Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorGómez Mendoza, Juan Bernardo
dc.contributor.authorJaramillo Morales, Mauricio Fernando
dc.date.accessioned2020-08-14T21:39:16Z
dc.date.available2020-08-14T21:39:16Z
dc.date.issued2020
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78049
dc.description.abstractUn modelo de estimación de energía para un robot móvil puede realizar una aproximación del consumo energético del robot para cualquier aplicación. En este estudio, se presenta un modelo de estimación de energía que tiene en cuenta los parámetros dinámicos del robot y de los motores. El modelo propuesto permite predecir los valores de energía del robot para diferentes aceleraciones y pesos de carga, a diferencia de trabajos previos relacionados. La validación del modelo fue realizado para trayectorias lineales y rotacionales. Para las trayectorias lineales, la estimación matemática del modelo puede ser simplificada, entregando una función de costo a optimizar. Para trayectorias rotacionales, los términos relacionados con fuerzas inerciales aparecen de nuevo en el modelo. El robot móvil Nomad Super Scout es usado para las pruebas experimentales. Los experimentos muestran que el modelo propuesto puede estimar la energía consumida por el robot con precisión, alcanzando un porcentaje de éxito de 96.67 % para trayectorias lineales, y de un 81.25 % para las trayectorias curvas. El modelo de estimación de potencia es usado para construir la función Hamiltoniana, la cual bajo ciertas condiciones de optimización puede entregar la velocidad óptima del robot que minimiza la energía consumida por una trayectoria lineal. En este estudio, una solución matemática de forma cerrada de la velocidad óptima del robot es evaluada en una aplicación típica de robótica como es la localización simultánea y mapeo (Simulaneous Location and Mapping- SLAM).
dc.description.abstractthe robot for any application. In this study, an energy estimation model that takes into account the dynamic parameters of the motor and the robot, is proposed. The proposed model allows us to predict the energy values for different accelerations and different payloads, unlike most previous work. The validation of the proposed model was carried out for straight and rotational trajectories. For straight trajectories, the mathematical estimation model can be simplified by giving a linear estimation of the cost function. For rotational trajectories, the terms related to inertia forces appear again in the model. The Nomad Super Scout mobile robot is used for experimental tests. The experiments showed that the proposed model is able to estimate the energy consumption of the robot accurately, reaching a success rate of 96.67 % along a straight paths and 81.25 % along a curved paths. The power estimation model is used to build the Hamiltonian function, that under a necessary optimization condition, can provide the optimal velocity of the robot that minimizes the energy consumption for a given straight path. In this study, a closed-form solution of the optimal velocity that takes into account high energy consumption and payload is presented as well. Finally, the optimal velocity of the robot is evaluated in a typical robotic application such as the solution of the SLAM problem.
dc.description.sponsorshipColciencias
dc.format.extent97
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleAn alternative trajectory planning for a differential wheeled robot, aimed to unknown environment mapping with minimum energy consumption, based on a simplified dynamic model
dc.title.alternativePlanificador de trayectorias alternativo, enfocado al mapeo de entornos desconocidos con gasto mínimo energético, basado en un modelo dinámico simplificado
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalA Thesis presented for the degree of : Ph.D in Engineering - Automatic. -- Research Area: Mobile robotic. -- This work was financially supported by Colciencias Colombia, National Scholarship - 567, and partially supported by ISR - University of Coimbra, project UID/EEA/00048/2013 funded by FCT - Fundação para a Ciência e a tecnologia.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática
dc.contributor.researchgroupComputación Aplicada Suave y Dura (SHAC)
dc.description.degreelevelDoctorado
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónica
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesABAZARI, M-R. ; DANESH, M.: Optimize path planning of a planar parallel robot to avoid obstacle collision using genetic algorithm. In: Iranian Conference on Intelligent Systems (ICIS)., 2014
dc.relation.referencesAL-TAHARWA, I. ; SHETA, A. ; AL-WESHAH, M.: A mobile robot path planning using genetic algorithm static environment. In: Journal of Computer Science 4, 2014
dc.relation.referencesBARRAQUAND, J. ; LANGLOIS, B. ; LATOMBE, J-C.: Numerical potential field techniques for robot path planning. In: EEE transactions on systems, man, and cybernetics, 22(2)., 1992
dc.relation.referencesBELTA, C. ; ISLER, V ; PAPPAS, G-J: Discrete abstractions for robot motion planning and control in polygonal environments. In: IEEE transactions on robotics, 21(5)., 2005, S. 864–874
dc.relation.referencesBENSEKRANE, I ; KUMAR, P. ; AMARA, Y. ; MERZOUK, R.: Towards adaptive power consumption estimation for over-actuated unmanned vehicles. In: IEEE International Conference on Robotics and Biomimetics, Macau SAR, China Bd. 18, 2017, S. 92–97
dc.relation.referencesBUNIYAMIN, N. ; WAN, N. ; SARIFF, N.: A simple local path planning algorithm for autonomous mobile robots. In: International journal of systems applications, engineering development, 5., 2011
dc.relation.referencesCALISI, D. ; FARINELLI, A. ; IOCCHI, L. ; NARDI, D.: Autonomous navigation and exploration in a rescue environment. In: IEEE International Conf. in Safety, Security and Rescue, Kobe,Japan, 2005
dc.relation.referencesCAMARENA, J-F.: Análisis cinemático, dinámico y control en tiempo real de un vehículo guiado automáticamente. In: Tesis de maestría en ciencias, Centro Nacional de Investigación y Desarrollo Tecnológico Departamento de Mecatrónica, Cuernavaca, Morelos, México.,, 2009
dc.relation.referencesCHOI, Y-H. ; OHA, S-Y. ; LEE, T-K. ; BAEKA, S-H.: Smooth coverage path planning and control of mobile robots based on high-resolution grid map representation. In: Robotics and Autonomous Systems,, 2011, S. 801–812
dc.relation.referencesCHUY, O. ; COLLINS, E. ; YU, W. ; ORDONEZ, C.: Power modeling of a skid steered wheeled robotic Ground Vehicle. In: IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009, S. 4118–4123
dc.relation.referencesCONCEIĊÃO, A. ; MOREIRA, A. ; COSTA, P: Practical approach of modeling and parameters estimation for omnidirectional mobile robots. In: IEEE/ASME Transactions on Mechatronics Bd. 14, 2009, S. 377–381
dc.relation.referencesCONNOLLY, C.: The determination of next best views. In: IEEE International Conference on Robotics and Automation, St. Louis, MO, USA, 25-28 March 1985
dc.relation.referencesCONNOLLY, C-I. ; BURNS, J-B. ; WEISS, R.: planning using laplace’s equations. In: IEEE transactions on robotics., 1990
dc.relation.referencesCOSTELLO, B. ; DAVIES, E. ; STRICKLAND, L. ; ROGERS, J.D.: A modular mobile robotic system for cooperative payload manipulation. In: IEEE International Conference on Automation Science and Engineering (CASE), Fort Worth, TX, USA, 2012
dc.relation.referencesDELINGETTE, H. ; HEBERT, M. ; IKEUCHI, K.: Trajectory generation with curvature constraint based on energy minimization. In: IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 1991, S. 206–211
dc.relation.referencesDENKER, A. ; ISERI, M.: Design and implementation of a semi-autonomous mobile eearch and rescue robot: SALVOR. In: International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey., Sept 16-17, 2017
dc.relation.referencesDOGRU, S. ; MARQUES, L: A physics-based power model for skid-steered wheeled mobile robots. In: IEEE Transactions on Robotics Bd. 34, 2018, S. 421–433
dc.relation.referencesDUDEK, G. ; JENKIN, M. ; MILIOS, E. ; WILKES, D.: Robotic exploration as graph construction. In: IEEE transactions on robotics and automation, 1991
dc.relation.referencesELECTRO-CRAFT, Corporation: DC motors, speed controls, Servo systems: an engineering handbook. In: Pergamon Press Bd. 3, 1977
dc.relation.referencesESCALERA, A. ; ARMINGOL, J-M. ; MORENO, L. ; SALICHS, M-A.: Landmark perception planning for mobile robot localization. In: International Conference on Robotics Automation., 1998
dc.relation.referencesESTEVES, C. ; MURRIETA-CID, R. ; HAYET, J-B. ; CARLOS, H.: Motion planning for maintaining landmarks visibility with a dierential drive robot. In: Robotics and Autonomous Systems., 2014
dc.relation.referencesFEIXIANG, G. ; XIAOPENG, Y.: Dynamic Path Planning for Underwater Vehicles Based on Modified Artificial Potential Field. In: Fourth International Conference on Digital Manufacturing Automation, 2013
dc.relation.referencesGALLAGHER, B. ; SICA, W. ; DELLAERT, F. ; OK, K. ; ANSARI, S. ; STILMAN, M.: Path planning with uncertainty: Voronoi uncertainty fields. In: IEEE International Conference on Robotics and Automation (ICRA)), 2013
dc.relation.referencesGAY, S-E. ; EMADI, A. ; EHSANI, M. ; GAO, Y.: Análisis cinemático, dinámico y control en tiempo real de un vehículo guiado automáticamente. In: Fundamentals, Theory and Design, Ed. CRC Press., 1980
dc.relation.referencesGE, S. ; CUI, Y.: New potential functions for mobile robot path planning. In: IEEE transactions on robotics and automation, 2000
dc.relation.referencesGHOLIPOUR, A. ; YAZDANPANAH, M.: Dynamic tracking control of nonholonomic mobile robot with model reference adaptation for uncertain parameters. In: European Control Conference (ECC), Cambridge, UK Bd. 39, Sep 1-4, 2003
dc.relation.referencesGOODRICH, M-A. ; BEARD, R-W. ; MCLAIN, T-W. ; ANDERSON, E-P.: Coordinated target assignment and intercept for unmanned air vehicles. In: IEEE Transactions on Robotics and Automation, 18(6), 2002
dc.relation.referencesGRISALES, E.: Control de un robot móvil en entornos domésticos. In: Tesis de Maestría en Automatización industrial. Universidad Nacional sede Manizales,, 2013
dc.relation.referencesGUO, R. ; HAN, L. ; SUN, Y. ; WANG, M.: A Mobile robot for inspection of substation equipments. In: International Conference on Applied Robotics for the Power Industry,Montréal, Canada, October 5-7, 2010
dc.relation.referencesGUOWEI, Z. ; BIN, L. ; ZHIQIANG, L. ; CONG, W. ; HANDUO, Z. ; HONG, S. ; WEIJIAN, H. ; TAO, Z: Development of robotic spreader for earthquake rescue. In: 12th IEEE International Symposium on Safety, Security, and Rescue Robotics, oyako-cho, Hokkaido, Japan, October, 2014
dc.relation.referencesGUPTA, N. ; ORDONEZ, C. ; EMMANUEL, G. ; COLLINS, Jr.: Dynamically feasible, energy eficient motion planning for skid-steered vehicles. In: Autonomous Robots Bd. 41, 2017, S. 453–471
dc.relation.referencesHACHOUR, O.: Path planning of autonomous mobile robot. In: International journal of systems applications, engineering development, 2008
dc.relation.referencesHO, D. ; CHEHIDA, k. ; MIRAMOND, B. ; MICHEL AUGUIN, M: Towards a multi-mission QoS and energy manager for autonomous mobile robots. In: Second IEEE International Conference on Robotic Computing, Laguna Hills, CA, USA, February 2, 2018
dc.relation.referencesHONGO, T. ; AKAHASHI, A. ; NINOMIYA, Y.: local path planning and control for agv in positioning. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 1989
dc.relation.referencesHOU, L. ; ZHANG, L. ; KIM, J.: Energy modeling and power measurement for mobile robots. In: Energies, MDPI, Open Access Journal Bd. 12(27), 2019
dc.relation.referencesHWANG, N. Y-K.and A. Y-K.and Ahuja: A potential field approach to path planning. In: IEEE transactions on robotics and automation 8(1)., 2005
dc.relation.referencesJ-C, Latombe.: Robot Motion Planning. In: Kluwer Academic Publishers Norwell, MA, USA, 1991
dc.relation.referencesJARAMILLO, Mauricio-F. ; GOMEZ, Juan-B.: Diseño de un planificador de trayectorias orientado a la reconstrucción en 3d de entornos desconocidos. In: Tesis de Maestría en Automatización Industrial. Universidad Nacional sede Manizales, 2010
dc.relation.referencesKANAYAMA, y. ; HARTMAN, B-I.: Local path planning for autonomous vehicles. In: Proc. IEEE Int. Conf. Robotics and Automation., 1989, S. 1265–1270
dc.relation.referencesKHATIB, O.: Commande dynamique dans i’espace opkrational des robots manipulateurs en prcsence d’obstacles. In: Ph.D. dissertation, Ecole nationale Supkieure de I’AeCronatique et de I’Espace (ENSAE), France,, 1980
dc.relation.referencesKIM, B. ; KIM, H.: Minimum-energy motion planning for differential-driven wheeled mobile robots, motion planning. In: Xing-Jian Jing (Ed.), ISBN: 978-953-7619-01-5, InTech, Croatia, 2008
dc.relation.referencesKIM, H. ; KIM, B.: Minimum-energy rotational trajectory planning for differential-driven wheeled mobile robots. In: The 13th International Conference on Advance Robotics, Jeju, Korea, August 21-24, 2007
dc.relation.referencesKIM, Y-J. ; LEE, J-Y.: Vision-based corridor path search of a mobile robot. In: International Conference on Control, Automation and System., 2011
dc.relation.referencesKNOWLES, K. ; LAUBER, J. ; GEORGIOS, T-M. ; KLADIS, P. ; ECONOMOU, J: Energy conservation based fuzzy tracking for runmanned aerial vehicle. Engineering Applications of Artificial Intelligence. In: Engineering Appli- cations of Artificial Intelligence, 2011, S. 278–294
dc.relation.referencesKOENIG, S. ; LIKHACHEV, M.: Fast replanning for navigation in unknown terrain. In: IEEE transactions on robotics, 2005
dc.relation.referencesKOZLOWSKI, K. ; PAZDERSKI, D: Modeling and control of a 4-wheel skid-steering mobile robot. In: Math. Comput. Sci, 2016, S. 477–496
dc.relation.referencesKRISHNAMURTI, R. ; WANG, P. ; GUPTA, K.: Metric view planning problem with traveling cost and visibility range. In: IEEE International Conference on Robotics and Automation., 2007
dc.relation.referencesLEE, G. ; MEI, Y. ; LU, Y-H. ; HU, Y-C.: Energy-eficient mobile robot exploration. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation., 2006
dc.relation.referencesLISCANO, R. ; GREEN, D.: Implementation of a trajectory generator for an indoor mobile robot. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Tsukuba, Japan., 1989, S. 380– 385
dc.relation.referencesLIU, A. ; SUN, D.: Optimal motion planning of a mobile robot with minimum energy consumption. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Budapest, Hungary., 2014
dc.relation.referencesLIU, S. ; SUN, D.: Optimal motion planning of a mobile robot with minimum energy consumption. In: 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM),Budapest, Hungary., 2011
dc.relation.referencesLUMELSKY, V. ; SKEWIS, T.: Incorporating range sensing in the robot navigation function. In: IEEE transactions on systems, man, and cybernetics, 20(5), 1990
dc.relation.referencesMACHADO, T. ; MALHEIRO, T. ; MONTEIRO, S. ; ERLHAGEN, W. ; BICHO, E.: Multi-constrained joint transportation tasks by teams of autonomous mobile robots using a dynamical systems approach. In: IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, May 16, 2016
dc.relation.referencesMASUTA, H. ; WATANABE, H. ; SATO, K. ; LIM, H.: Recognition of branch pipe for pipe inspection robot using fiber grating Vision Sensor. In: 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI),Jeju, Korea, October 31 November 2, 2013
dc.relation.referencesMEI, L-Y. ; GEORGE, C-S. ; LU, Y-H ; Y. ; HU, C.: Energy-eficient mobile robot exploration. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation., 2006
dc.relation.referencesMEI, Y. ; LU, Y. ; HU, Y.: A case study of mobile robot’s energy consumption and conservation techniques. In: ICAR ’05. Proceedings., 12th International Conference on Advanced Robotics, Seattle, WA, USA, 2005, S. 4344–4349
dc.relation.referencesMEYER, J-A. ; FILLIAT, D.: Map-based navigation in mobile robots: Ii. a review of maplearning and path-planning strategies. In: Cognitive Systems Research, 2003, S. 283–317
dc.relation.referencesMIN, H. ; XIONG, H.: Global path planning for omnidirectional vehicles based on bezier curve and dynamic constraints. In: 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)., 2013, S. 605–610
dc.relation.referencesMOHAMMED, M. ; NADARAJAH, V. ; LAZIM, N. ; ZAMANI, N. ; AL-SANJARY, M. O.and A. O.and Ali ; AL-YOUIF, S.: A mobile robot for inspection of substation equipments. In: IEEE Conference on Systems, Process and Control (ICSPC),Melaka, Malaysia, December 14-15, 2018
dc.relation.referencesMORALES, J. ; MARTINEZ, J. ; MANDOW, A: Power consumption modeling of skid-steer tracked mobile robots on rigid terrain. In: IEEE Transactions on Robotics, 2009, S. 1098–1107
dc.relation.referencesNELSON, W-L: continuous curvature paths for autonomous vehicles. In: Proc. IEEE Int. Conf. Robotics and Automation,, 1989, S. 1260–12643
dc.relation.referencesO, Parlaktuna. ; A, Yazici. ; G, Kirlik. ; A, Sipahioglu.: planning approach for multirobot sensor-based coverage considering energy constraints. In: IEEE traansaction on cybernetics, 2014
dc.relation.referencesO’HARA, K. ; NATHUJI, R. ; RAJ, H. ; SCHWAN, K. ; BALCH, T.: AutoPower: toward energyaware software systems for distributed mobile robots. In: IEEE International Conference on Robotics and Automation, Orlando, Florida, May, 2006
dc.relation.referencesOHASHI, F. ; KAMINISHI, K. ; FIGUEROA, J. ; KATO, H. ; OGATA, H. ; HARA, T. ; OTA, J.: Realization of heavy object transportation by mobile robots using handcarts and outrigger. In: Robomech journal, 2016
dc.relation.referencesPATRO, S-N. ; PRADIPTA, P. ; DAS, K.: D* lite algorithm based path planning of mobile robot in static environment. In: International Journal of Computer Communication Technology (IJCCT), 2011
dc.relation.referencesPIAZZI, A. ; BIANCO, L-G.: g -splines for trajectory planning of autonomous vehicle. In: Proc. IEEE Intelligent Vehicles Symp., Dearborn, 2000, S. 198–203
dc.relation.referencesQIAN, L. ; LIU, H.: Path following control of A quadrotor UAV with a cable suspended payload under wind Disturbances. In: IEEE Transaction on Industrial Electronics, 2019
dc.relation.referencesRAMVIYAS, K. ; PRITHVI, M.: Model based on-line energy prediction system for semiautonomous mobile robots. In: The Fifth International Conference on Intelligent Systems, Modelling and Simulation, Malasya, 2014
dc.relation.referencesRIMON, E. ; KODITSCHEK, D-E.: Exact robot navigation using artificial potential functions. In: IEEE transactions on robotics and automation, 8(5), 1992
dc.relation.referencesROSENBLATT, J-K. ; PAYTON, D-W. ; KEIRSEY, D-M.: Plan guided reaction. In: IEEE Trans. Syst. Man Cyber, 20(6), 1990
dc.relation.referencesRUIZ, D. ; CAICEDO, C. ; BACCA, B.: Strategy based on swarms algorithms to cooperative payload transport using a non-holonomic mobile robots group. In: IEEE Latin America Transactions, 2016, S. 445–456
dc.relation.referencesSADRPOUR, A. ; JIN, J. ; ULSOY, A.G.: Mission energy prediction for unmanned ground vehicles. In: IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 2012
dc.relation.referencesSANTOS, P. Gonzalez-de ; RIBEIRO, A. ; FERNANDEZ-QUINTANILLA, C.: Fleets of robots for environmentally-safe pest control. In: Precision Agriculture, 2017, S. 574–614
dc.relation.referencesSEO, B. ; KIM, S. ; CHOI, H.: Fleets of robots for environmentally-safe pest control in agriculture. In: 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, Korea,, August 21-24, 2013
dc.relation.referencesSHETA, M. ; AGARWAL, V. ; PALURI, N: A new energy optimal control scheme for a separately excited DC motor based incremental motion drive. In: International Journal of Automation and Computing, 2009, S. 267–276
dc.relation.referencesSHI, H. ; CHEN, L. ; LIU, C. ; GAO, B.: Robot planning algorithm based on improved arti cial potential field. In: Third International Conference on Instrumentation, Measurement, Computer, Communication and Control., 2014, S. 228–232
dc.relation.referencesSTENTZ, A.: Optimal and eficient path planning for partially-known environments. In: IEEE transactions on automatic control, 1994
dc.relation.referencesTOKEKAR, P. ; KARNAD, N. ; ISLER, V.: Energy-optimal trajectory planning for car-like robots. In: Autonomus Robots Journal, 2014, S. 279–300
dc.relation.referencesTSITSIKLIS, J-N.: Eficient algorithms for globally optimal trajectories. In: IEEE transactions on automatic control, 40(9), 1995
dc.relation.referencesWAHAB, M. ; GUTIERREZ, F. ; SHAHAT, A.: Energy modeling of differential drive robots. In: IEEE SoutheastCon, Fort Lauderdale, Florida,, April 9, 2015
dc.relation.referencesWANG, H. ; HUANG, Y. ; XU, C.: ADRC Methodology for a quadrotor UAV transporting hanged payload. In: IEEE International Conference on Information and Automation, Ningbo, China, August, 2016
dc.relation.referencesWANG, Y. ; XIONG, W. ; YANG, J. ; JIANG, Y. ; WANG, S: Tracking control algorithm for an indoor carrier robot considering energy optimization. In: Energies, MDPI, Open Access Journal Bd. 12(10), 2019
dc.relation.referencesXIAO, J. ; MICHALEWICZ, Z. ; TROJANOWSKI, K.: Adaptive evolutionary planner/navigator for mobile robots. In: IEEE Trans. Evolutionary Computation, 1997
dc.relation.referencesXIE, Li. ; HENKEL, C. ; STOL, K. ; XU, W.: Power-minimization and energy-reduction autonomous navigation of an omnidirectional mecanum robot via the dynamic window approach local trajectory planning. In: International Journal of Advanced Robotic Systems Bd. 12, 2018
dc.relation.referencesXIE, R. and Wang h-Y. Jun. W. Jun. Wen: Path planning of mobile robot based on voronoi diagram by approximation structuring and zonal ant colony algorithm. In: International Conference on Computational Intelligence and Software Engineering, 2009, S. 1–4
dc.relation.referencesY., Mei ; LU, Y. ; HU, Y. ; LEE, C.: Energy-efficient motion planning for mobile robots. In: IEEE International Conference on Robotics and Automation, New Orleans, USA,, 2004, S. 4344–4349
dc.relation.referencesYACOUB, M. ; NECSULESCU, D. ; SASIADEK, J.: Energy consumption optimization for mobile robots in three-dimension motion using predictive control. In: 9th Asian Control Conference (ASCC), Istanbul, Turkey, June 23-26, 2013
dc.relation.referencesYAMAMOTO, Y. ; YUN, Y: Coordinating locomotion and manipulation of a mobile manipulator. In: IEEE Transactions on Automatic Control Bd. 39, 1994, S. 1326–1332
dc.relation.referencesYANG, S. ; XIAN, B.: Adaptive control design for the quadrotor UAV system with a Suspended Payload. In: IEEE Transaction on Industrial Electronics, 2019
dc.relation.referencesYAZDANPANAH, M-J. ; GHOLIPOUR, A.: Dynamic tracking control of nonholonomic mobile robot with model reference adaptation for uncertain parameters. In: Control and Intelligent Processing Center of Excellence, Electrical and Computer Engineering Department, University of Tehran, IRAN, 2002
dc.relation.referencesYEN, J. ; UGER, N-P.: Plan guided reaction. In: IEEE Trans. Syst. Man Cyber, 25(6)., 1995
dc.relation.referencesYUN, X. ; YAMAMOTO, Y.: Internal dynamic of a whelled mobile robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan,, 1993, S. 1288–1294
dc.relation.referencesZELINSKY, A.: A mobile robot exploration algorithm. In: IEEE transactions on robotics and automation, 1992
dc.relation.referencesZHU, D. ; LATOMBE, J-C.: New heuristic algorithms for ecient hierarchical path planning. In: IEEE transactions on robotics and automation, 7(1), 1991
dc.relation.referencesZHUANG, Y. ; WANG, W. ; CHEN, H. ; ZHENG, K.: 3d scene reconstruction and motion planning for an autonomous mobile robot in complex outdoor scenes. In: International Conference on Modelling, Identification and Control (ICMIC)., 2010, S. 692–697
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalDifferential drive mobile robot
dc.subject.proposalRobot de guiado diferencial
dc.subject.proposalPower estimation model
dc.subject.proposalModelo de estimación de potencia
dc.subject.proposalOptimización de energía
dc.subject.proposalEnergy optimization
dc.subject.proposalSLAM problem
dc.subject.proposalSLAM
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito