzafava A & Briganti F (2012) Reaction intermediates and redox state changes in a blue laccase from Steccherinum ochraceum observed by crystallographic high/low X-ray dose experiments. Journal of Inorganic Biochemistry 111:203-209.
dc.relation.referencesFerraroni M, Myasoedova NM, Schmatchenko V, Leontievsky AA, Golovleva LA, Scozzafava A & Briganti F (2007) Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Structural Biology 7:60-60.
dc.relation.referencesFerrer M, Martínez‐Martínez M, Bargiela R, Streit WR, Golyshina OV & Golyshin PN (2016) Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microbial Biotechnology 9(1):22-34.
dc.relation.referencesFloudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TKA, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St. John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV & Hibbett DS (2012) The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes. Science 336(6089):1715-1719.
dc.relation.referencesFloudas D, Held BW, Riley R, Nagy LG, Koehler G, Ransdell AS, Younus H, Chow J, Chiniquy J, Lipzen A, Tritt A, Sun H, Haridas S, LaButti K, Ohm RA, Kües U, Blanchette RA, Grigoriev IV, Minto RE & Hibbett DS (2015) Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii. Fungal Genetics and Biology 76:78-92.
dc.relation.referencesFritsche W & Hofrichter M (2005) Aerobic Degradation of Recalcitrant Organic Compounds by Microorganisms. Environmental Biotechnology, Wiley-VCH Verlag GmbH & Co. KGaA, 10.1002/3527604286.ch7. p 203-227.
dc.relation.referencesFurukawa T, Bello FO & Horsfall L (2014) Microbial enzyme systems for lignin degradation and their transcriptional regulation. Frontiers in Biology 9(6):448-471.
dc.relation.referencesGalkin MV & Samec JSM (2016) Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery. ChemSusChem 9(13):1544-1558.
dc.relation.referencesGaravaglia S, Teresa Cambria M, Miglio M, Ragusa S, Iacobazzi V, Palmieri F, D'Ambrosio C, Scaloni A & Rizzi M (2004) The Structure of Rigidoporus lignosus Laccase Containing a Full Complement of Copper Ions, Reveals an Asymmetrical Arrangement for the T3 Copper Pair. Journal of Molecular Biology 342(5):1519-1531.
dc.relation.referencesGardes M & Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology 2(2):113-118.
dc.relation.referencesGarg N, Bieler N, Kenzom T, Chhabra M, Ansorge-Schumacher M & Mishra S (2012) Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase. BMC Biotechnology 12(1):75.
dc.relation.referencesGaskell J, Kersten P, Larrondo LF, Canessa P, Martinez D, Hibbett D, Schmoll M, Kubicek CP, Martinez AT, Yadav J, Master E, Magnuson JK, Yaver D, Berka R, Lail K, Chen C, LaButti K, Nolan M, Lipzen A, Aerts A, Riley R, Barry K, Henrissat B, Blanchette R, Grigoriev IV & Cullen D (2017) Draft genome sequence of a monokaryotic model brown-rot fungus Postia (Rhodonia) placenta SB12. Genomics Data 14:21-23.
dc.relation.referencesGe H, Gao Y, Hong Y, Zhang M, Xiao Y, Teng M & Niu L (2010) Structure of native laccase B from Trametes sp. AH28-2. Acta Crystallographica Section F: Structural Biology and Crystallization Communications 66(Pt 3):254-258.
dc.relation.referencesGerbrandt K, Chu PL, Simmonds A, Mullins KA, MacLean HL, Griffin WM & Saville BA (2016) Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use. Current Opinion in Biotechnology 38:63-70.
dc.relation.referencesGermann UA & Lerch K (1986) Isolation and partial nucleotide sequence of the laccase gene from Neurospora crassa: amino acid sequence homology of the protein to human ceruloplasmin. Proceedings of the National Academy of Sciences 83(23):8854-8858.
dc.relation.referencesGhose T (1987) Measurement of cellulase activities. Pure and applied Chemistry 59(2):257-268.
dc.relation.referencesGlazunova OA, Polyakov KM, Fedorova TV, Dorovatovskii PV & Koroleva OV (2015) Elucidation of the crystal structure of Coriolopsis caperata laccase: restoration of the structure and activity of the native enzyme from the T2-depleted form by copper ions. Acta Crystallographica Section D 71(4):854-861.
dc.relation.referencesGlazunova OA, Shakhova NV, Psurtseva NV, Moiseenko KV, Kleimenov SY & Fedorova TV (2018) White-rot basidiomycetes Junghuhnia nitida and Steccherinum bourdotii: Oxidative potential and laccase properties in comparison with Trametes hirsuta and Coriolopsis caperata. PLOS ONE 13(6):e0197667.
dc.relation.referencesGomez-Tovar F, Celis LB, Razo-Flores E & Alatriste-Mondragón F (2012) Chemical and enzymatic sequential pretreatment of oat straw for methane production. Bioresource Technology 116:372-378.
dc.relation.referencesGomez LD, Steele‐King CG & McQueen‐Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing's on the walls. New Phytologist 178(3):473-485.
dc.relation.referencesGonzalez-Perez D & Alcalde M (2018) The making of versatile peroxidase by directed evolution. Biocatalysis and Biotransformation 36(1):1-11.
dc.relation.referencesGoodell B, Qian Y & Jellison J (2008) Fungal Decay of Wood: Soft Rot—Brown Rot—White Rot. Development of Commercial Wood Preservatives, (ACS Symposium Series: 982) American Chemical Society, Vol 982. p 9-31.
dc.relation.referencesGrueneich DM (2015) The Next Level of Energy Efficiency: The Five Challenges Ahead. The Electricity Journal 28(7):44-56.
dc.relation.referencesGundry RL, White MY, Murray CI, Kane LA, Fu Q, Stanley BA & Van Eyk JE (2010) Preparation of Proteins and Peptides for Mass Spectrometry Analysis in a Bottom-Up Proteomics Workflow. Current Protocols in Molecular Biology 90(1):10.25.11-10.25.23.
dc.relation.referencesGuo H, Wang X-D & Lee D-J (2018) Proteomic researches for lignocellulose-degrading enzymes: A mini-review. Bioresource Technology 265:532-541.
dc.relation.referencesGuo M, Song W & Buhain J (2015) Bioenergy and biofuels: History, status, and perspective. Renewable and Sustainable Energy Reviews 42:712-725.
dc.relation.referencesGupta A & Verma JP (2015) Sustainable bio-ethanol production from agro-residues: A review. Renewable and Sustainable Energy Reviews 41:550-567.
dc.relation.referencesGupta R, Mehta G & Kuhad RC (2016) Scale‐up of abatement of fermentation inhibitors from acid hydrolysates for efficient conversion to ethanol as biofuel. Journal of Chemical Technology & Biotechnology 91(6):1826-1834.
dc.relation.referencesHailei W, Ping L, Yuhua Y & Yufeng L (2015) Overproduction of laccase from a newly isolated Ganoderma lucidum using the municipal food waste as main carbon and nitrogen supplement. Bioprocess and Biosystems Engineering 38(5):957-966.
dc.relation.referencesHakulinen N, Andberg M, Kallio J, Koivula A, Kruus K & Rouvinen J (2008) A near atomic resolution structure of a Melanocarpus albomyces laccase. Journal of Structural Biology 162(1):29-39.
dc.relation.referencesHassan MNA, Jaramillo P & Griffin WM (2011) Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security. Energy Policy 39(5):2615-2625.
dc.relation.referencesHeather JM & Chain B (2016) The sequence of sequencers: The history of sequencing DNA. Genomics 107(1):1-8.
dc.relation.referencesHenzel WJ, Watanabe C & Stults JT (2003) Protein identification: the origins of peptide mass fingerprinting. Journal of the American Society for Mass Spectrometry 14(9):931-942.
dc.relation.referencesHiguchi T (2006) Look back over the studies of lignin biochemistry. Journal of Wood Science 52(1):2-8.
dc.relation.referencesHildén K, Mäkelä MR, Lundell T, Kuuskeri J, Chernykh A, Golovleva L, Archer DB & Hatakka A (2013) Heterologous expression and structural characterization of two low pH laccases from a biopulping white-rot fungus Physisporinus rivulosus. Applied Microbiology and Biotechnology 97(4):1589-1599.
dc.relation.referencesHilgers R, Vincken J-P, Gruppen H & Kabel MA (2018) Laccase/Mediator Systems: Their Reactivity toward Phenolic Lignin Structures. ACS sustainable chemistry & engineering 6(2):2037-2046.
dc.relation.referencesHiscox J, O'Leary J & Boddy L (2018) Fungus wars: basidiomycete battles in wood decay. Studies in Mycology 89:117-124.
dc.relation.referencesHoff KJ & Stanke M (2013) WebAUGUSTUS—a web service for training AUGUSTUS and predicting genes in eukaryotes. Nucleic Acids Research 41(W1):W123-W128.
dc.relation.referencesHofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology 30(4):454-466.
dc.relation.referencesHofrichter M, Ullrich R, Pecyna MJ, Liers C & Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Applied Microbiology and Biotechnology 87(3):871-897.
dc.relation.referencesHosseini SE & Wahid MA (2012) Necessity of biodiesel utilization as a source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews 16(8):5732-5740.
dc.relation.referencesHuerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C & Bork P (2017) Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper. Molecular Biology and Evolution 34(8):2115-2122.
dc.relation.referencesIsikgor FH & Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry 6(25):4497-4559.
dc.relation.referencesIzzo AD & Mazzola M (2009) Hybridization of an ITS-based macroarray with ITS community probes for characterization of complex communities of fungi and fungal-like protists. Mycological Research 113(6):802-812.
dc.relation.referencesJanusz G, Kucharzyk KH, Pawlik A, Staszczak M & Paszczynski AJ (2013) Fungal laccase, manganese peroxidase and lignin peroxidase: Gene expression and regulation. Enzyme and Microbial Technology 52(1):1-12.
dc.relation.referencesJanusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A & Paszczyński A (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiology Reviews 41(6):941-962.
dc.relation.referencesJärvinen J, Taskila S, Isomäki R & Ojamo H (2012) Screening of white-rot fungi manganese peroxidases: a comparison between the specific activities of the enzyme from different native producers. AMB Express 2(1):62.
dc.relation.referencesJegannathan KR & Nielsen PH (2013) Environmental assessment of enzyme use in industrial production – a literature review. Journal of Cleaner Production 42:228-240.
dc.relation.referencesJensen CU, Rodriguez Guerrero JK, Karatzos S, Olofsson G & Iversen SB (2017) Fundamentals of Hydrofaction™: Renewable crude oil from woody biomass. Biomass Conversion and Biorefinery 7(4):495-509.
dc.relation.referencesJohannes C & Majcherczyk A (2000) Laccase activity tests and laccase inhibitors. Journal of Biotechnology 78(2):193-199.
dc.relation.referencesJones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong S-Y, Lopez R & Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236-1240.
dc.relation.referencesJönsson L, Sjöström K, Häggström I & Nyman PO (1995) Characterization of a laccase gene from the white-rot fungus Trametes versicolor and structural features of basidiomycete laccases. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1251(2):210-215.
dc.relation.referencesJönsson LJ & Martín C (2016) Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology 199:103-112.
dc.relation.referencesJuturu V & Wu JC (2014) Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews 33:188-203.
dc.relation.referencesKajita S, Sugawara S, Miyazaki Y, Nakamura M, Katayama Y, Shishido K & Iimura Y (2004) Overproduction of recombinant laccase using a homologous expression system in Coriolus versicolor. Applied Microbiology and Biotechnology 66(2):194-199.
dc.relation.referencesKamcharoen A, Champreda V, Eurwilaichitr L & Boonsawang P (2014) Screening and optimization of parameters affecting fungal pretreatment of oil palm empty fruit bunch (EFB) by experimental design. International Journal of Energy and Environmental Engineering 5(4):303-312.
dc.relation.referencesKarahanian E, Corsini G, Lobos S & Vicuña R (1998) Structure and expression of a laccase gene from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1443(1):65-74.
dc.relation.referencesKarp SG, Faraco V, Amore A, Birolo L, Giangrande C, Soccol VT, Pandey A & Soccol CR (2012) Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse. Bioresource Technology 114:735-739.
dc.relation.referencesKhindaria A, Yamazaki I & Aust SD (1995) Veratryl alcohol oxidation by lignin peroxidase. Biochemistry 34(51):16860-16869.
dc.relation.referencesKhoo HH (2015) Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land footprint projections. Renewable and Sustainable Energy Reviews 46:100-119.
dc.relation.referencesKim NK, Park JY, Park MS, Lee H, Cho HJ, Eimes JA, Kim C & Lim YW (2016) Five New Wood Decay Fungi (Polyporales and Hymenochaetales) in Korea. Mycobiology 44(3):146-154.
dc.relation.referencesKnop D, Levinson D, Makovitzki A, Agami A, Lerer E, Mimran A, Yarden O & Hadar Y (2016) Limits of Versatility of Versatile Peroxidase. Applied and Environmental Microbiology 82(14):4070-4080.
dc.relation.referencesKoizumi T (2015) Biofuels and food security. Renewable and Sustainable Energy Reviews 52:829-841. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH & Phillippy AM (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research 27(5):722-736.
dc.relation.referencesKrah F-S, Bässler C, Heibl C, Soghigian J, Schaefer H & Hibbett DS (2018) Evolutionary dynamics of host specialization in wood-decay fungi. BMC Evolutionary Biology 18(1):119.
dc.relation.referencesKudahettige Nilsson RL, Holmgren M, Madavi B, Nilsson RT & Sellstedt A (2016) Adaptability of Trametes versicolor to the lignocellulosic inhibitors furfural, HMF, phenol and levulinic acid during ethanol fermentation. Biomass and Bioenergy 90:95-100.
dc.relation.referencesKuhad RC, Deswal D, Sharma S, Bhattacharya A, Jain KK, Kaur A, Pletschke BI, Singh A & Karp M (2016) Revisiting cellulase production and redefining current strategies based on major challenges. Renewable and Sustainable Energy Reviews 55:249-272.
dc.relation.referencesKumar P, Barrett DM, Delwiche MJ & Stroeve P (2009) Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research 48(8):3713-3729.
dc.relation.referencesKumar R, Tabatabaei M, Karimi K & Sárvári Horváth I (2016) Recent updates on lignocellulosic biomass derived ethanol - A review. Biofuel Research Journal 3(1):347-356.
dc.relation.referencesKumar S, Gujjala LKS & Banerjee R (2017) Simultaneous pretreatment and saccharification of bamboo for biobutanol production. Industrial Crops and Products 101:21-28.
dc.relation.referencesKumar SVS, Phale PS, Durani S & Wangikar PP (2003) Combined sequence and structure analysis of the fungal laccase family. Biotechnology and Bioengineering 83(4):386-394.
dc.relation.referencesKurakake M, Hirotsu S, Shibata M, Kubota A & Makino A (2015) Lignin antioxidants extracted from lignocellulosic biomasses by treatment with ammonia water. Industrial Crops and Products 77:1028-1032.
dc.relation.referencesLi H, Wu S, Ma X, Chen W, Zhang J, Duan S, Gao Y, Kui L, Huang W, Wu P, Shi R, Li Y, Wang Y, Li J, Guo X, Luo X, Li Q, Xiong C, Liu H, Gui M, Sheng J & Dong Y (2018) The Genome Sequences of 90 Mushrooms. Scientific Reports 8(1):9982.
dc.relation.referencesLi P, Cai D, Luo Z, Qin P, Chen C, Wang Y, Zhang C, Wang Z & Tan T (2016) Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production. Bioresource Technology 206:86-92.
dc.relation.referencesLi P, Wang H, Liu G, Li X & Yao J (2011) The effect of carbon source succession on laccase activity in the co-culture process of Ganoderma lucidum and a yeast. Enzyme and Microbial Technology 48(1):1-6.
dc.relation.referencesLiang H, Li L, Dong Z, Surette MG & Duan K (2008) The YebC Family Protein PA0964 Negatively Regulates the <em>Pseudomonas aeruginosa</em> Quinolone Signal System and Pyocyanin Production. Journal of Bacteriology 190(18):6217-6227.
dc.relation.referencesLiang S & Wan C (2017) Biorefinery Lignin to Renewable Chemicals via Sequential Fractionation and Depolymerization. Waste and Biomass Valorization 8(2):393-400.
dc.relation.referencesLiaw S-S, Zhou S, Wu H & Garcia-Perez M (2013) Effect of pretreatment temperature on the yield and properties of bio-oils obtained from the auger pyrolysis of Douglas fir wood. Fuel 103:672-682.
dc.relation.referencesLiew WL, Kassim MA, Muda K, Loh SK & Affam AC (2015) Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: A review. Journal of Environmental Management 149:222-235.
dc.relation.referencesLim S-H, Lee Y-H & Kang H-W (2013) Efficient Recovery of Lignocellulolytic Enzymes of Spent Mushroom Compost from Oyster Mushrooms, Pleurotus spp., and Potential Use in Dye Decolorization. Mycobiology 41(4):214-220.
dc.relation.referencesLim S & Teong LK (2010) Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview. Renewable and Sustainable Energy Reviews 14(3):938-954.
dc.relation.referencesLiu G, Zhang J & Bao J (2016) Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling. Bioprocess and Biosystems Engineering 39(1):133-140.
dc.relation.referencesLodge DJ, Ammirati JF, O'Dell TE, Mueller GM, Huhndorf SM, Wang C-J, Stokland JN, Schmit JP, Ryvarden L, Leacock PR, Mata M, UmaÑA L, Wu Q & Czederpiltz DL (2004) 8 - TERRESTRIAL AND LIGNICOLOUS MACROFUNGI. Biodiversity of Fungi, Mueller GM, Bills GF & Foster MS (Édit.) Academic Press, Burlingtonhttps://doi.org/10.1016/B978-012509551-8/50011-8. p 127-172.
dc.relation.referencesLosordo Z, McBride J, Rooyen JV, Wenger K, Willies D, Froehlich A, Macedo I & Lynd L (2016) Cost competitive second-generation ethanol production from hemicellulose in a Brazilian sugarcane biorefinery. Biofuels, Bioproducts and Biorefining 10(5):589-602.
dc.relation.referencesLyashenko AV, Zhukhlistova NE, Gabdoulkhakov AG, Zhukova YN, Voelter W, Zaitsev VN, Bento I, Stepanova EV, Kachalova GS, Koroleva OgV, Cherkashyn EA, Tishkov VI, Lamzin VS, Schirwitz K, Morgunova EY, Betzel C, Lindley PF & Mikhailov AbM (2006) Purification, crystallization and preliminary X-ray study of the fungal laccase from Cerrena maxima. Acta Crystallographica Section F 62(10):954-957.
dc.relation.referencesLynd LR, Liang X, Biddy MJ, Allee A, Cai H, Foust T, Himmel ME, Laser MS, Wang M & Wyman CE (2017) Cellulosic ethanol: status and innovation. Current Opinion in Biotechnology 45:202-211.
dc.relation.referencesMachado KMG, Matheus DR & Bononi VLR (2005) Ligninolytic enzymes production and Remazol brilliant blue R decolorization by tropical brazilian basidiomycetes fungi. Brazilian Journal of Microbiology 36:246-252.
dc.relation.referencesMadhavan A, Sindhu R, Parameswaran B, Sukumaran RK & Pandey A (2017) Metagenome Analysis: a Powerful Tool for Enzyme Bioprospecting. Applied Biochemistry and Biotechnology 183(2):636-651.
dc.relation.referencesMäkelä MR, Donofrio N & de Vries RP (2014) Plant biomass degradation by fungi. Fungal Genetics and Biology 72:2-9.
dc.relation.referencesMali T, Kuuskeri J, Shah F & Lundell TK (2017) Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes. PLOS ONE 12(9):e0185171.
dc.relation.referencesManavalan T, Manavalan A & Heese K (2015) Characterization of Lignocellulolytic Enzymes from White-Rot Fungi. Current Microbiology 70(4):485-498.
dc.relation.referencesMargot J, Bennati-Granier C, Maillard J, Blánquez P, Barry DA & Holliger C (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express 3(1):63.
dc.relation.referencesMartín-Sampedro R, Rodríguez A, Ferrer A, García-Fuentevilla LL & Eugenio ME (2012) Biobleaching of pulp from oil palm empty fruit bunches with laccase and xylanase. Bioresource Technology 110:371-378.
dc.relation.referencesMartin F, Aerts A, Ahrén D, Brun A, Danchin EGJ, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buée M, Brokstein P, Canbäck B, Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbé J, Lin YC, Legué V, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Secq MPO-L, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kües U, Lucas S, Van de Peer Y, Podila GK, Polle A, Pukkila PJ, Richardson PM, Rouzé P, Sanders IR, Stajich JE, Tunlid A, Tuskan G & Grigoriev IV (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88.
dc.relation.referencesMartínez-Morales F, Bertrand B, Pasión Nava AA, Tinoco R, Acosta-Urdapilleta L & Trejo-Hernández MR (2015) Production, purification and biochemical characterization of two laccase isoforms produced by Trametes versicolor grown on oak sawdust. Biotechnology Letters 37(2):391-396.
dc.relation.referencesMartı́nez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme and Microbial Technology 30(4):425-444.
dc.relation.referencesMartínez AT, Ruiz-Dueñas FJ, Camarero S, Serrano A, Linde D, Lund H, Vind J, Tovborg M, Herold-Majumdar OM, Hofrichter M, Liers C, Ullrich R, Scheibner K, Sannia G, Piscitelli A, Pezzella C, Sener ME, Kılıç S, van Berkel WJH, Guallar V, Lucas MF, Zuhse R, Ludwig R, Hollmann F, Fernández-Fueyo E, Record E, Faulds CB, Tortajada M, Winckelmann I, Rasmussen J-A, Gelo-Pujic M, Gutiérrez A, del Río JC, Rencoret J & Alcalde M (2017) Oxidoreductases on their way to industrial biotransformations. Biotechnology Advances 35(6):815-831.
dc.relation.referencesMartínez ÁT, Ruiz-Dueñas FJ, Martínez MJ, del Río JC & Gutiérrez A (2009) Enzymatic delignification of plant cell wall: from nature to mill. Current Opinion in Biotechnology 20(3):348-357.
dc.relation.referencesMate DM & Alcalde M (2015) Laccase engineering: From rational design to directed evolution. Biotechnology Advances 33(1):25-40.
dc.relation.referencesMate DM & Alcalde M (2017) Laccase: a multi‐purpose biocatalyst at the forefront of biotechnology. Microbial Biotechnology 10(6):1457-1467.
dc.relation.referencesMatera I, Gullotto A, Tilli S, Ferraroni M, Scozzafava A & Briganti F (2008) Crystal structure of the blue multicopper oxidase from the white-rot fungus Trametes trogii complexed with p-toluate. Inorganica Chimica Acta 361(14):4129-4137.
dc.relation.referencesMester T & Tien M (2000) Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. International Biodeterioration & Biodegradation 46(1):51-59.
dc.relation.referencesMiller GL (1959) Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry 31(3):426-428.
dc.relation.referencesMizuno R, Ichinose H, Honda M, Takabatake K, Sotome I, Takai T, Maehara T, Okadome H, Isobe S, Gau M & Kaneko S (2009a) Use of Whole Crop Sorghums as a Raw Material in Consolidated Bioprocessing Bioethanol Production Using Flammulina velutipes. Bioscience, Biotechnology, and Biochemistry 73(7):1671-1673.
dc.relation.referencesMizuno R, Ichinose H, Maehara T, Takabatake K & Kaneko S (2009b) Properties of Ethanol Fermentation by Flammulina velutipes. Bioscience, Biotechnology, and Biochemistry 73(10):2240-2245.
dc.relation.referencesMoiseenko KV, Maloshenok LG, Vasina DV, Bruskin SA, Tyazhelova TV & Koroleva OV (2016) Laccase multigene families in Agaricomycetes. Journal of Basic Microbiology 56(12):1392-1397.
dc.relation.referencesMoiseenko KV, Vasina DV, Farukshina KT, Savinova OS, Glazunova OA, Fedorova TV & Tyazhelova TV (2018) Orchestration of the expression of the laccase multigene family in white-rot basidiomycete Trametes hirsuta 072: Evidences of transcription level subfunctionalization. Fungal Biology 122(5):353-362.
dc.relation.referencesMontella S, Ventorino V, Lombard V, Henrissat B, Pepe O & Faraco V (2017) Discovery of genes coding for carbohydrate-active enzyme by metagenomic analysis of lignocellulosic biomasses. Scientific Reports 7:42623.
dc.relation.referencesMoreno AD, Ibarra D, Fernández JL & Ballesteros M (2012) Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresource Technology 106:101-109.
dc.relation.referencesMoreno LF, Feng P, Weiss VA, Vicente VA, Stielow JB & de Hoog S (2017) Phylogenomic analyses reveal the diversity of laccase-coding genes in Fonsecaea genomes. PLoS ONE 12(2):e0171291.
dc.relation.referencesMukhopadhyay M, Kuila A, Tuli DK & Banerjee R (2011) Enzymatic depolymerization of Ricinus communis, a potential lignocellulosic for improved saccharification. Biomass and Bioenergy 35(8):3584-3591.
dc.relation.referencesMunk L, Sitarz AK, Kalyani DC, Mikkelsen JD & Meyer AS (2015) Can laccases catalyze bond cleavage in lignin? Biotechnology Advances 33(1):13-24.
dc.relation.referencesNagy LG, Riley R, Bergmann PJ, Krizsán K, Martin FM, Grigoriev IV, Cullen D & Hibbett DS (2017) Genetic Bases of Fungal White Rot Wood Decay Predicted by Phylogenomic Analysis of Correlated Gene-Phenotype Evolution. Molecular Biology and Evolution 34(1):35-44.
dc.relation.referencesNagy LG, Riley R, Tritt A, Adam C, Daum C, Floudas D, Sun H, Yadav JS, Pangilinan J, Larsson K-H, Matsuura K, Barry K, Labutti K, Kuo R, Ohm RA, Bhattacharya SS, Shirouzu T, Yoshinaga Y, Martin FM, Grigoriev IV & Hibbett DS (2016) Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities. Molecular Biology and Evolution 33(4):959-970.
dc.relation.referencesNakade K, Nakagawa Y, Yano A, Konno N, Sato T & Sakamoto Y (2013) Effective induction of pblac1 laccase by copper ion in Polyporus brumalis ibrc05015. Fungal Biology 117(1):52-61.
dc.relation.referencesNakasoke KKP, Stephen W.; Jong, Shung-Chang (2004) Preservation and distribution of fungal cultures. Biodiversity of fungi : inventory and monitoring methods. Elsevier Academic Press., Amsterdam
dc.relation.referencesObama B (2017) The irreversible momentum of clean energy. Science 355(6321):126-129.
dc.relation.referencesOhm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, de Vries RP, Record E, Levasseur A, Baker SE, Bartholomew KA, Coutinho PM, Erdmann S, Fowler TJ, Gathman AC, Lombard V, Henrissat B, Knabe N, Kües U, Lilly WW, Lindquist E, Lucas S, Magnuson JK, Piumi F, Raudaskoski M, Salamov A, Schmutz J, Schwarze FWMR, vanKuyk PA, Horton JS, Grigoriev IV & Wösten HAB (2010) Genome sequence of the model mushroom Schizophyllum commune. Nature Biotechnology 28:957.
dc.relation.referencesOhm RA, Riley R, Salamov A, Min B, Choi I-G & Grigoriev IV (2014) Genomics of wood-degrading fungi. Fungal Genetics and Biology 72:82-90.
dc.relation.referencesOliva-Taravilla A, Tomás-Pejó E, Demuez M, González-Fernández C & Ballesteros M (2016) Phenols and lignin: Key players in reducing enzymatic hydrolysis yields of steam-pretreated biomass in presence of laccase. Journal of Biotechnology 218:94-101.
dc.relation.referencesOrts WJ & McMahan CM (2016) Biorefinery Developments for Advanced Biofuels from a Sustainable Array of Biomass Feedstocks: Survey of Recent Biomass Conversion Research from Agricultural Research Service. BioEnergy Research 9(2):430-446.
dc.relation.referencesOsipov E, Polyakov K, Kittl R, Shleev S, Dorovatovsky P, Tikhonova T, Hann S, Ludwig R & Popov V (2014) Effect of the L499M mutation of the ascomycetous Botrytis aclada laccase on redox potential and catalytic properties. Acta Crystallographica Section D: Biological Crystallography 70(Pt 11):2913-2923.
dc.relation.referencesOtero IVR, Ferro M, Bacci M, Ferreira H & Sette LD (2017) De novo transcriptome assembly: a new laccase multigene family from the marine-derived basidiomycete Peniophora sp. CBMAI 1063. AMB Express 7(1):222.
dc.relation.referencesPandey RK, Tewari S & Tewari L (2018) Lignolytic mushroom Lenzites elegans WDP2: Laccase production, characterization, and bioremediation of synthetic dyes. Ecotoxicology and Environmental Safety 158:50-58.
dc.relation.referencesPark Y-J, Baek JH, Lee S, Kim C, Rhee H, Kim H, Seo J-S, Park H-R, Yoon D-E, Nam J-Y, Kim H-I, Kim J-G, Yoon H, Kang H-W, Cho J-Y, Song E-S, Sung G-H, Yoo Y-B, Lee C-S, Lee B-M & Kong W-S (2014) Whole Genome and Global Gene Expression Analyses of the Model Mushroom Flammulina velutipes Reveal a High Capacity for Lignocellulose Degradation. PLOS ONE 9(4):e93560.
dc.relation.referencesPavlov AR, Tyazhelova TV, Moiseenko KV, Vasina DV, Mosunova OV, Fedorova TV, Maloshenok LG, Landesman EO, Bruskin SA, Psurtseva NV, Slesarev AI, Kozyavkin SA & Koroleva OV (2015) Draft Genome Sequence of the Fungus <em>Trametes hirsuta</em> 072. Genome Announcements 3(6).
dc.relation.referencesPegasova TV, Zwart P, Koroleva OV, Stepanova EV, Rebrikov DV & Lamzin VS (2003) Crystallization and preliminary X-ray analysis of a four-copper laccase from Coriolus hirsutus. Acta Crystallographica Section D 59(8):1459-1461.
dc.relation.referencesPeláez F, Martínez MJ & Martínez AT (1995) Screening of 68 species of basidiomycetes for enzymes involved in lignin degradation. Mycological Research 99(1):37-42.
dc.relation.referencesPellis A, Cantone S, Ebert C & Gardossi L (2018) Evolving biocatalysis to meet bioeconomy challenges and opportunities. New Biotechnology 40:154-169.
dc.relation.referencesPeng P & She D (2014) Isolation, structural characterization, and potential applications of hemicelluloses from bamboo: A review. Carbohydrate Polymers 112:701-720.
dc.relation.referencesPenttilä M, Pakula T & Aro N (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews 29(4):719-739.
dc.relation.referencesPielhop T, Amgarten J, von Rohr PR & Studer MH (2016) Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility. Biotechnology for Biofuels 9(1):152.
dc.relation.referencesPiñeros-Castro Y & Velásquez-Lozano M (2014) Biodegradation kinetics of oil palm empty fruit bunches by white rot fungi. International Biodeterioration & Biodegradation 91:24-28.
dc.relation.referencesPiontek K, Antorini M & Choinowski T (2002) Crystal Structure of a Laccase from the FungusTrametes versicolor at 1.90-Å Resolution Containing a Full Complement of Coppers. Journal of Biological Chemistry 277(40):37663-37669.
dc.relation.referencesPlácido J & Capareda S (2015) Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresources and Bioprocessing 2(1):23.
dc.relation.referencesPłaza G. A. UR, Brigmon R. L., Whitman W. B. and , Ulfig K. (2004) Rapid DNA Extraction for Screening Soil Filamentous Fungi Using PCR Amplification. Polish Journal of Environmental Studies 13(3):315 - 318.
dc.relation.referencesPolyakov KM, Fedorova TV, Stepanova EV, Cherkashin EA, Kurzeev SA, Strokopytov BV, Lamzin VS & Koroleva OV (2009) Structure of native laccase from Trametes hirsuta at 1.8 A resolution. Acta Crystallographica Section D 65(6):611-617.
dc.relation.referencesPolyakov KM, Gavryushov S, Ivanova S, Fedorova TV, Glazunova OA, Popov AN & Koroleva OV (2017) Structural study of the X-ray-induced enzymatic reduction of molecular oxygen to water by Steccherinum murashkinskyi laccase: insights into the reaction mechanism. Acta Crystallographica Section D 73(5):388-401.
dc.relation.referencesPorter JL, Rusli RA & Ollis DL (2016) Directed Evolution of Enzymes for Industrial Biocatalysis. ChemBioChem 17(3):197-203.
dc.relation.referencesPresley GN & Schilling JS (2017) Distinct Growth and Secretome Strategies for Two Taxonomically Divergent Brown Rot Fungi. Applied and Environmental Microbiology 83(7).
dc.relation.referencesPryszcz LP & Gabaldón T (2016) Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Research 44(12):e113-e113.
dc.relation.referencesQi Y, Liu C, Sun X, Qiu L & Shen J (2017) The identification of transcriptional regulation related gene of laccase poxc through yeast one-hybrid screening from Pleurotus ostreatus. Fungal Biology 121(11):905-910.
dc.relation.referencesRagauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA & Wyman CE (2014) Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science 344(6185).
dc.relation.referencesRamos JL, Valdivia M, García‐Lorente F & Segura A (2016) Benefits and perspectives on the use of biofuels. Microbial Biotechnology 9(4):436-440.
dc.relation.referencesRiley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, Levasseur A, Lombard V, Morin E, Otillar R, Lindquist EA, Sun H, LaButti KM, Schmutz J, Jabbour D, Luo H, Baker SE, Pisabarro AG, Walton JD, Blanchette RA, Henrissat B, Martin F, Cullen D, Hibbett DS & Grigoriev IV (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proceedings of the National Academy of Sciences 111(27):9923-9928.
dc.relation.referencesRobert V, Mekmouche Y, Pailley PR & Tron T (2011) Engineering Laccases: In Search for Novel Catalysts. Current Genomics 12(2):123-129.
dc.relation.referencesRodríguez-Couto S (2018) Chapter 11 - Solid-State Fermentation for Laccases Production and Their Applications. Current Developments in Biotechnology and Bioengineering, Pandey A, Larroche C & Soccol CR (Édit.) Elsevier, https://doi.org/10.1016/B978-0-444-63990-5.00011-6. p 211-234.
dc.relation.referencesRodríguez Couto S & Sanromán MA (2005) Application of solid-state fermentation to ligninolytic enzyme production. Biochemical Engineering Journal 22(3):211-219.
dc.relation.referencesRytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP & Mäkelä MR (2014) Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes. Microbiology and Molecular Biology Reviews 78(4):614-649.
dc.relation.referencesSaini JK, Saini R & Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5(4):337-353.
dc.relation.referencesSánchez C (2009) Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances 27(2):185-194.
dc.relation.referencesSànchez Nogué V & Karhumaa K (2015) Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnology Letters 37(4):761-772.
dc.relation.referencesSaritha M, Arora A & Nain L (2012) Pretreatment of paddy straw with Trametes hirsuta for improved enzymatic saccharification. Bioresource Technology 104:459-465.
dc.relation.referencesSarkar N, Ghosh SK, Bannerjee S & Aikat K (2012) Bioethanol production from agricultural wastes: An overview. Renewable Energy 37(1):19-27.
dc.relation.referencesSavinova OS, Moiseenko KV, Vavilova EA, Chulkin AM, Fedorova TV, Tyazhelova TV & Vasina DV (2019) Evolutionary Relationships Between the Laccase Genes of Polyporales: Orthology-Based Classification of Laccase Isozymes and Functional Insight From Trametes hirsuta. Frontiers in Microbiology 10(152).
dc.relation.referencesScheller HV & Ulvskov P (2010) Hemicelluloses. Annual Review of Plant Biology 61(1):263-289.
dc.relation.referencesSchubert M, Fink S & Schwarze FWMR (2008) Evaluation of Trichoderma spp. as a biocontrol agent against wood decay fungi in urban trees. Biological Control 45(1):111-123.
dc.relation.referencesSchwarze FWMR (2007) Wood decay under the microscope. Fungal Biology Reviews 21(4):133-170.
dc.relation.referencesShafie SM, Mahlia TMI, Masjuki HH & Ahmad-Yazid A (2012) A review on electricity generation based on biomass residue in Malaysia. Renewable and Sustainable Energy Reviews 16(8):5879-5889.
dc.relation.referencesSharma B, Dangi AK & Shukla P (2018) Contemporary enzyme based technologies for bioremediation: A review. Journal of Environmental Management 210:10-22.
dc.relation.referencesShary S, Kapich AN, Panisko EA, Magnuson JK, Cullen D & Hammel KE (2008) Differential Expression in <em>Phanerochaete chrysosporium</em> of Membrane-Associated Proteins Relevant to Lignin Degradation. Applied and Environmental Microbiology 74(23):7252-7257.
dc.relation.referencesSheldon RA (2017) The E factor 25 years on: the rise of green chemistry and sustainability. Green Chemistry 19(1):18-43.
dc.relation.referencesShinoj S, Visvanathan R, Panigrahi S & Kochubabu M (2011) Oil palm fiber (OPF) and its composites: A review. Industrial Crops and Products 33(1):7-22.
dc.relation.referencesShuit SH, Tan KT, Lee KT & Kamaruddin AH (2009) Oil palm biomass as a sustainable energy source: A Malaysian case study. Energy 34(9):1225-1235.
dc.relation.referencesSindhu R, Binod P & Pandey A (2016) Biological pretreatment of lignocellulosic biomass – An overview. Bioresource Technology 199:76-82.
dc.relation.referencesSingh P, Sulaiman O, Hashim R, Peng LC & Singh RP (2013) Evaluating biopulping as an alternative application on oil palm trunk using the white-rot fungus Trametes versicolor. International Biodeterioration & Biodegradation 82:96-103.
dc.relation.referencesSirim D, Wagner F, Wang L, Schmid RD & Pleiss J (2011) The Laccase Engineering Database: a classification and analysis system for laccases and related multicopper oxidases. Database: The Journal of Biological Databases and Curation 2011:bar006.
dc.relation.referencesSiripong P, Duangporn P, Takata E & Tsutsumi Y (2016) Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis. Bioresource Technology 203:303-308.
dc.relation.referencesSmith GR, Finlay RD, Stenlid J, Vasaitis R & Menkis A (2017) Growing evidence for facultative biotrophy in saprotrophic fungi: data from microcosm tests with 201 species of wood-decay basidiomycetes. New Phytologist 215(2):747-755.
dc.relation.referencesStajich JE, Wilke SK, Ahrén D, Au CH, Birren BW, Borodovsky M, Burns C, Canbäck B, Casselton LA, Cheng CK, Deng J, Dietrich FS, Fargo DC, Farman ML, Gathman AC, Goldberg J, Guigó R, Hoegger PJ, Hooker JB, Huggins A, James TY, Kamada T, Kilaru S, Kodira C, Kües U, Kupfer D, Kwan HS, Lomsadze A, Li W, Lilly WW, Ma L-J, Mackey AJ, Manning G, Martin F, Muraguchi H, Natvig DO, Palmerini H, Ramesh MA, Rehmeyer CJ, Roe BA, Shenoy N, Stanke M, Ter-Hovhannisyan V, Tunlid A, Velagapudi R, Vision TJ, Zeng Q, Zolan ME & Pukkila PJ (2010) Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom <em>Coprinopsis cinerea</em> (<em>Coprinus cinereus</em>). Proceedings of the National Academy of Sciences 107(26):11889-11894.
dc.relation.referencesStalpers JA (1978) Identification of wood-inhabiting fungi in pure culture. 248 pp. p
dc.relation.referencesSuhara H, Kodama S, Kamei I, Maekawa N & Meguro S (2012) Screening of selective lignin-degrading basidiomycetes and biological pretreatment for enzymatic hydrolysis of bamboo culms. International Biodeterioration & Biodegradation 75:176-180.
dc.relation.referencesSulaiman F, Abdullah N, Gerhauser H & Shariff A (2011) An outlook of Malaysian energy, oil palm industry and its utilization of wastes as useful resources. Biomass and Bioenergy 35(9):3775-3786.
dc.relation.referencesSun S, Sun S, Cao X & Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology 199:49-58.
dc.relation.referencesSun Z, Fridrich B, de Santi A, Elangovan S & Barta K (2018) Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chemical Reviews 10.1021/acs.chemrev.7b00588.
dc.relation.referencesSundaramoorthy M, Kishi K, Gold MH & Poulos TL (1994) The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. Journal of Biological Chemistry 269(52):32759-32767.
dc.relation.referencesSuzuki H, MacDonald J, Syed K, Salamov A, Hori C, Aerts A, Henrissat B, Wiebenga A, vanKuyk PA, Barry K, Lindquist E, LaButti K, Lapidus A, Lucas S, Coutinho P, Gong Y, Samejima M, Mahadevan R, Abou-Zaid M, de Vries RP, Igarashi K, Yadav JS, Grigoriev IV & Master ER (2012) Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize. BMC Genomics 13(1):444.
dc.relation.referencesTalebnia F, Karakashev D & Angelidaki I (2010) Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology 101(13):4744-4753.
dc.relation.referencesTang JD, Perkins AD, Sonstegard TS, Schroeder SG, Burgess SC & Diehl SV (2012) Short-Read Sequencing for Genomic Analysis of the Brown Rot Fungus Fibroporia radiculosa. Applied and Environmental Microbiology 78(7):2272-2281.
dc.relation.referencesTaylor AB, Stoj CS, Ziegler L, Kosman DJ & Hart PJ (2005) The copper-iron connection in biology: Structure of the metallo-oxidase Fet3p. Proceedings of the National Academy of Sciences of the United States of America 102(43):15459-15464.
dc.relation.referencesThiede B, Höhenwarter W, Krah A, Mattow J, Schmid M, Schmidt F & Jungblut PR (2005) Peptide mass fingerprinting. Methods 35(3):237-247.
dc.relation.referencesTiwari R, Rana S, Singh S, Arora A, Kaushik R, Agrawal VV, Saxena AK & Nain L (2013) Biological delignification of paddy straw and Parthenium sp. using a novel micromycete Myrothecium roridum LG7 for enhanced saccharification. Bioresource Technology 135:7-11.
dc.relation.referencesToquero C & Bolado S (2014) Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresource Technology 157:68-76.
dc.relation.referencesTuomela M, Vikman M, Hatakka A & Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresource Technology 72(2):169-183.
dc.relation.referencesUday USP, Choudhury P, Bandyopadhyay TK & Bhunia B (2016) Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. International Journal of Biological Macromolecules 82:1041-1054.
dc.relation.referencesUlaganathan K, Goud S, Reddy M & Kayalvili U (2017) Genome engineering for breaking barriers in lignocellulosic bioethanol production. Renewable and Sustainable Energy Reviews 74:1080-1107.
dc.relation.referencesUllah K, Kumar Sharma V, Dhingra S, Braccio G, Ahmad M & Sofia S (2015) Assessing the lignocellulosic biomass resources potential in developing countries: A critical review. Renewable and Sustainable Energy Reviews 51:682-698.
dc.relation.referencesUnderkofler LA, Barton RR & Rennert SS (1958) Production of Microbial Enzymes and Their Applications. Applied Microbiology 6(3):212-221.
dc.relation.referencesUpadhyay P, Shrivastava R & Agrawal PK (2016) Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech 6(1):15.
dc.relation.referencesvan Dijk EL, Auger H, Jaszczyszyn Y & Thermes C (2014) Ten years of next-generation sequencing technology. Trends in Genetics 30(9):418-426.
dc.relation.referencesVasina DV, Mustafaev ON, Moiseenko KV, Sadovskaya NS, Glazunova OA, Tyurin АА, Fedorova TV, Pavlov AR, Tyazhelova TV, Goldenkova-Pavlova IV & Koroleva OV (2015) The Trametes hirsuta 072 laccase multigene family: Genes identification and transcriptional analysis under copper ions induction. Biochimie 116:154-164.
dc.relation.referencesVats A & Mishra S (2018) Identification and evaluation of bioremediation potential of laccase isoforms produced by Cyathus bulleri on wheat bran. Journal of Hazardous Materials 344:466-479.
dc.relation.referencesVelmurugan R & Muthukumar K (2012) Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: Optimization through response surface methodology. Bioresource Technology 112:293-299.
dc.relation.referencesViikari L, Vehmaanperä J & Koivula A (2012) Lignocellulosic ethanol: From science to industry. Biomass and Bioenergy 46:13-24.
dc.relation.referencesVikineswary S, Abdullah N, Renuvathani M, Sekaran M, Pandey A & Jones EBG (2006) Productivity of laccase in solid substrate fermentation of selected agro-residues by Pycnoporus sanguineus. Bioresource Technology 97(1):171-177.
dc.relation.referencesVincent AT, Derome N, Boyle B, Culley AI & Charette SJ (2017) Next-generation sequencing (NGS) in the microbiological world: How to make the most of your money. Journal of Microbiological Methods 138:60-71.
dc.relation.referencesWaterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TA P, Rempfer C, Bordoli L, Lepore R & Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research 46(W1):W296-W303.
dc.relation.referencesWawrzyn Grayson T, Quin Maureen B, Choudhary S, López-Gallego F & Schmidt-Dannert C (2012) Draft Genome of Omphalotus olearius Provides a Predictive Framework for Sesquiterpenoid Natural Product Biosynthesis in Basidiomycota. Chemistry & Biology 19(6):772-783.
dc.relation.referencesWesenberg D, Kyriakides I & Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances 22(1):161-187.
dc.relation.referencesWong DWS (2009) Structure and Action Mechanism of Ligninolytic Enzymes. Applied Biochemistry and Biotechnology 157(2):174-209.
dc.relation.referencesWorrall JJ, Anagnost SE & Zabel RA (1997) Comparison of Wood Decay among Diverse Lignicolous Fungi. Mycologia 89(2):199-219.
dc.relation.referencesYan J, Chen D, Yang E, Niu J, Chen Y & Chagan I (2014) Purification and characterization of a thermotolerant laccase isoform in Trametes trogii strain and its potential in dye decolorization. International Biodeterioration & Biodegradation 93:186-194.
dc.relation.referencesYan J, Chen Y, Niu J, Chen D & Chagan I (2015) Laccase produced by a thermotolerant strain of Trametes trogii LK13. Brazilian Journal of Microbiology 46:59-65.
dc.relation.referencesYang J, Li W, Ng TB, Deng X, Lin J & Ye X (2017) Laccases: Production, Expression Regulation, and Applications in Pharmaceutical Biodegradation. Frontiers in Microbiology 8(832).
dc.relation.referencesYang J, Lin Q, Ng TB, Ye X & Lin J (2014) Purification and Characterization of a Novel Laccase from Cerrena sp. HYB07 with Dye Decolorizing Ability. PLOS ONE 9(10):e110834.
dc.relation.referencesYuan X, Tian G, Zhao Y, Zhao L, Wang H & Ng TB (2016) Biochemical Characteristics of Three Laccase Isoforms from the Basidiomycete Pleurotus nebrodensis. Molecules 21(2):203.
dc.relation.referencesZakzeski J, Bruijnincx PCA, Jongerius AL & Weckhuysen BM (2010) The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chemical Reviews 110(6):3552-3599.
dc.relation.referencesZhang J, Chen H, Chen M, Ren A, Huang J, Wang H, Zhao M & Feng Z (2015) Cloning and functional analysis of a laccase gene during fruiting body formation in Hypsizygus marmoreus. Microbiological Research 179:54-63.
dc.relation.referencesZhang J, Presley GN, Hammel KE, Ryu J-S, Menke JR, Figueroa M, Hu D, Orr G & Schilling JS (2016) Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus <em>Postia placenta</em>. Proceedings of the National Academy of Sciences 113(39):10968-10973.
dc.relation.referencesZhu M-Q, Wen J-L, Wang Z-W, Su Y-Q, Wei Q & Sun R-C (2015) Structural changes in lignin during integrated process of steam explosion followed by alkaline hydrogen peroxide of Eucommia ulmoides Oliver and its effect on enzymatic hydrolysis. Applied Energy 158:233-242.
dc.relation.referencesZhu Z, Rezende CA, Simister R, McQueen-Mason SJ, Macquarrie DJ, Polikarpov I & Gomez LD (2016) Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment. Biomass and Bioenergy 93:269-278.
dc.relation.referencesZhukhlistova NE, Zhukova YN, Lyashenko AV, Zaĭtsev VN & Mikhaĭlov AM (2008) Three-dimensional organization of three-domain copper oxidases: A review. Crystallography Reports 53(1):92-109.
dc.relation.referencesAlcalde M (2015) Engineering the ligninolytic enzyme consortium. Trends in Biotechnology 33(3):155-162.
dc.relation.referencesAlfaro M, Oguiza JA, Ramírez L & Pisabarro AG (2014) Comparative analysis of secretomes in basidiomycete fungi. Journal of Proteomics 102:28-43.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposallignocelulosa
dc.subject.proposallignocellulose
dc.subject.proposaldyctiopanus
dc.subject.proposaldyctiopanus
dc.subject.proposallacasa
dc.subject.proposallaccase
dc.subject.proposalpalma de aceite
dc.subject.proposalpalm oil
dc.subject.proposalpretratamiento
dc.subject.proposalpretreatment
dc.subject.proposalbiomasa
dc.subject.proposalbiomass
dc.subject.proposalbioprocesess
dc.subject.proposalbioprocesos
dc.subject.proposalhongos basidiomycetos
dc.subject.proposalbasidiomycete fungi
dc.subject.proposallignina
dc.subject.proposallignin
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito