Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCampos Gaona, Rómulo
dc.contributor.authorCastrillón Rodríguez, María Inés
dc.date.accessioned2020-08-18T16:51:25Z
dc.date.available2020-08-18T16:51:25Z
dc.date.issued2020-08-05
dc.identifier.citationBorad & Singh, (2018)
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78069
dc.description.abstractThe aim of this study was to evaluate the immune response and passive immunity transfer through serological indicators analyzed by Radial Immunodiffusion (RID) and colostrum quality in the low tropics, after the application of three treatments in cows in the last third of pregnancy with their respective calves. Bacterial vaccines were given in cows before calving and in a group of calves on the first postpartum day. 21 pregnant cows from the low tropic were distributed in three groups, T1: control, T2: application of a dose of commercial bacterial vaccine 30 days before parturition, T3: application of vaccine 30 and 15 days before parturition, plus a T4 (n=7): application of vaccine in calves at 24 hours post birth. The experimental time for cows was 30 days pre-parturition and one day post-parturition, for calves was 24±6 and 72 hours post-birth. The variables allowed to analyze colostrum quality and passive immune transference. In cows the colostrum quality, the TP, albumin, ALT and cortisol did not show statistical differences within treatments, while AST was different at T3. In calves the IgG and IgM did not show statistical differences within treatments nor hours post-birth, the IgM and albumin were statistically different in within treatments, meanwhile globulins and total protein were statistically different at the hours post-birth. There was no failure in passive immune transference.
dc.description.abstractEl objetivo del presente trabajo fue evaluar la respuesta inmune y la trasferencia de inmunidad pasiva a través de indicadores serológicos analizados por Inmunodifusión radial (RID) y calidad de calostro en el trópico bajo, luego de la aplicación de tres tratamientos en vacas en el último tercio de la gestación con sus respectivas crías. Se suministraron vacunas bacterianas en las vacas antes del parto y en un grupo de terneros el primer día posparto. Veintiún vacas gestantes fueron distribuidos en tres grupos, T1: control; T2: aplicación de una dosis de vacuna bacteriana comercial 30 días antes del parto, T3: aplicación de vacuna 30 y 15 días antes del parto, más un T4 (n=7) para las crías al cual se les aplicó la vacuna a las 24 horas de vida. El período experimental para las vacas estuvo comprendido 30 días preparto y un día posparto. Para los terneros a las 24±6 y 72 horas de nacimiento. Se obtuvieron variables que permitieron analizar la calidad del calostro y la transferencia de inmunidad pasiva. En las vacas la calidad de calostro, la PT, albúmina, globulina, ALT, cortisol, no presentaron diferencias estadísticas significativas en ninguno de los tratamientos mientras que AST si presentó diferencia en el T3. En los terneros la IgG e IgM, no presentaron diferencias significativas ni en los tratamientos ni en las horas, la IgM y la albúmina presentaron diferencias significativas en los tratamientos mientras globulinas y proteína total presentaron diferencias significativas en las horas. No se encontró falla en la transferencia de inmunidad pasiva.
dc.format.extent81
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc590 - Animales
dc.subject.ddc630 - Agricultura y tecnologías relacionadas
dc.titleIndicadores de inmunidad pasiva y activa en neonatos bovinos de madres vacunadas y no vacunadas con una bacterina comercial
dc.typeDocumento de trabajo
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/workingPaper
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias
dc.contributor.researchgroupConservación, Mejoramiento y Utilización del Ganado Criollo Hartón del Valle y otros Recursos Genéticos Animales en el Suroccidente Colombiano
dc.description.degreelevelMaestría
dc.publisher.departmentMaestría Ciencias Agrarias
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.relation.referencesAgianniotaki, E. I., Babiuk, S., Katsoulos, P. D., Chaintoutis, S. C., Praxitelous, A., Quizon, K., Boscos, C., Polizopoulou, Z. S., Chondrokouki, E. D., & Dovas, C. I. (2018). Colostrum transfer of neutralizing antibodies against lumpy skin disease virus from vaccinated cows to their calves. Transboundary and Emerging Diseases, 65(6), 2043–2048. https://doi.org/10.1111/tbed.12983
dc.relation.referencesAl-Alo, K. Z. K., Nikbakht Brujeni, G., Lotfollahzadeh, S., Moosakhani, F., & Gharabaghi, A. (2018). Correlation between neonatal calf diarrhea and the level of maternally derived antibodies. Iranian Journal of Veterinary Research, 19(1), 3–8. https://doi.org/10.22099/ijvr.2018.4760
dc.relation.referencesAlberghina, D., Giannetto, C., Vazzana, I., Ferrantelli, V., & Piccione, G. (2011). Reference intervals for total protein concentration, serum protein fractions, and albumin/globulin ratios in clinically healthy dairy cows. Journal of Veterinary Diagnostic Investigation, 23, 111–114. https://doi.org/10.1177/104063871102300119
dc.relation.referencesAraúz, E. E., Fuentes, A., Batista, J. R., Ramón, V., & Caballero, S. (2011). Potencial calostropoietico en vacas multíparas 3 / 4 pardo suizo x 1 / 4 cebú y perfil químico, imunológico y energético del calostro secretado en las primeras seis horas después del parto. Revista Electrónica de Veterinaria, 12(9), 1–28. https://www.redalyc.org/pdf/636/63621919001.pdf
dc.relation.referencesArroyo, L. G. (2017). Medicina de animales de reemplazo: Programas de prevención de la neumonía y la diarrea de los terneros con énfasis en los programas de vacunación. Revista Colombiana de Ciencias Pecuarias, 30, 234–236. https://www.studocu.com/es/document/universidade-da-coruna/microbioloxia/otros/medicina-de-animales-de-remplazo-programas-de-prevencion-de-la-neumonia-y-la-diarrea-de-los-terneros-con-enfasis-en-los-programas-de-vacunacion/7788055/view
dc.relation.referencesAthanasiou, L. V., Katsoulos, P. D., Ziogas, C., Kassab, A., & Polizopoulou, Z. (2019). Serum protein electrophoretic profile in diarrheic neonatal calves. Comparative Clinical Pathology (2019), 28, 685–688. https://doi.org/10.1007/s00580-019-02935-w
dc.relation.referencesAvendaño, C., Quílez, J., & Sánchez-acedo, C. (2010). Prevalencia de Cryptosporidium en terneros en el Valle de Ubaté – Chiquinquirá (Colombia). Revista U.D.C.A Actualidad & Divulgación Científica, 13(1), 41–47. http://www.scielo.org.co/pdf/rudca/v13n1/v13n1a05.pdf
dc.relation.referencesAydogdu, U., & Guzelbektes, H. (2018). Eff ect of colostrum composition on passive calf immunity in primiparous and multiparous dairy cows. Veterinarni Medicina, 63(1), 1–11. https://doi.org/10.17221/40/2017-VETMED
dc.relation.referencesAzimpour, S., & Pourtaghi, H. (2016). A Case Report of Fungal Diarrhea in a Preweaned Calf in Iran A Case Report of Fungal Diarrhea in a Preweaned Calf in Iran. Enteric Pathogens, 4(2), 1–4. https://doi.org/10.17795/ijep34199
dc.relation.referencesBalikci, E., & Al, M. (2014). Some serum acute phase proteins and immunoglobulins concentrations in calves with rotavirus , coronavirus , E . coli F5 and Eimeria species. Veterinary Research, Shiraz University, 15(4), 397–401. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4789220/pdf/ijvr-15-397.pdf
dc.relation.referencesBaquero-Parrado, J. R. (2012). Evaluación clínica y tratamiento de la septicemia neonatal bovina. Veterinaria y Zootecnía, 6(2), 89–111.
dc.relation.referencesBatista Duharte, A., Lastre, M., & Pérez, O. (2014). Adyuvantes inmunológicos. Determinantes en el balance eficacia-toxicidad de las vacunas contemporáneas. Enfermedades Infecciosas y Microbiología Clínica, 32(2), 106–114. https://dialnet.unirioja.es/servlet/articulo?codigo=4844698
dc.relation.referencesBaumrucker, C. R., Zbinden, R. S., van Dorland, H. A., Remmelink, G. J., Kemp, B., van Knegsel, A. T. M., & Bruckmaier, R. M. (2014). Continuous milking of dairy cows disrupts timing of peak IgG concentration appearance in mammary secretions. Journal of Dairy Research, 81(4), 403–409. https://doi.org/10.1017/S002202991400034X
dc.relation.referencesBednarski, M., Kupczyński, R., & Sobiech, P. (2015). Acid-base disorders in calves with chronic diarrhea. Polish Journal of Veterinary Sciences, 18(1), 207–215. https://doi.org/10.1515/pjvs-2015-0026
dc.relation.referencesBelli, A. L., Reis, R. B., Veronese, A., Moreira, R., Flanagan, K., Driver, J., Nelson, C. D., Clapper, J. A., Ballou, M. A., Jeong, K. C., & Chebel, R. C. (2018). Effects of treatment of preweaning dairy calves with recombinant bovine somatotropin on immune responses and somatotropic axis. Journal of Dairy Science, 101(7), 6602–6615. https://doi.org/10.3168/jds.2017-13917
dc.relation.referencesBobbo, T., Fiore, E., Gianesella, M., Morgante, M., Gallo, L., Ruegg, P. L., Bittante, G., & Cecchinato, A. (2017). Variation in blood serum proteins and association with somatic cell count in dairy cattle from multi-breed herds. Animal, 11(12), 2309–2319. https://doi.org/10.1017/S1751731117001227
dc.relation.referencesBorad, S. G., & Singh, A. K. (2018). Colostrum immunoglobulins: Processing, preservation and application aspects. International Dairy Journal, 85, 201–210. https://doi.org/10.1016/j.idairyj.2018.05.016
dc.relation.referencesBoudry, C., Dehoux, J.-P., Portetelle, D., & Buldgen, A. (2008). Bovine colostrum as a natural growth promoter for newly weaned piglets: a review. Biotechnologie, Agronomie, Société et Environnement, 12(2), 157–170. https://popups.uliege.be/1780-4507/index.php?id=17253&file=1&pid=2734
dc.relation.referencesBovine IgA ELISA Kit, E11-131. (2019). Bethyl. https://www.bethyl.com/product/E11-131/Bovine+IgA+ELISA+K
dc.relation.referencesBozukluhan, K., Merhan, O., Gokce, H. I., Deveci, H. A., Gokce, G., Ogun, M., & Marasli, S. (2017). Alterations in lipid profile in neonatal calves affected by diarrhea. Veterinary World, 10(7), 786–789. https://doi.org/10.14202/vetworld.2017.786-789
dc.relation.referencesBrandtzaeg, P. (2010). The Mucosal Immune System and Its Integration with the Mammary Glands. Journal of Pediatrics, 156(2 Suppl 1), S8–S15. https://doi.org/10.1016/j.jpeds.2009.11.014
dc.relation.referencesCadavid-Betancur, D. A., Giraldo-Echeverri, C. A., Sierra-Bedoya, S., Montoya-Pino, M., Chaparro-Gutiérrez, J. J., Restrepo-Botero, J. E., & Olivera-Ángel, M. (2014). Diarrea neonatal bovina en un hato del altiplano norte de Antioquia (Colombia), un estudio descriptivo. Veterinaria y Zootecnia, 8(2), 120–129. https://doi.org/10.17151/vetzo.2014.8.2.9
dc.relation.referencesCampos Gaona, R., Páez Ramírez, P. A., & Enríquez Valencia, C. E. (2011). Manejo de la cría y nutrición de Neonatos Bovinos (A. Ramírez P. (Ed.); 1st ed.). Universidad de Colombia, Sede Palmira.
dc.relation.referencesCampos, R., Páez, P., & Enríquez, C. (2011). Manejo de la cría y nutrición de neonatos bovinos. Editorial ( sede P. Universidad Nacional de Colombia (Ed.)).
dc.relation.referencesCárdenas-Vargas, A., Pedroza-Roldan, C., & Elizondo-Quiroga, D. (2016). Adyuvantes para vacunas: tipos, aplicaciones y modos de acción. Revista Mexicana de Ciencias Farmaceuticas, 47(3), 29–47. https://www.researchgate.net/publication/323966812_Adyuvantes_para_vacunas_tipos_aplicaciones_y_modos_de_accion_Vaccine_adjuvants_types_applications_and_mode_of_action
dc.relation.referencesCarvajal, P. M., Patiño M, M. F., Duran, C. V., & Campos G, R. (2011). Caracterización de la cría de terneros en sistemas de lechería especializada y doble propósito del valle del cauca estudio de caso. [Tesis pregrado]. Universidad Nacional de Colombia. Sede Palmira.
dc.relation.referencesCattaneo, L., Barberis, F. C., Stangaferro, M. L., Signorini, M. L., Ruiz, M. F., Zimmermann, R., Bo, G. A., Hein, G. J., & Ortega, H. H. (2013). Evaluación de indicadores metabólicos y bioquímicos sanguíneos en vacas en lactancia con Enfermedad Quística Ovárica. InVet, 15(1–2), 7–15. http://www.redalyc.org/articulo.oa?id=179132657001
dc.relation.referencesChamorro, M. F., Woolums, A., & Walz, P. H. (2016). Vaccination of calves against common respiratory viruses in the face of maternally derived antibodies(IFOMA). In Animal Health Research Reviews (Vol. 17, Issue 2, pp. 79–84). Cambridge University Press. https://doi.org/10.1017/S1466252316000013
dc.relation.referencesChase, C. C. L., Hurley, D. J., & Reber, A. J. (2008). Neonatal Immune Development in the Calf and Its Impact on Vaccine Response. Veterinary Clinics of North America - Food Animal Practice, 24(1), 87–104. https://doi.org/10.1016/j.cvfa.2007.11.001
dc.relation.referencesChen, Y., Stookey, J., Arsenault, R., Scruten, E., Griebel, P., & Napper, S. (2016). Investigation of the physiological, behavioral, and biochemical responses of cattle to restraint stress. Journal of Animal Science, 94(8), 3240–3254. https://doi.org/10.2527/jas.2016-0549
dc.relation.referencesCho, Y., & Yoon, K.-J. (2014). An overview of calf diarrhea - infectious etiology, diagnosis, and intervention [DOI: 10.4142/jvs.2014.15.1.1]. Journal of Veterinary Science, 15(1), 1–17. https://doi.org/10.4142/jvs.2014.15.1.1
dc.relation.referencesConneely, M., Berry, D. P., Sayers, R., Murphy, J. P., Lorenz, I., Doherty, M. L., & Kennedy, E. (2013). Factors associated with the concentration of immunoglobulin G in the colostrum of dairy cows. Animal, 7(11), 1824–1832. https://doi.org/10.1017/s1751731113001444
dc.relation.referencesCuttance, E. L., Mason, W. A., Denholm, K. S., & Laven, R. A. (2017). Comparison of diagnostic tests for determining the prevalence of failure of passive transfer in New Zealand dairy calves. New Zealand Veterinary Journal, 65(1), 6–13. https://doi.org/10.1080/00480169.2016.1230525
dc.relation.referencesda Silva, M. S. C., dos Santos Rodrigues, D., Tuerlinckx, S., & Siqueira, C. M. G. (2019). Perfil bioquimico de Albumina e Colesterol em vacas de invernar submetidas a suplementação. Anais Do Salão Internacional de Ensino, Pesquisa e Extensão, 10(1). http://seer.unipampa.edu.br/index.php/siepe/article/view/38760
dc.relation.referencesde Paula, M. R., Rocha, N. B., Miqueo, E., Silva, F. L. M., Coelho, M. G., & Bittar, C. M. M. (2019). Passive immune transfer, health, pre-weaning performance, and metabolism of dairy calves fed a colostrum supplement associated with medium-quality maternal colostrum. Revista Brasileira de Zootecnia, 48. https://doi.org/10.1590/RBZ4820190006
dc.relation.referencesDelves, P. J. (2019). Inmunidad adquirida. Msdmanuals. https://www.msdmanuals.com/es-co/hogar/trastornos-inmunológicos/biología-del-sistema-inmunitario/inmunidad-adquirida
dc.relation.referencesDharmayudha, A. A. G. O., Kusumadarma, I. B. D., Ardana, I. B. K., Anthara, M. S., Gunawan, I. W. N. F., Sudimartini, L. M., & Agustina, K. K. (2018). Aktivitas Alanin Aminotransferase Dan Aspartat Aminotransferase Sapi Bali Terinfeksi Fasciola Gigantica. Buletin Veteriner Udayana, 10(1), 87–92. https://doi.org/10.24843/bulvet.2018.v10.i01.p14
dc.relation.referencesDi Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L. A., & Tablada, E. M. (2014). InfoStat, versión 2014. Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar/index.php?mod=page&id=34
dc.relation.referencesDjokovic, R., Cincovic, M., Ilic, Z., Kurcubic, V., Andjelic, B., Petrovic, M., Lalic, N., & Jasovic, B. (2019). Estimation Metabolic Status in High Yielding Dairy Cows During Transition Period and Full Lactation. Acta Scientiae Veterinariae, 47(1). https://doi.org/10.22456/1679-9216.92100
dc.relation.referencesDjoković, R., Šamanc, H., Jovanović, M., Fratrić, N., Dosković, V., & Stanimirović, Z. (2013). Relationship among blood indicators of hepatic function and lipid content in the liver during transitional period in high-yielding dairy cows. Acta Scientiae Veterinariae, 41(1), 1–6.
dc.relation.referencesEckersall, P. D. (2008). Proteins, Proteomics, and the Dysproteinemias. In J. Jerry Kaneko, J. W. Harvey, & M. L. Bruss (Eds.), Clinical Biochemistry of Domestic Animals (6th ed., pp. 117–155). Academic Press. https://doi.org/10.1016/B978-0-12-370491-7.00005-2
dc.relation.referencesEl-Mandrawy, S. A. M., & Farag, G. K. (2017). Molecular Characterization, Hematological and Biochemical Studies on Foot and Mouth Disease Virus Serotype O in Buffaloes and Cows in Dakahlia Governorate, Egypt. Zagazig Veterinary Journal, 45(2), 156–164. https://doi.org/10.21608/zvjz.2017.7888
dc.relation.referencesElizondo-Salazar, J. A. (2016). Importancia y Manejo del Calostro en el Ganado de Leche. https://extension.psu.edu/importancia-y-manejo-del-calostro-en-el-ganado-de-leche
dc.relation.referencesElizondo-Salazar, Jorge Alberto. (2015). Caracterización de la transferencia de inmunidad pasiva en terneras de lechería. Agronomía Mesoamericana, 26(2), 203–209. https://doi.org/10.15517/am.v26i2.19276
dc.relation.referencesElizondo-Salazar, Jorge Alberto. (2016). Importancia y Manejo del Calostro en el Ganado de Leche. PennState Extension. https://extension.psu.edu/importancia-y-manejo-del-calostro-en-el-ganado-de-leche
dc.relation.referencesElizondo Salazar, J. A. (2007). Alimentación y manejo del calostro en el ganado de leche. Agronomía Mesoamericana, 18(2), 271–281. https://doi.org/10.15517/am.v18i2.5057
dc.relation.referencesElsohaby, I. (2015). Emerging Technologies for the Assessment of Bovine Immunoglobulins in Biofluids [Tesis de Doctorado, University of Prince Edward Island]. https://www.researchgate.net/publication/314036674_Emerging_technologies_for_the_assessment_of_bovine_immunoglobulins_in_biofluids
dc.relation.referencesElsohaby, I., & Keefe, G. P. (2015). Preliminary validation of a calf-side test for diagnosis of failure of transfer of passive immunity in dairy calves. Journal of Dairy Science, 98(7), 4754–4761. https://doi.org/10.3168/jds.2014-9027
dc.relation.referencesFariñas Guerrero, F. (2006). Diarreas víricas en ganado bovino. MG Mundo Ganadero, 17(188), 17–20. https://www.mapa.gob.es/ministerio/pags/biblioteca/revistas/pdf_MG/MG_2006_188_17_20.pdf
dc.relation.referencesFEDEGAN. (2014). Bases para la Formulación del Plan de Acción 2014 – 2018 Para el Mejoramiento de la Ganadería del Departamento de Valle del Cauca. In Federacion nacional de ganadero (FEDEGAN) (Federación Colombiana de Ganaderos (Fedegán) – Fondo Nacional Del Ganado FORO GANADERÍA REGIONAL VISIÓN 2014 -2018). https://estadisticas.fedegan.org.co/DOC/download.jsp?pRealName=10.PlanValleFINAL.pdf&iIdFiles=657.
dc.relation.referencesFEDEGAN. (2019). Plan estratégico de la ganadería colombiana 2019 : por una ganadería moderna y solidaria. Federación Colombiana de Ganaderos. https://www.fedegan.org.co/plan-estrategico-de-la-ganaderia-colombiana-2019
dc.relation.referencesFlaherty, D. (2014). Antibodies. In Immunology for Pharmacy. (pp. 1–271). Elsevier Health Sciences.
dc.relation.referencesFruscalso, V. (2018). Fatores associados à morbidade, à mortalidade e ao crescimento de bezerras leiteiras lactentes [Tesis de Doctorado, Universidade Federal de Santa Catarina]. https://repositorio.ufsc.br/bitstream/handle/123456789/192813/PAGR0418-T.pdf?sequence=-1
dc.relation.referencesFurman-Fratczak, K., Rzasa, A., & Stefaniak, T. (2011). The influence of colostral immunoglobulin concentration in heifer calves’ serum on their health and growth. Journal of Dairy Science, 94(11), 5536–5543. https://doi.org/10.3168/jds.2010-3253
dc.relation.referencesGarcía Alegría, K. (2015). Suplementación mineral y vitamánica de vacas lecheras en trópico durante el periodo de transición: efecto sobre perfil metabólico, lácteo, hormonal y resistencia insulínica [Tesis de Maestria, Universidad Nacional De Colombia. Sede Palmira]. http://bdigital.unal.edu.co/49128/1/1113636754.2015.pdf
dc.relation.referencesGelsinger, S., & Heinrichs, A. J. (2017). A Short Review: The Immune System of the Dairy Calf and the Importance of Colostrum IgG. Journal of Dairy, Veterinary & Animal Research, 5(3), 104–107. https://doi.org/10.15406/jdvar.2017.05.00144
dc.relation.referencesGelsinger, S. L. (2016). Tools to Assess Colostrum Management. PennState Extension. https://extension.psu.edu/tools-to-assess-colostrum-management
dc.relation.referencesGodden, S. (2008). Colostrum Management for Dairy Calves. Veterinary Clinics of North America: Food Animal Practice, 24(1), 19–39. https://doi.org/10.1016/J.CVFA.2007.10.005
dc.relation.referencesGodden, S. M., Lombard, J. E., & Woolums, A. R. (2019). Colostrum Management for Dairy Calves. Veterinary Clinics of North America - Food Animal Practice, 35(3), 535–556. https://doi.org/10.1016/j.cvfa.2019.07.005
dc.relation.referencesGross, J. J., Schwarz, F. J., Eder, K., van Dorland, H. A., & Bruckmaier, R. M. (2013). Liver fat content and lipid metabolism in dairy cows during early lactation and during a mid-lactation feed restriction. Journal of Dairy Science, 96(8), 5008–5017. https://doi.org/10.3168/jds.2012-6245
dc.relation.referencesHailu, M., Ambaw, B., Muluneh, G., Singa, A. K., & Woinue, Y. (2019). Review on Colostrum and Passive Immunity in New Boren Calve. International Journal of Research and Analytical Reviews, 6(1), 739–751. http://ijrar.org/papers/IJRAR19J1923.pdf
dc.relation.referencesHampe, M., & Wehrend, A. (2019). Bestimmung der Immunglobulin-G-Versorgung beim neugeborenen Kalb. Tierärztliche Praxis Ausgabe G: Großtiere / Nutztiere, 47(2), 97–109. https://doi.org/10.1055/a-0858-4038
dc.relation.referencesHerrera Benavides, Y., Brunal Tachad, E., Campillo, J., Rugeles Pinto, C., & Martínez Humanes, N. (2018). Perfil proteico en vacas lactantes y novillas de vientre. Revista Colombiana de Ciencia Animal - RECIA, 10(2), 179–183. https://doi.org/10.24188/recia.v10.n2.2018.624
dc.relation.referencesHerry, V., Gitton, C., Tabouret, G., Répérant, M., Forge, L., Tasca, C., Gilbert, F. B., Guitton, E., Barc, C., Staub, C., Smith, D. G. E., Germon, P., Foucras, G., & Rainard, P. (2017). Local immunization impacts the response of dairy cows to Escherichia coli mastitis. Scientific Reports, 7(1), 1–18. https://doi.org/10.1038/s41598-017-03724-7
dc.relation.referencesHoldridge, L. R. (1987). Ecología basada en zonas de vida (H. Jimènez Saa (Trans.)). Instituto Interamericano de Cooperación para la Agricultura. https://books.google.es/books?hl=es&lr=&id=m3Vm2TCjM_MC&oi=fnd&pg=PR9&dq=Ecología+basada+en+zonas+de+vida.+.&ots=oNdH0s2FyI&sig=_zBrnfwfknsC8BlRxdqVMARM0zU#v=onepage&q=Ecología basada en zonas de vida. .&f=false
dc.relation.referencesHomerosky, E. R., Timsit, E., Pajor, E. A., Kastelic, J. P., & Windeyer, M. C. (2017). Predictors and impacts of colostrum consumption by 4 h after birth in newborn beef calves. The Veterinary Journal, 228, 1–6. https://doi.org/10.1016/J.TVJL.2017.09.003
dc.relation.referencesHromadkova, J. (2018). Effect of feeding management on neuroendocrine system and colonisation of gut bacteria in neonatal dairy calves [Tesis de Maestria, University of Alberta]. https://doi.org/10.1590/s1809-98232013000400007
dc.relation.referencesHulbert, L. E., & Moisá, S. J. (2016). Stress, immunity, and the management of calves. Journal of Dairy Science, 99(4), 3199–3216. https://doi.org/10.3168/jds.2015-10198
dc.relation.referencesHurley, W. L., & Theil, P. K. (2011). Perspectives on immunoglobulins in colostrum and milk. Nutrients, 3(4), 442–474. https://doi.org/10.3390/nu3040442
dc.relation.referencesICA. (2018). Censo Pecuario Nacional - 2018. Instituto Colombiano Agropecuario (ICA). https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018.aspx
dc.relation.referencesInman, C., & Hudson, C. (2009). Cattle immunology: vaccination and immunological testing. Livestock, 14(4), 35–39. https://doi.org/10.1111/j.2044-3870.2009.tb00295.x
dc.relation.referencesInnate Immune Responses in Cattle. (2016). Bio-Rad-Antibodies. https://www.bio-rad-antibodies.com/static/2015/bovine-adaptive-and-innate-immunity/innate-immune-reponses-in-cattle.pdf
dc.relation.referencesKaneko, Jerry Jiro, Harvey, J. W., & Bruss, M. L. (Eds.). (2008). Clinical Biochemistry of Domestic Animals (6th ed.). Elesevier. https://books.google.es/books?hl=es&lr=&id=spsD4WQbL0QC&oi=fnd&pg=PP1&dq=Clinical+Biochemistry+of+Domestic+Animals+Sixth+Edition&ots=T0d1bFpq2d&sig=5ju0IgPngoKUaEL_KidlsNZNyA8#v=onepage&q=Clinical Biochemistry of Domestic Animals Sixth Edition&f=false
dc.relation.referencesKlein-Jöbstl, D., Iwersen, M., & Drillich, M. (2014). Farm characteristics and calf management practices on dairy farms with and without diarrhea: A case-control study to investigate risk factors for calf diarrhea. Journal of Dairy Science, 97(8), 5110–5119. https://doi.org/10.3168/jds.2013-7695
dc.relation.referencesKlinkon, M., & Ježek, J. (2012). Values of Blood Variables in Calves. A Bird’s-Eye View of Veterinary Medicine, 301–320. https://doi.org/10.5772/32100
dc.relation.referencesLago, A., Socha, M., Geiger, A., Cook, D., Silva-del-Río, N., Blanc, C., Quesnell, R., & Leonardi, C. (2018). Efficacy of colostrum replacer versus maternal colostrum on immunological status, health, and growth of preweaned dairy calves. Journal of Dairy Science, 101(2), 1344–1354. https://doi.org/10.3168/jds.2017-13032
dc.relation.referencesLarzábal, M., Cataldi, A. A., & Vilte, D. A. (2019). Human and Veterinary Vaccines against Pathogenic Escherichia coli. In The Universe of Escherichia coli (pp. 1–20). intechopen. https://doi.org/10.5772/intechopen.82835
dc.relation.referencesLawrence, K., Broerse, N., Hine, L., Yapura, J., & Tulley, W. J. (2017). Prevalence of failure of passive transfer of maternal antibodies in dairy calves in the Manawatu region of New Zealand. New Zealand Veterinary Journal, 65(1), 1–5. https://doi.org/10.1080/00480169.2016.1224207
dc.relation.referencesMas, A., Sanes, J. M., Reyes, J. A., Pallares, F. J., & Seva, J. I. (2010). Influencia de diferentes situaciones de estrés en la actividad enzimática muscular en bovino de lidia (Bos Taurus). Anales de Veterinaria de Murcia, 26, 33–41. http://revistas.um.es/analesvet/article/viewFile/125021/117051.
dc.relation.referencesMawatari, T., Hirano, K., Ikeda, H., Tsunemitsu, H., & Suzuki, T. (2014). Surveillance of diarrhea-causing pathogens in dairy and beef cows in Yamagata Prefecture, Japan from 2002 to 2011. Microbiology and Immunology, 58(9), 530–535. https://doi.org/10.1111/1348-0421.12174
dc.relation.referencesMcGee, M., & Earley, B. (2019). Review: passive immunity in beef-suckler calves. Animal, 13(4), 810–825. https://doi.org/10.1017/S1751731118003026
dc.relation.referencesMcGrath, B. A., Fox, P. F., McSweeney, P. L. H., & Kelly, A. L. (2016). Composition and properties of bovine colostrum: a review. Dairy Science and Technology, 96(2), 133–158. https://doi.org/10.1007/s13594-015-0258-x
dc.relation.referencesMorrill, K. M., Robertson, K. E., Spring, M. M., Robinson, A. L., & Tyler, H. D. (2015). Validating a refractometer to evaluate immunoglobulin G concentration in Jersey colostrum and the effect of multiple freeze–thaw cycles on evaluating colostrum quality. Journal of Dairy Science, 98(1), 595–601. https://doi.org/10.3168/jds.2014-8730
dc.relation.referencesMostafavi, M., Seifi, H. A., Mohri, M., & Jamshidi, A. (2013). Optimal thresholds of metabolic indicators of hepatic lipidosis in dairy cows. Revue de Médecine Vétérinaire, 164(12), 564–571. https://www.researchgate.net/publication/279674012_Optimal_thresholds_of_metabolic_indicators_of_hepatic_lipidosis_in_dairy_cows
dc.relation.referencesNagyová, V., Tóthová, C., & Nagy, O. (2017). The impact of colostrum intake on the serum protein electrophoretic pattern in newborn ruminants. Journal of Applied Animal Research, 45(1), 498–504. https://doi.org/10.1080/09712119.2016.1218886
dc.relation.referencesNickell, J. S., Keil, D. J., Settje, T. J., Lectenberg, K. F., & Singu, Vijayakrishna, Woolums, A. R. (2016). Efficacy and safety of a novel DNA immunostimulant in cattle. The Bovine Practioner, 50(1), 9–20. https://www.researchgate.net/publication/316488275_Efficacy_and_safety_of_a_novel_DNA_immunostimulant_in_cattle
dc.relation.referencesNoya, A., Serrano‐Pérez, B., Villalba, D., Casasús, I., Molina, E., López‐Helguera, I., & Sanz, A. (2019). Effects of maternal subnutrition during early pregnancy on cow hematological profiles and offspring physiology and vitality in two beef breeds. Animal Science Journal, 1–13. https://doi.org/10.1111/asj.13215
dc.relation.referencesOtter, A. (2013). Diagnostic blood biochemistry and haematology in cattle. In Practice, 35(1), 7–16. https://doi.org/10.1136/inp.e8719
dc.relation.referencesPardo M, D., & Oliver E, O. (2012). Identificación de agentes infecciosos asociados con Diarrea Neonatal Bovina en la Sabana de Bogotá. MVZ Córdoba, 17(3), 3162–3168. http://www.scielo.org.co/pdf/mvz/v17n3/v17n3a10.pdf
dc.relation.referencesPardo Mora, D. P. (2012). Determinación de los factores de riesgo y de los agentes etiologicos asociados con la presentación de diarrea Neonatal Bovina (DNB) en fincas de la Sabana de Bogota [Tesis de Maestria, Universidad Nacional de Colombia. Sede Bogotá]. http://www.bdigital.unal.edu.co/6420/1/dollypatriciapardomora.2012.pdf?
dc.relation.referencesPérez Zuluaga, T., & Contreras Villalba, R. A. (2014). Evaluación de dos métodos de suministro de calostro en neonatos bovinos, Hacienda la Esperanza, Sopó Cundinamarca. [Tesis de Pregrado, Universidad de la Salle]. http://repository.lasalle.edu.co/bitstream/handle/10185/17182/14062147_2014.pdf?sequence=1&isAllowed=y
dc.relation.referenceszl, W., Zerbe, H., Günther, J., Seyfert, H. M., Hussen, J., & Schuberth, H.-J. (2018). Pathogen-specific responses in the bovine udder. Models and immunoprophylactic concepts. Research in Veterinary Science, 116, 55–61. https://doi.org/10.1016/j.rvsc.2017.12.012
dc.relation.referencesPulendran, B., & Ahmed, R. (2006). Translating innate immunity into immunological memory: Implications for vaccine development. Cell, 124(4), 849–863. https://doi.org/10.1016/j.cell.2006.02.019
dc.relation.referencesPulido-Medellín, M. O., Andrade-Becerra, R. J., Iván Rodríguez-Vivas, R., & Garcia-Corredor, D. J. (2014). Prevalencia y posibles factores de riesgo en la excreción de ooquistes de Cryptosporidium spp en bovinos de Boyacá, Colombia Prevalence and possible risk factors for Cryptosporidium spp oocyst excretion in dairy cattle in Boyacá, Colombia. Revista Mexicana de Ciencias Pecuarias, 5(3), 357–364. http://www.scielo.org.mx/pdf/rmcp/v5n3/v5n3a8.pdf
dc.relation.referencesQuigley, J. (2004). The role of oral immunoglobulins in systemic and intestinal immunity of neonatal calves. Cedar Rapid, Iowa, USA: Diamond V Mills. http://www.dairyweb.ca/Resources/PDHGA2006/Quigley3.pdf
dc.relation.referencesQuigley, J. (2016). Calf Note 186 – Serum total protein and colostrum replacers. Calfnotes. http://www.calfnotes.com/pdffiles/CN186.pdf
dc.relation.referencesQuigley, J. D., Lago, A., Chapman, C., Erickson, P., & Polo, J. (2013). Evaluation of the Brix refractometer to estimate immunoglobulin G concentration in bovine colostrum. Journal of Dairy Science, 96(2), 1148–1155. https://doi.org/10.3168/jds.2012-5823
dc.relation.referencesRabinovitz, B. C., Gerhardt, E., Tironi Farinati, C., Abdala, A., Galarza, R., Vilte, D. A., Ibarra, C., Cataldi, A., & Mercado, E. C. (2012). Vaccination of pregnant cows with EspA, EspB, γ-intimin, and Shiga toxin 2 proteins from Escherichia coli O157:H7 induces high levels of specific colostral antibodies that are transferred to newborn calves. Journal of Dairy Science, 95(6), 3318–3326. https://doi.org/10.3168/jds.2011-5093
dc.relation.referencesReyes-Castañeda, L. J., Parra-Arango, J. L., & Flórez–Díaz, H. (2016). Concentración de inmunoglobulina G en calostro bovino en cruces Bos taurus x Bos indicus en los primeros tres días pos parto. Orinoquia, 20(1), 39–45. http://www.scielo.org.co/pdf/rori/v20n1/v20n1a04.pdf
dc.relation.referencesRoa-Vega, M. L., Ladino-Romero, E. A., & Hernández-Martínez, M. C. (2017). Indicadores de bioquímica sanguínea en bovinos suplementados con Cratylia argentea y Saccharomyces cerevisiae. Pastos y Forrajes, 40(2), 144–151. http://scielo.sld.cu/pdf/pyf/v40n2/pyf08217.pdf
dc.relation.referencesRomero Peñuela, M. H., Uribe-Velásquez, L. F., & Sánchez Valencia, J. A. (2011). Biomarcadores de estrés como indicadores de bienestar animal en ganado de carne. Biosalud, Revista Ciencias Básicas, 10(1), 71–87. https://cerac.unlpam.edu.ar/index.php/veterinaria/article/view/1729
dc.relation.referencesRondón Barragan, I. S. (2004). Inmunoestimulantes en medicina veterinaria. Revista Orinoquia, 8(2), 56–75. http://www.redalyc.org/articulo.oa?id=89680206
dc.relation.referencesRussell, K. E., & Roussel, A. J. (2007). Evaluation of the Ruminant Serum Chemistry Profile. Veterinary Clinics of North America - Food Animal Practice, 23(3), 403–426. https://doi.org/10.1016/j.cvfa.2007.07.003
dc.relation.referencesSalas Riczker, A. (2001). Inmunomoduladores : Usos clmicos y perfil farmacodinamico de los inmunoestimulantes biologicos . Revista de La Facultad de Ciencias Médicas (Quito), 26(2–3), 3–10. http://revistadigital.uce.edu.ec/index.php/CIENCIAS_MEDICAS/article/view/922/928
dc.relation.referencesSamarütel, J., Baumrucker, C. R., Gross, J. J., Dechow, C. D., & Bruckmaier, R. M. (2016). Quarter variation and correlations of colostrum albumin, immunoglobulin G1 and G2 in dairy cows. Journal of Dairy Research, 83(2), 209–218. https://doi.org/10.1017/S0022029916000091
dc.relation.referencesSchäff, C. T., Gruse, J., Maciej, J., Mielenz, M., Wirthgen, E., Hoeflich, A., Schmicke, M., Pfuhl, R., Jawor, P., Stefaniak, T., & Hammon, H. M. (2016). Effects of feeding milk replacer ad libitum or in restricted amounts for the first five weeks of life on the growth, metabolic adaptation, and immune status of newborn calves. PLoS ONE, 11(12), 1–24. https://doi.org/10.1371/journal.pone.0168974
dc.relation.referencesSears, K. T., Tennant, S. M., Reymann, M. K., & Simon, R. (2017). Bioactive Immune Components of Anti-Diarrheagenic Enterotoxigenic Escherichia coli Hyperimmune Bovine Colostrum Products. Clinical and Vaccine Immunology, 24(8), 1–14.
dc.relation.referencesSeppä-Lassila, L., Oksanen, J., Herva, T., Dorbek-Kolin, E., Kosunen, H., Parviainen, L., Soveri, T., & Orro, T. (2018). Associations between group sizes, serum protein levels, calf morbidity and growth in dairy-beef calves in a Finnish calf rearing unit. Preventive Veterinary Medicine, 161, 100–108. https://doi.org/10.1016/J.PREVETMED.2018.10.020
dc.relation.referencesShahnawaz, S., Ali, M., Aslam, M. A., Fatima, R., Chaudhry, Z. I., Hassan, M. U., Ali, M., & Iqbal, F. (2011). A study on the prevalence of a tick-transmitted pathogen, Theileria annulata, and hematological profile of cattle from Southern Punjab (Pakistan). Parasitology Research, 109(4), 1155–1160. https://doi.org/10.1007/s00436-011-2360-1
dc.relation.referencesShawky, S. M., Thabet, N. S., Orabi, S. H., & Nayel, M. A. (2016). A Comparative Study on the Hemato-Biochemical and Immunological Effects of the Hexavalent FMD Vaccine Alone or in Combination with Trivalent FMD Vaccine in Cattle. Journal of Biosciences and Medicines, 4(1), 16–26. https://doi.org/10.4236/jbm.2016.41003
dc.relation.referencesSingh, A. K., Pandita, S., Vaidya, M. M., Singh, S. V., Chandra, G., Pampoori, Z. A., Huozha, R., Pathan, M. M., Kushwaha, R., & Sharma, V. K. (2011). Bovine colostrums and neonate immunity : A review. Agricultural Reviews, 32(2), 72–90. https://www.researchgate.net/publication/262562157_Bovine_colostrums_and_neonate_immunity_A_review
dc.relation.referencesSmith, G. S., Walter, G. L., & Walker, R. M. (2013). Clinical Pathology in Non-Clinical Toxicology Testing. In W. M. Haschek, C. G. Rousseaux, & M. A. Wallig (Eds.), Haschek and Rousseaux’s Handbook of Toxicologic Pathology (3rd ed., pp. 565–594). Academic Press,. https://doi.org/10.1016/B978-0-12-415759-0.00018-2.
dc.relation.referencesSoriano Toloza, M. F. (2014). Evaluación de la efectividad de la vacuna Escherichia Coli k99 en bovinos de leche en dos fincas en la sabana de Bogotá [Tesis de Pregrado, Universidad de la Salle]. http://repository.lasalle.edu.co/bitstream/handle/10185/17578/14101600_2014.pdf?sequence=3&isAllowed=y
dc.relation.referencesSpitalniak, K., Kupczynski, R., Piasecki, T., & Zwyrzykowska, A. (2016). Infectious Agents of Calf Mortality in Neonatal Period. MendelNet, 279–283. https://mendelnet.cz/pdfs/mnt/2016/01/50.pdf
dc.relation.referencesStark, A., Wellnitz, O., Dechow, C., Bruckmaier, R., & Baumrucker, C. (2015). Colostrogenesis during an induced lactation in dairy cattle. Journal of Animal Physiology and Animal Nutrition, 99(2), 356–366. https://doi.org/10.1111/jpn.12205
dc.relation.referencesTizard, I., & Payne, S. L. (2019). Active Immunization. MSD Manual Veterinary. https://www.msdvetmanual.com/pharmacology/vaccines-and-immunotherapy/active-immunization.
dc.relation.referencesTizard, I. R. (2009). Inmunidad en el feto y el recién nacido. In Diorki (Trans.), Introducción Inmunologia Veterinaria (8th ed., pp. 1–574). Elsevier. https://www.academia.edu/35951470/Inmunologia-Veterinaria-Tizard.pdf
dc.relation.referencesTizard, I. R. (2018). Inmunidad innata humoral: mediadores de la inflamación. In Inmunología veterinaria (10th ed., pp. 18–49). Elsevier.
dc.relation.referencesTodd, C. G., McGee, M., Tiernan, K., Crosson, P., O’Riordan, E., McClure, J., Lorenz, I., & Earley, B. (2018). An observational study on passive immunity in Irish suckler beef and dairy calves: Tests for failure of passive transfer of immunity and associations with health and performance. Preventive Veterinary Medicine, 159, 182–195. https://doi.org/10.1016/J.PREVETMED.2018.07.014
dc.relation.referencesTorsein, M., Lindberg, A., Sandgren, C. H., Waller, K. P., Törnquist, M., & Svensson, C. (2011). Risk factors for calf mortality in large Swedish dairy herds. Preventive Veterinary Medicine, 99(2–4), 136–147. https://doi.org/10.1016/J.PREVETMED.2010.12.001
dc.relation.referencesTóthová, C., Mihajlovičová, X., & Nagy, O. (2017). The Use of Serum Proteins in the Laboratory Diagnosis of Health Disorders in Ruminants. In The Husbandry, Economic and Health Aspects (pp. 125–126). IntechOpen. https://doi.org/10.5772/intechopen.72154
dc.relation.referencesTóthová, C., Nagy, O., Kováč, G., & Nagyová, V. (2016). Changes in the concentrations of serum proteins in calves during the first month of life. Journal of Applied Animal Research, 44(1), 338–346. https://doi.org/10.1080/09712119.2015.1031791
dc.relation.referencesTrujillo Hernández, S. (2014). Variación energética, proteica, hormonal y láctea durante el período gestación - posparto en vacas doble propósito [Tesis de Maestria, Universidad Veracruzana]. https://cdigital.uv.mx/bitstream/handle/123456789/39979/trujillohernandezsandra.pdf?sequence=1&isAllowed=y
dc.relation.referencesUETAKE, K. (2013). Newborn calf welfare: A review focusing on mortality rates. Animal Science Journal, 84(2), 101–105. https://doi.org/10.1111/asj.12019
dc.relation.referencesVendrig, J. C., Coffeng, L. E., & Fink-Gremmels, J. (2012). Equine colostral carbohydrates reduce lipopolysaccharide-induced inflammatory responses in equine peripheral blood mononuclear cells. Equine Veterinary Journal, 44(SUPPL. 43), 68–72. https://doi.org/10.1111/j.2042-3306.2012.00680.x
dc.relation.referencesWeaver, D. M., Tyler, J. W., VanMetre, D. C., Hostetler, D. E., & Barrington, G. M. (2000). Passive Transfer of Colostral Immunoglobulins in Calves. Journal of Veterinary Internal Medicine, 14, 569–577. https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1939-1676.2000.tb02278.x
dc.relation.referencesWindeyer, M. C., & Gamsjäger, L. (2019). Vaccinating Calves in the Face of Maternal Antibodies: Challenges and Opportunities. In Veterinary Clinics of North America - Food Animal Practice (Vol. 35, Issue 3, pp. 557–573). W.B. Saunders. https://doi.org/10.1016/j.cvfa.2019.07.004
dc.relation.referencesWoolums, A. R. (2007). accinating calves: new information on the effects of maternal immunity. In Proceedings AABP Conference, 40, 10–17.
dc.relation.referencesWoolums, Amelia R. (2008). Immune Development of the Ruminant Neonate. In Dairy cattle. (pp. 1–5). http://www.dairyweb.ca/Resources/MNC2008/Woolums.pdf
dc.relation.referencesYepes Mejía, M., & Prieto Quevedo, C. (2011). Relación de la concentración de proteína sérica, la calidad de calostro y la ganancia de peso en terneros lactantes en hatos de la sabana de Bogotá [Tesis de Pregrado, Universidad de la Salle]. http://repository.lasalle.edu.co/bitstream/handle/10185/6383/T13.11 Y43r.pdf?sequence=1
dc.relation.referencesYilmaz, Ö., & Kasikci, G. (2013). Factors affecting colostrum quality of ewes and immunostimulation. Turkish Journal of Veterinary and Animal Sciences, 37(4), 390–394. https://doi.org/10.3906/vet-1210-33
dc.relation.referencesZemankova, N., Chlebova, K., Matiasovic, J., Prodelalova, J., Gebauer, J., & Faldyna, M. (2016). Bovine lactoferrin free of lipopolysaccharide can induce a proinflammatory response of macrophages. BMC Veterinary Research, 12(1), 1–9. https://doi.org/10.1186/s12917-016-0878-2
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalInmunidad pasiva
dc.subject.proposalpassive immune
dc.subject.proposalcalves
dc.subject.proposalterneros
dc.subject.proposalRID
dc.subject.proposalRID
dc.subject.proposalcalostro
dc.subject.proposalcolostrum
dc.type.coarhttp://purl.org/coar/resource_type/c_93fc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/WP
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito