Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorDussán Cuenca, Anderson
dc.contributor.authorVinchira Morato, Manuel Darío
dc.date.accessioned2020-08-14T20:43:47Z
dc.date.available2020-08-14T20:43:47Z
dc.date.issued2020-06-19
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78046
dc.description.abstractEn el presente trabajo se fabricaron muestras de silicio poroso (SP) sobre sustratos de c-Si tipo-p con orientación <100> y <111> y resistividad eléctrica de 1 − 5mΩ cm, a partir de la variación de los parámetros de síntesis como: la concentración del electrolito de [HF:DMF], la densidad de corriente y tiempo de anodización. Se obtuvieron los parámetros óptimos para tener muestras de SP reproducibles y uniformes. Se encontró una morfología final dependiente de los parámetros de anodización y las condiciones de pretratamiento. Se realizaron las mediciones características de la morfología de los poros formados por medio de la aplicación de software ImageJ, dando lugar a estructuras con dimensiones de mesoporos y macroporos. Adicionalmente, se estudió la distribución de poros y se determinó la densidad de poros formados como función de los parámetros de síntesis. Posteriormente, se construyó un algoritmo en C++ modelando el perfil de crecimiento de los poros por el método de simulación de autómatas celulares (AC) basado en los caminos de reacción propuestos por Memming y Schwant para formación de SP. Se contrastaron los resultados experimentales con el perfil resultante de simulación para determinar la validez del modelo.
dc.description.abstractIn the present work samples of porous silicon (SP) were manufactured on substrates of c-Si type-p with orientation <100> and <111> and electrical resistivity of 1 − 5mΩ-cm, from the variation of the synthesis parameters such as: [HF: DMF] electrolyte concentration, current density and anodizing time. The optimal parameters were obtained to have reproducible and uniform SP samples. A final morphology was found depending on the anodizing parameters and pretreatment conditions. The characteristic measurements of the morphology of the pores formed by means of the application of ImageJ software were carried out, giving rise to structures with mesopore and macropore dimensions. Additionally, the pore distribution was studied and the density of pores formed as a function of the synthesis parameters was determined. Subsequently, a C ++ algorithm was constructed by modeling the growth profile of the pores by the simulation method of cellular automata (CA) based on the reaction paths proposed by Memming and Schwant for SP formation. The experimental results were contrasted with the resulting simulation profile to determine the validity of the model.
dc.format.extent97
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc530 - Física
dc.subject.ddc540 - Química y ciencias afines
dc.subject.ddc005 - Programación, programas, datos de computación
dc.titleModelamiento de la formación de microcavidades en silicio poroso (SP): densidad y distribución de poros
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Física
dc.contributor.researchgroupMateriales Nanoestructurados y sus Aplicaciones
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Física
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesLehmann, V. The Physics of Macropore Formation in Low Doped n‐Type Silicon. Journal of the Electrochemical Society, 140(10), 2836-2843 (1993).
dc.relation.referencesCandal, R., Bilmes, S., Blesa, M. . Semiconductores con actividad fotocatalítica. en Eliminación de contaminantes por fotocatálisis heterogénea. M. Blesa, Ed. La Plata (Argentina): CYTED, 79-101 (2001).
dc.relation.referencesZhang, G. X. Porous silicon: morphology and formation mechanisms. In Modern aspects of electrochemistry (pp. 65-133). Springer US (2006).
dc.relation.referencesBisi, O., Ossicini, S., Pavesi, L. Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surface science reports, 38(1), 1-126 (2000).
dc.relation.referencesBarillaro, G., Bruschi, P., Pieri, F. Two-dimensional macroscopical simulations of porous silicon growth. Computational materials science, 24(1), 99-104 (2002).
dc.relation.referencesRico, F. F. Fabricación y Caracterización de dispositivos basados en Silicio Poroso sobre c-Si. Aplicaciones eléctricas, Ópticas y Térmicas(Doctoral dissertation, Universitat Rovira i Virgili) (2007).
dc.relation.referencesLehmann, V. Electrochemistry of silicon: instrumentation, science, materials and applications. Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications, by Volker Lehmann, pp. 286. ISBN 3-527-29321-3. Wiley-VCH, (2002).
dc.relation.referencesRauscher, M., Spohn, H. Porous silicon formation and electropolishing. Physical Review E, 64(3), 031604 (2001).
dc.relation.referencesLehmann, V., Stengl, R., Luigart, A. On the morphology and the electrochemical formation mechanism of mesoporous silicon. Materials Science and Engineering: B, 69, 11-22 (2000).
dc.relation.referencesRonkel, F., Schultze, J. W. Electrochemical aspects of porous silicon formation. Journal of Porous Materials, 7(1-3), 11-16 (2000).
dc.relation.referencesSailor, M. J. Porous silicon in practice: Preparation, Characterization and Applications. John Wiley & Sons (2012).
dc.relation.referencesLawrence, B., Alagumanikumaran, N., Prithivikumaran, N., Jeyakumaran, N., Ramadas, V., Natarajan, B. Effect of surface modification on the porous silicon infiltrated with biomolecules. Applied Surface Science, 264, 767-771 (2013).
dc.relation.referencesParkhutik, V. Porous silicon—mechanisms of growth and applications. Solid-State Electronics, 43(6), 1121-1141 (1999).
dc.relation.referencesBalagurov, L. A., Loginov, B. A., Petrova, E. A., Sapelkin, A., Unal, B., Yarkin, D. G. Formation of porous silicon at elevated temperatures.Electrochimica acta, 51(14), 2938-2941 (2006).
dc.relation.referencesKorotcenkov, G., Cho, B. K. Silicon porosification: State of the Art.Critical Reviews in Solid State and Materials Sciences, 35(3), 153-260 (2010).
dc.relation.referencesLiu, D. Q., Blackwood, D. J. Mechanism and dissolution rates of anodic oxide films on silicon. Electrochimica Acta, 105, 209-217 (2013).
dc.relation.referencesSharma, S. N., Sharma, R. K., Lakshmikumar, S. T. Role of an electrolyte and substrate on the stability of porous silicon. Physica E: Low-dimensional Systems and Nanostructures, 28(3), 264-272 (2005).
dc.relation.referencesPatel, B. K., Mythili, R., Vijayalaxmi, R., Soni, R. K., Behera, S. N., Sahu, S. N. . Porous Si formation and study of its structural and vibrational properties. Physica B: Condensed Matter, 322(1), 146-153 (2002).
dc.relation.referencesJakubowicz, J., Szlaferek, A. Computational simulations of pore nucleation in silicon (111). Electrochemistry Communications, 10(2), 329-334 (2008).
dc.relation.referencesGranitzer, P., Rumpf, K. Porous silicon—a versatile host material. Materials, 3(2), 943-998 (2010).
dc.relation.referencesManiya, N. H., Patel, S. R., Murthy, Z. V. P. Electrochemical preparation of microstructured porous silicon layers for drug delivery applications. Superlattices and Microstructures, 55, 144-150 (2013).
dc.relation.referencesChristophersen, M., Carstensen, J., Föll, H. Crystal Orientation Dependence of Macropore Formation in p-Type Silicon Using Organic Electrolytes.Ciencia de Materiales, Facultad de Ingeniería, Kaiserstr. 2, D-24143 Kiel, Alemania (2000).
dc.relation.referencesPeng, K. Q., Yan, Y. J., Gao, S. P., Zhu, J. Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Advanced Materials, 14(16), 1164 (2002).
dc.relation.referencesLehmann, V., Rönnebeck, S. The Physics of Macropore Formation in Low-Doped p-Type Silicon. Journal of The Electrochemical Society, 146 (8) 2968-2975 (1999)
dc.relation.referencesCullis, A. G., L. T. Canham,L. T., Calcott, P. D. J.The structural and luminescence properties of porous silicon 82 (3),909-965 (1997).
dc.relation.referencesBalagurov, L. A., Loginov, B. A., Petrova, E. A., Sapelkin, A., Unal, B., Yarkin, D. G. Formation of porous silicon at elevated temperatures. Electrochimica Acta. Vol 51. 2938-2941. (2006).
dc.relation.referencesToranzos, V. J., Koropecki, R. R., Urteaga, R., Ortiz, G. P. (2008, November). Electroluminiscencia en silicio poroso nanoestructurado. Anales AFA (Vol. 20, No. 1).
dc.relation.referencesLehmann, V. The physics of macroporous silicon formation. Thin Solid Films, 255(1), 1-4 (1995).
dc.relation.referencesFöll, H., Christophersen, M., Carstensen, J., Hasse, G. (2002). Formation and application of porous silicon. Materials Science and Engineering: R: Reports, 39(4), 93-141.
dc.relation.referencesD.V.Garcia. Efecto de la temperatura sobre la morfología de silicio poroso: aplicación en los filtros UV. Tesis profesional. Universidad Autónoma del estado de Morelos (2007).
dc.relation.referencesUrata, T., Fukami, K., Sakka, T., Ogata, Y. H. Pore formation in p-type silicon in solutions in containing different types of alcohol, Nanoscale Research Letters. 7(1): p. 5 (2012).
dc.relation.referencesKim, H., Cho, N. Morphological and nanostructural features of porous silicon prepared by electrochemical etching. Nanoscale Research Letters , 7:408 (2012)
dc.relation.referencesFlake, J. C., Rieger, M. R., Schmid, G. M.,Kohla, P. A. Electrochemical Etching of Silicon in Nonaqueous Electrolytes Containing Hydrogen Fluoride or Fluoroborate.Journal of The Electrochemical Society, 146 (5) 1960-1965 (1999).
dc.relation.referencesReiger, M. M., Kohl, P. A. Mechanism of (111) Silicon Etching in HF-Acetonitrile. Journal of The Electrochemical Society, 142(5), 1490 (1995).
dc.relation.referencesSmith, R. L., Collins, S. D. Porous silicon formation mechanisms. Journal of Applied Physics, 71(8), R1–R22. (1992).
dc.relation.referencesKulathuraan,K., Mohanraj, K., Natarajan, B.Structural, optical and electrical characterization of nanostructured porous silicon: Effect of current density. Spectrochimica Act Part A: Molecular and Biomolecular Spectroscopy. Vol 152, 51-57 (2016).
dc.relation.referencesCanham, L. Mechanical Properties of Porous Silicon. Handbook of porous silicon. Springer (2017).
dc.relation.referencesFakiria, S., Montagneb, A., Rahmounc, K., Lostb, A., Ziouchea, K. Mechanical properties of porous silicon and oxidized porous silicon by nanoindentation technique. Materials Science and Engineering:A. Vol 711, 470-475 (2018).
dc.relation.referencesRahmouna, K., Faraouna, H. I., Bassoub, G., Mathieuc, C., N.E.Chabane Saria, N. E. Determination of Mechanical Properties of Porous Silicon with Image Analysis and Finite Element. Physics Procedia. Vol 55, 390-395 (2014)
dc.relation.referencesElia, P., Nativ-Roth, E., Zeiri, Y., Porat, Z. Determination of the average pore-size and total porosity in porous silicon layers by image processing of SEM micrographs. Microporous and Mesoporous Materials. Vol 225, 465-471 (2016).
dc.relation.referencesKumar, P., Lemmens, P., Ghosh, M., Ludwig, F., Schilling, M. Effect of HF Concentration on Physical and Electronic Properties of Electrochemically Formed Nanoporous Silicon. Journal of Nanomaterials, 1–7 (2009)
dc.relation.referencesKopani,M.,Mikula, M., Kosnac, D. Vojtek, P., Gregus, J., Vavrinsky, E., Jergel, M., Pincik, E .Effect of etching time on structure of p-type porous silicon.Applied Surface Science 461,44–47 (2018).
dc.relation.referencesMedia, E.M.,Outemzabet, R. Surface chemistry of a hydrogenated mesoporous p-type silicon. Applied Surface Science, 395, 61–65 (2017).
dc.relation.referencesOutemzabet, R., Cherkaoui, M., Gabouze, N., Ozanam, F., Kesri, N., Chazalviel, J.-N. . Origin of the Anisotropy in the Anodic Dissolution of Silicon. Journal of The Electrochemical Society, 153(2), C108 (2006).
dc.relation.referencesRasi, S., Naderi,N., M. Moradi, M. Correlation Between Surface Morphology and Optical Properties of Quasi-Columnar Porous Silicon Nanostructures. ACERP: Vol. 2, No. 4, 44-49 (2016).
dc.relation.referencesSpivak, Y. M., Mjakin, S. V., Moshnikov, V. A., Panov, M. F., Belorus, A. O., Bobkov, A. A. (2016). Surface Functionality Features of Porous Silicon Prepared and Treated in Different Conditions. Journal of Nanomaterials, 1–8 (2016).
dc.relation.referencesMozetič, M. Surface Modification to Improve Properties of Materials. Materials, 12(3), 441.(2019).
dc.relation.referencesLion, A., Laidani, N., Bettotti, P., Piotto, C., Pepponi, G., Barozzi, M., Scarpa, M. Angle resolved XPS for selective characterization of internal and external surface of porous silicon. Applied Surface Science, 406, 144–149 (2017).
dc.relation.referencesKhaldi, K., Sam, S., Lounas, A., Yaddaden, C., Gabouze, N.-E. Comparative investigation of two methods for Acetylcholinesterase enzyme immobilization on modified porous silicon. Applied Surface Science, 421, 148–154 (2017).
dc.relation.referencesAzaiez, K., Zaghouani, R. B., Khamlich, S., Meddeb, H., Dimassi, W. Enhancement of porous silicon photoluminescence property by lithium chloride treatment. Applied Surface Science, 441, 272–276 (2018).
dc.relation.referencesBiswas, P., Karn, A. K., Balasubramanian, P., Kale, P. G). Biosensor for detection of dissolved chromium in potable water: A review. Biosensors and Bioelectronics, 94, 589–604 (2017).
dc.relation.referencesCChatterjee, S., Saxena, M., Padmanabhan, D., Jayachandra, M., Pandya, H. J. Futuristic medical implants using bioresorbable materials and devices. Biosensors and Bioelectronics, 111489 (2019).
dc.relation.referencesSoussi, I., Mazouz, Z., Collart-Dutilleul, P. Y., Echabaane, M., Martin, M., Cloitre, T., … Othmane, A. Electrochemical and optical investigation of dental pulp stem cell adhesion on modified porous silicon scaffolds. Colloids and Surfaces B: Biointerfaces (2019).
dc.relation.referencesDegli Esposti, M., Chiellini, F., Bondioli, F., Morselli, D., Fabbri, P. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite. Materials Science and Engineering: C, 100, 286–296 (2019).
dc.relation.referencesGuillem-Marti, J., Cinca, N., Punset, M., García Cano, I., Gil, F. J., Guilemany, J. M., Dosta, S). Porous titanium-hydroxyapatite composite coating obtained on titanium by cold gas spray with high bond strength for biomedical applications. Colloids and Surfaces B: Biointerfaces. (2019.
dc.relation.referencesKaur, P., Singh, K. J., Yadav, A. K., Kaur, S., Kaur, R., Kaur, S. Growth of Bone Like Hydroxyapatite and Cell Viability Studies on CeO2 Doped CaO-P2O5-MgO-SiO2 Bioceramics. Materials Chemistry and Physics, 122352 (2019).
dc.relation.referencesKier, L. B., Seybold, P. G., Cheng C. K. Cellular automata modeling of chemical systems. Springer (2005).
dc.relation.referencesWolfram, S. Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, (1983).
dc.relation.referencesKarafyllidis, I.,Thanailakis, A. A model for predicting forest fire spreading using cellular automata. Ecological Modelling, 99(1), 87–97. (1997).
dc.relation.referencesSchiff J. L. Cellular Automata: A Discrete View of the World. Hoboken, N.J.: Wiley- Interscience. (2008)
dc.relation.referencesPérez-Brokate, C. F., di Caprio, D., Mahé, É., Féron, D., de Lamare, J.. Cyclic voltammetry simulations with cellular automata. Journal of Computational Science, 11, 269–278 (2015)
dc.relation.referencesW. Chmielewski, D. di Caprio and J. Stafiej, “Cellular automata modeling of nanopore formation in passive layers”, in Proceedings of the International Conference on Scientific Computing CSC’11, pp. 236–240, Las Vegas June (2014).
dc.relation.referencesPérez-Brokate, C. F., di Caprio, D., Féron, D., de Lamare, J., Chaussé, A. Three dimensional discrete stochastic model of occluded corrosion cell. Corrosion Science, 111, 230–241 (2016).
dc.relation.referencesBartosik, Ł., Stafiej, J., Di Caprio, D. Cellular automata model of anodization. Journal of Computational Science, 11, 309–316 (2015).
dc.relation.referencesChopard, B., Droz, M. (1998). Cellular Automata Modeling of Physical Systems. Cambridge Books Online (1998).
dc.relation.referencesGorodetsky, A.E.,Tarasova, I.L. The simulation of the porous silicon formation. Matematicheskoe Modelirovanie. 20 (2008).
dc.relation.referencesStępień, J., di Caprio, D., Stafiej, J. 3D simulations of the metal passivation process in potentiostatic conditions using discrete lattice gas automaton. Electrochimica Acta (2018).
dc.relation.referencesVautrin-Ul, C., Taleb, A., Stafiej, J., Chaussé, A., Badiali, J. P. Mesoscopic modelling of corrosion phenomena: Coupling between electrochemical and mechanical processes, analysis of the deviation from the Faraday law. Electrochimica Acta, 52(17), 5368–5376(2007).
dc.relation.referencesSaunier, J., Chaussé, A., Stafiej, J., & Badiali, J. P. Simulations of diffusion limited corrosion at the metal|environment interface. Journal of Electroanalytical Chemistry, 563(2), 239–247 (2004).
dc.relation.referencesJohn, G. Porous silicon: theoretical studies. Physics Reports, 263(2), 93–151(1995).
dc.relation.referencesM,Hjorth- Jensen. Computational Physics. Department of Physics, University, Oslo (2003).
dc.relation.referencesBertel, S. Estudio morfológico y espectroscópico de silicio poroso para su uso como sustrato en el crecimiento de Hidroxiapatita. Grupo: Materiales Nanoestructurados y sus Aplicaciones. Universidad Nacional de Colombia (2014).
dc.relation.referencesMelo S,F. Preparación y estudio de la morfología de silicio poroso (SP). Grupo: Materiales Nanoestructurados y sus Aplicaciones. Universidad Nacional de Colombia (2014).
dc.relation.referencesSancho Caparrini, F. Autómatas Celulares. http://www.cs.us.es/~fsancho/?e=66 (2016)
dc.relation.referencesZhao, M., McCormack, A., Keswani, M. The formation mechanism of gradient porous Si in a contactless electrochemical process. Journal of Materials Chemistry C, 4(19), 4204–4210 (2016).
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalsilicio poroso
dc.subject.proposalporous silicon
dc.subject.proposalmodeling
dc.subject.proposalmodelamiento
dc.subject.proposalautomatas celulares
dc.subject.proposalcellular automata
dc.subject.proposalnanoestructurados
dc.subject.proposalnanostructured
dc.subject.proposalmorphology
dc.subject.proposalmorfología


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito