Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorRangel Churio, Jesús Orlando
dc.contributor.authorOrdoñez Espinosa, Claudia Mercedes
dc.date.accessioned2020-08-20T14:47:34Z
dc.date.available2020-08-20T14:47:34Z
dc.date.issued2016-02-05
dc.identifier.citationOrdoñez-Espinosa, C.M. 2019. Composición florística, estructura y servicios ecosistémicos en sistemas agroforestales con Theobroma cacao L. en el departamento del Huila. Tesis Doctoral. Facultad de Ciencias. Departamento de Biología. Universidad Nacional de Colombia-Sede Bogotá. Repositorio institucional. 217 pp
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78109
dc.description.abstract47 plots (1000 m2 each) with agroforestry systems (AFS) were characterized based on the floristic composition and aspects of the vegetation structure. Statistical analyses (analysis of main components, conglomerates and univariate variance) were used to form AFS typologies based on these aspects, richness, density of individuals and incident ra-diation. After defining the types of PBS, the yield of cocoa in each of them was evaluated, as well as its relationship with floristic composition, aspects of structure, richness, density of individuals that make up the AFS, incident radiation, and it was compared with cocoa production systems with free TEL exposure (14 plots of 1000 m2 each). Carbon storage in aboveground biomass was compared between production systems (PBS and TEL). In order to know how the flow of sap and water potential of cocoa trees is influenced by the floristic composition, aspects of structure, incident radiation and microclimatic conditions of PBS types, measurements were made of sap flow (Vs), water potential, relative air humidity (RHa), average day temperature (Ta), photosynthetically active radiation (PAR), vapour pressure deficit (VPD), soil temperature, volumetric water content in the produc-tion systems (PAS and TEL) at two times (wet season - maximum precipitation and mini-mum dry season precipitation). Vegetation was classified into seven groups based on characteristic species - dominant or differential: PBS dominated by Guarea guidonia and Pseudosamanea guachapele, Erythrina poeppigiana and Matisia cordata, Musa paradi-siaca, Gliricidia sepium and Cordia alliadora, Gmelina arborea, Psidium guajava and PBS dominated by Manguifera indica. Two types of PBS were discriminated: multiple complex with high diversified shade (CMAD) and simple complex with low specialized shade (EDB), statistically different due to the richness of tree species, the Shannon and Sim-pson Index, total density of individuals, density of musaceae, crown area, crown area of musaceae, basal area, average hours of shade per year, leaf area index (transmitted radiation) and variance in the morning, midday and afternoon. Correlation analysis allowed to explain the direct and indirect effects between the variables radiation, structure (they affect 78% of the total variability of cocoa yield in an agroforestry system). It was found that the radiation component (shadow hours and Foliar Area Index variables) was the most important factor that influenced yield variability. The cocoa bean yield presented a higher value in TEL (71 Kg/plot and 719 Kg/ha), although there were no significant dif-ferences with the PBS type EDB (63 kg/plot and 703 Kg/ha). The AFS type CMAD registered the lowest value (36 kg/plot and 338 kg/ha). The highest values of total carbon stored in aboveground biomass were recorded in Ficus dendrocida, Sapium cuatrecasii, Enterolobium cyclocarpum, Erythrina poeppigiana, Ficus pallida, Guazuma ulmifolia, Cedrela montana, Ficus hartwegii, Erythrina fusca and Jacaranda caucana (between 5.9 and 1.2 Mg of carbon in 0.1 ha). In the carbon stored in the stem, the species with the highest content were Sapium cuatrecasii (45.29%) and Enterolobium cyclocarpum (44.74%) and species such as Casearia corymbosa (40.72%), Pseudosa-manea guachapele (44.33%), Anacardium excelsum (33.48%) and Maclura tinctoria (32%) are typical of Dry Forest ecosystems. The AFS CMAD stored the highest amount of carbon in aboveground biomass (4.43 Mg C/0.1 ha), followed by the AFS EDB (1.7 Mg C/0.1 ha) and the lowest value in the TEL free-exposure system (0.3 Mg C/0.1 ha). Du-ring the monitoring period the values of cocoa sap flow in the productive systems varied between 0.25 L h-1 and 0.18 L h-1 with the lowest value recorded in the AFS - CMAD and the highest value in the TEL plot. The water potential farthest from zero (-1.49 Mpa) was observed in the TEL plot and the one closest to zero (-0.47 Mpa) was recorded in CMAD. The behavior observed in the flow of sap and water potential in cocoa plants depends on the meteorological conditions RHa (%), Ta (ºC), PAR (μmol m-2 s-1) and VPD (kPa) and varies according to the time of year, the time of day and the cocoa production system (PBS or free exposure).
dc.description.abstractSe caracterizaron con base en la composición florística y aspectos de la estructura de la vegetación 47 parcelas (1000 m2 cada una) con sistemas agroforestales (SAF), luego mediante análisis estadísticos (análisis de componentes principales, de conglomerados y varianza univariado) se conformaron tipologías de SAF basadas en esos aspecto, la ri-queza, densidad de individuos y radiación incidente. Luego de definir los tipos de SAF se evaluó el rendimiento del cacao en cada uno de ellos y su relación con composición flo-rística, aspectos de la estructura, la riqueza, densidad de individuos que conforman el SAF, radiación incidente y se comparó con sistemas de producción de cacao a libre ex-posición TEL (14 parcelas de 1000 m2 cada una). El almacenamiento de carbono en biomasa aérea se comparó entre los sistemas de producción (SAF y TEL). Para conocer como se ve influenciado el flujo de savia y potencial hídrico de los árboles de cacao por la composición florística, aspectos de la estructura, radiación incidente y las condiciones microclimáticas de los tipos de SAF, se realizaron mediciones del flujo de savia (Vs), potencial hídrico, humedad relativa del aire (RHa), temperatura media del día (Ta), la radiación fotosintéticamente activa (PAR), déficit presión de vapor (VPD), temperatura del suelo, contenido volumétrico del agua en los sistemas de producción (SAF y TEL) en dos momentos (época húmeda - máxima precipitación y época seca mínima precipita-ción). La vegetación se clasificó en siete grupos con base en las especies característi-cas- dominantes o diferenciales: SAF dominados por Guarea guidonia y Pseudosamanea guachapele, Erythrina poeppigiana y Matisia cordata, Musa paradisiaca, Gliricidia sepium y Cordia alliadora, Gmelina arborea, Psidium guajava y SAF dominados por Manguifera indica. Se discriminaron dos tipologías de SAF: complejo múltiple con alta sombra diver-sificada (CMAD) y complejo simple con baja sombra especializada (EDB) diferentes estadisticamente por la riqueza de especies arbóreas, los Índice de Shannon y Simpson, densidad total de individuos, densidad de musáceas, área de copa, área de copa de mu-sáceas, área basal, promedio horas sombra año, índice de área foliar (radiación transmi-tida) y la varianza del mismo en la mañana, medio día y tarde. El análisis de correlacio-nes permitió explicar los efectos directos e indirectos entre las variables radiación, es-tructura (inciden en un 78% en la variabilidad total del rendimiento del cacao en un sis-tema agroforestal). Se encontró que el componente de radiación (variables horas sombra e Índice de Área Foliar) fue el factor más importante que influyo sobre la variabilidad del rendimiento. El rendimiento del grano de cacao presentó un mayor valor en TEL (71 Kg/parcela y 719 Kg/ha), aunque no se presentaron diferencias significativas con el SAF tipo EDB (63 kg/parcela y 703 Kg/ha). El SAF tipo CMAD registró el menor valor (36 kg/parcela y 338 Kg/ha). Los mayores valores de carbono total almacenado en biomasa aérea se registraron en Ficus dendrocida, Sapium cuatrecasii, Enterolobium cyclocar-pum, Erythrina poeppigiana, Ficus pallida, Guazuma ulmifolia, Cedrela montana, Ficus hartwegii, Erythrina fusca y Jacaranda caucana (entre 5,9 y 1,2 Mg de carbono en 0.1 ha). En el carbono almacenado en tallo las especies con mayor contenido fueron Sapium cuatrecasii (45,29%) y Enterolobium cyclocarpum (44,74%) y especies como Casearia corymbosa (40,72%), Pseudosamanea guachapele (44,33%), Anacardium excelsum (33,48%) y Maclura tinctoria (32%) son propias de ecosistemas de Bosque Seco. El SAF CMAD almacenó la mayor cantidad de carbono en biomasa aérea (4,43 Mg C/0.1 ha), seguido del SAF EDB (1.7 Mg C/0.1 ha) y el menor valor en el sistema a libre exposición TEL (0,3 Mg C/0.1 ha). Durante el periodo de monitoreo los valores de flujo de savia de cacao en los sistemas productivos variaron entre 0.25 L h-1 y 0.18 L h-1 con el menor valor registrado en el SAF – CMAD y el mayor valor en la parcela TEL. El potencial hídri-co más alejado de cero (-1.49 Mpa) se observó en la parcela TEL y el más cercano a cero (-0,47 Mpa) se registró en CMAD. El comportamiento observado en el flujo de savia y el potencial hídrico en plantas de cacao depende de las condiciones meteorológicas RHa (%), Ta (ºC), PAR (μmol m-2 s-1) y VPD (kPa) y varía según la época del año, la hora del día y el sistema de producción de cacao (SAF o de libre exposición).
dc.description.sponsorshipServicio Nacional de Aprendizaje - Sistema de Investigación, Innovación y Desarrollo Tecnológico SENNOVA
dc.format.extent217
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Biología
dc.titleComposición Florística, estructura y servicios ecosistémicos en sistemas agroforestales con Theobroma cacao L. en el departamento del Huila
dc.title.alternativeFloristic composition, structure and ecosystem services in agroforestry systems with Theobroma cacao L. in the department of Huila
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectAnálisis de la estructura vegetativa y productiva de cacao (Theobroma cacao L) bajo arreglos agroforestales en la zona de influencia del Centro de Formación Agroindustrial La Angostura
dc.description.additionalLínea de Investigación: Biodiversidad y Conservación
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Biología
dc.contributor.corporatenameCentro de Formación Agroindustrial, SENA Regional Huila
dc.contributor.researchgroupGrupo de Investigación Agroindustrial
dc.description.degreelevelDoctorado
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesABBAS, F., H.M. HAMMAD., S. FAHAD., S. CERDÀ., A. RIZWAN., M., FARHAD, W., ... & H.F., BAKHAT. 2017. Agroforestry: a sustainable environmental practice for carbon sequestration under the climate change scenarios—a review. Environmental Science and Pollution Research 24 (12): 11177-11191
dc.relation.referencesASHTON, P. M. S., F. MONTAGNINI, F., & M.J. KELTY, M. J. 2000. Defining silvicultural systems within agroforestry. In: ASHTON, M. & F. MONTAGNINI (Eds.). The Silvicultural Basis for Agroforestry Systems. pp 251-268 CRC Press. Boca Raton, Florida, USA.
dc.relation.referencesBISSELEUA, D. H. B., A.D, MISSOUP & S. VIDAL. 2009. Biodiversity conservation, eco-system functioning, and economic incentives under cocoa agroforestry intensifica-tion. Conservation Biology 23 (5): 1176-1184
dc.relation.referencesCARR., M. K. V. & G. LOCKWOOD. 2011. The water relations and irrigation requirements of cocoa (Theobroma cacao L.) a review. Experimental Agriculture 47(04): 653-676
dc.relation.referencesFAOSTAT. 2014. [En Línea] [Consultado 06-08- 2015]. Disponible en: http://www.fao.org/faostat/en/#data/QC
dc.relation.referencesGOCKOWSKI, J., & D. SONWA. 2011. Cocoa Intensification Scenarios and Their Pre-dicted Impact on CO2 Emissions, Biodiversity Conservation, and Rural Livelihoods in the Guinea Rain Forest of West Africa. Environmental Management 48:307–321
dc.relation.referencesGHEZEHEI, S. B., J.G, ANNANDALE & C.S. EVERSON. 2015. Modelling radiation inter-ception and water balance in agroforestry systems. Pp 41-56. In: Black, C., Wilson, J., Ong, C.K. (eds.). Tree–Crop Interactions: Agroforestry in a Changing Climate. Formerly of University of Nottingham. Centre for Ecology and Hydrology. 335 pp. Wallingford, UK
dc.relation.referencesINTERNATIONAL COCOA ORGANIZATION - ICCO. 2014. Quarterly Bulletin of Cocoa Statistics, Vol. XL, No. 1, Cocoa year 2013/14.
dc.relation.referencesJAGORET, P., D. SNOECK., E. BOUAMBI, H.T. NGNOGUE., S. NYASSÉ & S. SAJ. 2018. Rehabilitation practices that shape cocoa agroforestry systems in Central Came-roon: key management strategies for long-term exploitation. Agroforestry Systems 92: 1185 -1199.
dc.relation.referencesJAGORET, P., I. MICHEL, H.T. NGNOGUÉ, P. LACHENAUD, D. SNOECK & E. MALÉ-ZIEUX. 2017. Structural characteristics determine productivity in complex cocoa agrofor-estry systems. Agronomy for Sustainable Development 37: 60 pp.
dc.relation.referencesJACOBI, J., C. ANDRES, M. SCHNEIDER, M. PILLCO, P. CALIZAYA & S. RIST. 2013. Carbon stocks, tree diversity, and the role of organic certification in different cocoa pro-duction systems in Alto Beni, Bolivia. Agroforestry systems 88:1117–1132
dc.relation.referencesPRECIADO, O., C.I. OCAMPO & W.B. POSSÚ. 2011. Caracterización del sistema tradi-cional de producción de cacao (Theobroma cacao.) en seis núcleos productivos del mu-nicipio de Tumaco, Nariño. Revista de Ciencias Agrícolas 28 (2): 58-69.
dc.relation.referencesREIFSNYDER, W. S., W.E. REIFSNYDER & T. DARNHOFER. 1989. Meteorology and Agroforestry: Proceedings of an International Workshop on the Application of Meteorology to Agroforestry Systems Planning and Management, Nairobi, pp 9-13.
dc.relation.referencesSOMARRIBA, E & C. HARVEY. 2003. ¿Cómo integrar producción sostenible y conserva-ción de biodiversidad en cacaotales indígenas?. Agroforestería en las Américas 10 (37-38): 12 -17.
dc.relation.referencesSAJ, S., E. TORQUEBIAU., E. HAINZELIN, J. PAGES & F. MARAUX. 2017. The way forward: an agroecological perspective for Climate-Smart Agriculture. Journal Agriculture, Ecosystems & Environment 250: 20-24.
dc.relation.referencesSLINGO, J. M., A.J. CHALLINOR, B.J. HOSKINS & T.R. WHEELER. 2005. Introduction: food crops in a changing climate. Journal Philosophical Transactions of the Royal Society B: Biological Sciences 360 (1463): 983-1989.
dc.relation.referencesASASE, A., & D.A TETTEH. 2010. The role of complex agroforestry systems in the conservation of forest tree diversity and structure in southeastern Ghana. Agroforestry systems 79 (3): 355-368.
dc.relation.referencesBEER, J., R. MUSCHLER., D. KASS, & E. SOMARRIBA. 1998. Shade management in coffee and cacao plantations. Agroforestry systems 38 (1-3): 139-164.
dc.relation.referencesBENJAMÍN, T., M. LUNDY, M. WILCOX, F. RODRIGUEZ-CAMAYO, C. KELLY, P. ABBOTT, G. BURNISKE, M. CROFT, M. FENTON. 2016. Cacao para la paz: un análisis de la cadena produc-tiva del cacao en Colombia. Presentación. Centro Internacional de Agricultura Tropical (CIAT). 43 pp.
dc.relation.referencesBISSELEUA D., B. HERVÉ & S. VIDAL. 2008. Plant biodiversity and vegetation structure in traditional cocoa forest gardens in southern Cameroon under different management. Biodiversity and Conservation 17 (8): 1821-1835.
dc.relation.referencesCÁRDENAS, D. & N. SALINAS (eds.). 2007. Libro rojo de plantas de Colombia. Serie Libros Rojos de Especies Amenazadas de Colombia. Instituto de Investigacion y Recursos Biológicos Alexander von Humboldt y Ministerio del Medio Ambiente. Bogotá DC.
dc.relation.referencesCERDA, R., O. DEHEUVELS., D. CALVACHE., L. NIEHAUS., Y. SAENZ., J. KENT ... & E. SOMARRIBA. 2014. Contribution of cocoa agroforestry systems to family income and domestic consumption: looking toward intensification. Agroforestry systems 88(6): 957-981.
dc.relation.referencesCUATRECASAS, J. 1964. Cacao and its allies: a taxonomic revision of the genus Theobroma. In United States National Herbarium. Division of Botany, & United States National Museum. (ed.). Systematic Plant Studies: 379–614. Smithsonian Institution. Washington, DC.
dc.relation.referencesDEHEUVELS.O. 2011. Compromis entre productivité et biodiversité sur un gradient d'intensité de gestion de systèmes agroforestiers à base de cacaoyers de Talamanca, Costa Rica. Tesis de doctorado. Montpellier SupAgro. Ecosystèmes, Agronomie. 185 pp.
dc.relation.referencesFAOSTAT. 2014. Recuperado en: http://www.fao.org/faostat/en/#data/QC
dc.relation.referencesFARFÁN, C.P & J. H. DUARTE. 2011. Forrajes destinados a la alimentación de pequeños rumi-antes en los sistemas de producción existentes del Municipio de Villavieja, Huila. Revista Agro-foresteria Neotropical 1: 74 -75.
dc.relation.referencesFIGUEROA-C., Y. 2004. Guía ilustrada de la Flora del desierto de La Tatacoa, Huila Colombia. Trabajo de grado. Acta biológica Colombiana 9 (2): 88 pp.
dc.relation.referencesGOCKOWSKI J., M. TCHATAT, J.P. DONDJANG, G. HIETET, T. FOUDA. 2010 An empirical analysis of the biodiversity and economic returns to cocoa agroforests in southern Cameroon. Journal of Sustainable Forestry 29 (6-8): 638-670.
dc.relation.referencesINTERNATIONAL COCOA ORGANIZATION – ICCO 2014. Quarterly Bulletin of Cocoa Statistics, Vol. XL, No. 1, Cocoa year 2013/14.
dc.relation.referencesJAGORET, P., D. SNOECK, E. BOUAMBI, H.T. NGNOGUE, S. NYASSÉ & S. SAJ. 2018. Reha-bilitation practices that shape cocoa agroforestry systems in Central Cameroon: key manage-ment strategies for long-term exploitation. Agroforestry Systems 92(5): 1185-1199.
dc.relation.referencesJAGORET, P., I. MICHEL, H.T. NGNOGUÉ, P. LACHENAUD, D. SNOECK & E. MALÉZIEUX. 2017. Structural characteristics determine productivity in complex cocoa agroforestry sys-tems. Agronomy for Sustainable Development 37(6): 60 pp.
dc.relation.referencesJAGORET P., H. TODEM NGOGUE, E. BOUAMBI, J.L. BATTINI, S. NYASSÉS. 2009. Diversifi-cation des exploitations agricoles a base de cacaoyer au Centre Cameroun: mythe ou réalité?. Biotechnologie, Agronomie, Société et Environnement 13 (2): 271-280.
dc.relation.referencesJIMÉNEZ-ESCOBAR, N. D., & A.C ESTUPIÑÁN-GONZÁLEZ. 2012. Riqueza de especies arbó-reas utilizadas por las comunidades campesinas del Caribe colombiano. pp. 653–676. En: J.O. Rangel-Ch. (ed.). Colombia Diversidad Biótica XII: La Región Caribe de Colombia. Universidad Nacional de Colombia. Instituto de Ciencias Naturales. 1046 pp. Bogotá D.C.
dc.relation.referencesKOHLER, M., A. HANF, H. BARUS, & D. HÖLSCHER. 2014. Cacao trees under different shade tree shelter: effects on water use. Agroforestry systems 88 (1): 63-73.
dc.relation.referencesLÓPEZ, A & E. SOMARRIBA.2005. Árboles frutales en fincas de cacao orgánico del Alto Beni, Bolivia. Agroforestería en las Américas 44:38–45
dc.relation.referencesMATEY, A., L. ZELEDÓN, L. OROZCO, F. CHAVARRÍA, A. LÓPEZ, O. DEHEUVELS. 2013. Composición florística y estructura de cacaotales y parches de bosque en Waslala, Nicaragua. Agroforestería en las Américas 49: 61-67.
dc.relation.referencesMINISTERIO DE AGRICULTURA Y DESARROLLO RURAL. 2012. Plan decenal cacaotero 2012 – 2021. 130 pp. [En Línea] [Consultado 06-08- 2015]. Disponible en: https://conectarural.org/sitio/sites/default/files/documentos/Plan%20Nacional%20de%20desarrolo%20cacaotero%202012-2021.pdf
dc.relation.referencesMIRANDA, S. 1938. Sombreamento dos cacauais. pp. Boletim Técnico do Instituto de Cacau da Bahia. Instituto de Cacau da Bahia. 1-62 pp
dc.relation.referencesMONTAGNINI, F., E. SOMARRIBA., E. MURGUEITIO., H. FASSOLA., B. EIBL. 2015. Sistemas agroforestales funciones productivas, socioeconómicas y ambientales. Editorial CIPAV. 454 pp. Cali, Colombia
dc.relation.referencesMOGUEL P. & V.M. TOLEDO.1999. Biodiversity conservation in traditional coffee systems of Mexico. Conservation biology 13(1): 11-21.
dc.relation.referencesMOTAMAYOR, J. C., P. LACHENAUD., J.W. DA SILVA., E. MOTA., R. LOOR., D.N. KUHN., J.S. BROWN., R.J. Schnell. 2008. Geographic and genetic population differentiation of the Ama-zonian chocolate tree (Theobroma cacao). PLoS One 3 (10): 1 – 8.
dc.relation.referencesNAIR, P.K.R (ed). 2010. The agronomy and economy of important tree crops of the developing. Elseivier. 368 pp. Amsterdam.
dc.relation.referencesNAIR, P.K.R., B.M. KUMAR, V.D. Nair. 2009. Agroforestry as a strategy for carbon sequestra-tion. Journal of Plant Nutrition and Soil Science 172 (1):10-23
dc.relation.referencesNARVÁEZ-ESPINOZA, O., B. GONZÁLEZ-RIVAS. & G. CASTRO-MARÍN. 2018. Composición, estructura, diversidad e incremento de la vegetación arbórea secundaria en trópico seco en Nandarola, Nicaragua. Revista científica La Calera 15(25): 111-116.
dc.relation.referencesNOMO, B., B.A. MADONG & F. SINCLAIR. 2008. Status of non-cocoa tree species in cocoa mul-tistrata systems of southern. International Journal of Biological and Chemical Sciences 2(2): 207-215
dc.relation.referencesOROZCO, L., O. DEHEUVELS, E. SOMARRIBA, M. VILLALOBOS. 2013. El cacao en Centroa-mérica: resultados del diagnóstico de familias, fincas y cacaotales (Línea base del Proyecto Competitividad y ambiente en los paisajes cacaoteros de Centroamérica). Turrialba, Costa Rica, CATIE. 162 pp.
dc.relation.referencesOROZCO, L., A. LÓPEZ & E. SOMARRIBA. 2008. Enriquecimiento de fincas cacaoteras con frutales y maderables en Alto Beni, Bolivia. Agroforestería en las Américas 46: 65–72
dc.relation.referencesOROZCO AGUILAR., L. & A. LÓPEZ SAMPSON. 2013a. Evolución, aplicación y futuro de la agroforestería en Nicaragua. Agroforestería en las Américas 49: 99-110
dc.relation.referencesPROEXPORT. 2012. Cacao Colombiano fino y de aroma. [En Línea] [Consultado 08-06- 2015]. Disponible en: http://www.inviertaencolombia.com.co/images/Perfil%20Cacao%202012.pdf
dc.relation.referencesRANGEL-CH, O., & G. LOZANO-C. 1986. Un perfil de vegetación entre La Plata (Huila) y el vol-cán del Puracé. Caldasia (68-70): 503-547.
dc.relation.referencesRANGEL-CH JO., A. VELÁZQUEZ. 1997. Métodos de estudio de la vegetación. En: J.O. RAN-GEL-CH, P. LOWY-C, M. AGUILAR-P M (eds.). Colombia diversidad biotica II: Tipos de vegeta-ción en Colombia. Instituto de Ciencias Naturales. Universidad Nacional de Colombia. Instituto de Ciencias Naturales. 436 pp. Bogotá D.C.
dc.relation.referencesRICE, R.A. & R. GREENBERG. 2000. Cacao cultivation and the conservation of biological diver-sity. Journal of the Human Environment 29(3): 167-173
dc.relation.referencesROJAS, L. 2016. Manejo de doseles de sombra bajo arreglos agroforestales con cacao (Theo-broma cacao) en el norte del departamento del Huila. Tesis de Maestría. Universidad de la Ama-zonia. Facultad de Ciencias Agropecuarias. 29. pp
dc.relation.referencesROJAS, L. C., L.G. CUELLAR, Y.K. SÁNCHEZ, & J.C. SUAREZ. 2015. Especies arbóreas de uso múltiple en zonas de bosque seco tropical en el sur de Colombia. Momentos de Cien-cia, 12(1): 17-14.
dc.relation.referencesSÁNCHEZ, D., M. LÓPE., A. MEDINA., R. GÓMEZ, R., C. HARVEYS., S. VÍLCHEZ., B. HER-NÁNDEZ., F. LÓPEZ., M. JOYA., F. SINCLAIR & S. KUNTH. 2004. Importancia ecológica y so-cioeconómica de la cobertura arbórea en un paisaje fragmentado de bosque seco de Belen, Ri-vas, Nicaragua. Encuentro (68): 7-22.
dc.relation.referencesSAMBUICHI R.H., D.B. VIDAL, F.B. PIASENTIN, J.G. JARDIM, T.G. VIANA, A.A. MENEZES., L.N. DURVAL., D.A. MELLO., V.C. BALIGAR. 2012. Cabruca agroforests in southern Bahia, Brazil: tree component, management practices and tree species conservation. Biodiversity and Conservation 21 (4): 1055–1077
dc.relation.referencesSAMBUICHI, R. H. R. 2006. Estrutura e dinâmica do componente arbóreo em área de cabruca na região cacaueira do sul da Bahia, Brasil. Acta Bot Bras 20 (4): 943-954.
dc.relation.referencesSECRETARÍA DE AGRICULTURA Y MINERÍA DEL HUILA. 2015. Indicadores de la cadena del cacao. [En Línea] [Consultado 08-06-2015]. Disponible en: http://www.huila.gov.co/publicaciones/5067/cadena-productiva-cacao/
dc.relation.referencesSONWA, D. J., B.A. NKONGMENECK., S.F. WEISE., M. TCHATAT., A.A. ADESINA & M.J. JANSSENS. 2007. Diversity of plants in cocoa agroforests in the humid forest zone of Southern Cameroon. Journal Biodiversity and Conservation 16(8): 2385-2400.
dc.relation.referencesSOMARRIBA, E., J. BEER, J. ALEGRE-ORIHUELA, H.J. ANDRADE, R. CERDA, F. DE-CLERCK..…& L. KRISHNAMURTHY. 2012. Mainstreaming agroforestry in Latin America. In: NAIR P., GARRITY D. (eds). Agroforestry - The Future of Global Land Use. Advances in Agrofo-restry. Springer. 453 pp. Dordrecht, Holanda.
dc.relation.referencesSOMARRIBA, E., & P. LACHENAUD. 2013. Successional cocoa agroforests of the Amazon–Orinoco–Guiana shield. Forests, Trees and Livelihoods, 22(1): 51-59.
dc.relation.referencesVILLARROEL, A. C., T. SETOGUCHI, J. BRIEVA & C. MACÍA. 1996. Geology of the La Tatacoa desert (Huila, Colombia): precisions on the stratigraphy of the Honda Group, the evolution of the Patá High, and the presence of the La Venta fauna. In: Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy 58 (1-2): 41-66.
dc.relation.referencesYOUNG, A.M. 1994. The Chocolate Tree: A Natural History of Cacao. Smithsonian Institution Press. 200 pp. Washington. DC
dc.relation.referencesAGUIRRE., C. O. 2004. Índices para la caracterización del estrato arbóreo de ecosistemas forestales. Revista Ciencia Forestal en México 27: 5–27.
dc.relation.referencesBEER, J. R., D. MUSCHLER & E. SOMARRIBA. 1998. Shade management in coffee and cacao plantations.Tropical Agroforestry Research 38: 139–164.
dc.relation.referencesBISSELEUA, D.H.B., S. VIDAL. 2008. Plant biodiversity and vegetation structure in tradi-tional cocoa forest gardens in southern Cameroon under different management. Biodivers Conserv 17: 1821–1835
dc.relation.referencesBISSELEUA, D.H.B., D. FOTIO., Y. MISSOUP, A.D., VIDAL. 2013. Shade tree diversity, cocoa pest damage, yield compensating inputs and farmers' net returns inWest Africa. PLoS ONE 8(3): 1 – 9.
dc.relation.referencesCLARK., P.J & F.C. EVANS. 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35: 445–453.
dc.relation.referencesCHEN, C.F., W.J. LIU, X.J. JIANG, J.E. WU. 2017. Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: Implications for land use. Geoderma 299: 13–24
dc.relation.referencesCHARBONNIER, F., G. LE MAIRE, E. DREYER, F. CASANOVES, M. CHRISTINA, J. DAUZAT, J.U.H. EITEL, P. VAAST, L.A. VIERLING, O. ROUPSARD. 2013. Competition for light in heterogeneous canopies: application of MAESTRA to a coffee (Coffea arabica L.) agroforestry system. Agricultural and Forest Meteorology 181: 152-169.
dc.relation.referencesDRAY., S & A.B. DUFOUR .2007. The ade package: Implementing the duality diagram for ecologists. Journal of Statistical Software 22: 1–20.
dc.relation.referencesDAYMOND, A.J, P. HADLEY, R.C.R MACHADO, & E. NG. 2002. Canopy characteristics of contrasting clones of cacao (Theobroma cacao). Experimental Agriculture, 38(3): 359-367.
dc.relation.referencesDI RIENZO, J. A. InfoStat version 2015. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.
dc.relation.referencesFEDERACIÓN NACIONAL DE CACAOTEROS - FEDECACAO. 2017. Departamento de estadistica. [En Línea] [Consultado 10-11- 2015]. Disponible en: http://www.fedecacao.com.co/portal/index.php/es/2015-02-12-17-20-59/nacionales.
dc.relation.referencesSELESI, D. 2013. Agroforestry Production Systems and Socioeconomic Aspects of Small-holder Cacao Farmer Households in the Sumaco Biosphere Reserve in Ecuador. Master, Humboldt Universitat zu Berlin. 78 pp.
dc.relation.referencesJADÁN, O., B. TORRES, D. SELESI, D. PEÑA, C. ROSALES & S. GUNTER. 2016. Diver-sidad florística y estructura en cacaotales tradicionales y bosque natural (Sumaco, Ecua-dor). Colombia forestal 19(2): 121-142.
dc.relation.referencesGAO, L., H. XU, H. BI, W. XI, B. BAO, X. WANG, C. BI, & Y. CHANG. 2013. Intercropping competition between apple trees and crops in agroforestry systems on the loess plateau of China. PLoS One 8: 1-8.
dc.relation.referencesGIDOIN, C., J. AVELINO, O. DEHEUVELS, C. CILAS & M.A.N. BIENG. 2014. Shade tree spatial structure and pod production explain frosty pod rot intensity in cacao agroforests, Costa Rica. Phytopathology 104 (3): 275-281.
dc.relation.referencesGIDOIN, C., R. BABIN, L.B. BEILHE, C. CILAS, G.M. TEN HOOPEN & M.A.N BIENG 2014a. Tree spatial structure, host composition and resource availability influence mirid density or black pod prevalence in cacao agroforests in Cameroon. PloS one 9 (10): 1-12.
dc.relation.referencesGOCKOWSKI, J. & D. SONWA. 2011. Cocoa Intensification Scenarios and Their Predicted Impact on CO2 Emissions, Biodiversity Conservation, and Rural Livelihoods in the Guinea Rain Forest of West Africa. Environmental Management 8 (2): 307-321.
dc.relation.referencesHARJA., D & G. VINCENT. 2008. Spatially Explicit Individual-based Forest Simulator—User Guide and Software. World Agroforestry Centre (ICRAF) and Institut de Recherche pour le Développement (IRD). 93 pp.
dc.relation.referencesJAGORET, P., I. MICHEL-DOUNIAS & E. MALE´ZIEUX. 2011. Long-term dynamics of cocoa agroforests: a case study in central Cameroon. Agroforestry systems 81: 267–278
dc.relation.referencesKIECK, J. S., K.L ZUG, H.H. YUPANQUI, R.G. ALIAGA & A. CIERJACKS. 2016. Plant diversity effects on crop yield, pathogen incidence, and secondary metabolism on cacao farms in Peruvian Amazonia. Agriculture, Ecosystems & Environment 222: 223-234.
dc.relation.referencesLEUSCHNER, C., G. MOSER, D. HERTEL, S. ERASMI, D. LEITNER, H. CULMSEE., B. Schuldt., L. Schwendenmann. 2013. Conversion of tropical moist forest into cacao agrofor-est: consequences for carbon pools and annual C sequestration. Agroforestry Systems 87(5):1173–87.
dc.relation.referencesLÊ, S., J. JOSSE & F. HUSSON. 2008. FactoMineR: an R package for multivariate analy-sis. Journal of statistical software 25(1): 1-18
dc.relation.referencesONG, C. K., & P.A. HUXLEY. 1996. Tree-crop interactions: a physiological approach. C.K. ONG & P. Huxley (eds.). 26 pp. Wallingford, UK.
dc.relation.referencesONG, C. K., C.R. BLACK, J.S. WALLACE, A.A.H. KHAN, J.E. LOTT, N. JACKSON... & D.M. SMITH. 2000. Productivity, microclimate and water use in Grevillea robusta-based agroforestry systems on hillslopes in semi-arid Kenya. Agriculture, ecosystems & environ-ment 80 (1-2): 121-141.
dc.relation.referencesONG, C., C.R. BLACK, J. WILSON, C. MUTHURI, J. BAYALA & N.A JACKSON. 2014. Agroforestry: hydrological impacts. pp. 244-252. In: N. Van (ed.), Encyclopedia of Agriculture and Food Systems. Elsevier Press, San Diego, California.
dc.relation.referencesMIYAJI, K-I., W. S. DA SILVA, & P. DE, T. ALVIM. 1997. Longevity of leaves of a tropical tree, Theobroma cacao, grown under shading in relation to position within the canopy and time of emergence. The New Phytologis 135 (3): 445–454.
dc.relation.referencesNGO BIENG, M. A, C. GIDOIN, J. AVELINO, C. CILAS, O. DEHEUVELS, J. WERY. 2013a. Diversity and spatial clustering of shade trees affect cacao yield and pathogen pressure in Costa Rican agroforests. Basic and Applied Ecology 14 (4): 329–336.
dc.relation.referencesNGO BIENG, M.A., C. GINISTY, F. GOREAUD, T. PEROT .2006. A first typology of Oak and Scots pine mixed stands in the Orleans forest (France), based on the canopy spatial structure. New Zealand Journal of Forestry Science 36(2-3): 325–346
dc.relation.referencesMENDES., F & S.M. REIS. 2013. Importância socioeconômica e ambiental. In: P.J.S. NE-TO., P.G.G. MATOS., A.C.S. MARTINS & A.P. SILVA. (eds.) Manual Técnico do Cacauei-ro para a Amazônia Brasileira. CEPLAC/SUEPA, 235 pp.Brasil.
dc.relation.referencesMINISTERIO DE AGRICULTURA Y DESARROLLO RURAL. 2012. Plan decenal cacaote-ro 2012 – 2021. 130 pp. [En Línea] [Consultado 06-08- 2015]. Disponible en: https://conectarural.org/sitio/sites/default/files/documentos/Plan%20Nacional%20de%20desarrolo%20cacaotero%202012-2021.pdf
dc.relation.referencesMOGUEL., P. & V.M. TOLEDO. 1999. Biodiversity conservation in traditional coffee sys-tems of Mexico. Conservation Biology 13:11–21.
dc.relation.referencesMOGRABI., P.J., B.F.N., ERASMUS, E.T.F. WITKOWSKI, G.P. ASNER, K.J. WESSELS, R. MATHIEU, D.E. KNAPP, R.E. MARTIN, R. MAIN. 2015. Biomass Increases Go under Cover: Woody Vegetation Dynamics in South African Rangelands. PLoS ONE 10 (5): 1 -21
dc.relation.referencesNOMO, B., B. A. MADONG, A., & F. SINCLAIR. 2008. Status of non-cocoa tree species in cocoa multistrata systems of southern. International Journal of Biological and Chemical Sciences 2(2): 207-215.
dc.relation.referencesPROGRAMA DE LAS NACIONES UNIDAS PARA EL DESARROLLO (UNPD). 2014. Pro-yecto Uso sostenible y conservación de la biodiversidad en ecosistemas secos para ga-rantizar el flujo de los servicios ecosistémicos y mitigar procesos de deforestación y deser-tificación. 162 p. [En Línea] [Consultado 06-08-2015]. Disponible en:http://www.co.undp.org/content/dam/colombia/docs/MedioAmbiente/undp-co-prodocEcoSecos-2016.pdf
dc.relation.referencesPEREIRA- COL, P., J. ZULLO- JUN, V. DUBREUIL, G. MIRANDA-RAM, H.S. PINTO, G. CORAL, C. LAZARIM. 2015. Empirical models to predict LAI and aboveground biomass of Coffea arabica under full sun and shaded plantation: a case study of South of Minas Ge-rais, Brazil. . Agroforestry Systems 89:621–636.
dc.relation.referencesQUESADA, F., E. SOMARRIBA & M. MALEK. 2007. ShadeMotion 3.0: Software para cal-cular la cantidad de horas de sombra que proyectan un conjunto de árboles sobre un te-rreno.
dc.relation.referencesRANA, P., S.K. TEWARI, V. KUMAR & A. KUMAR. 2016. Floristic Structure, Composition and Functional Characteristics of Homegardens in Garhwal Region, Uttarakhand In-dia. International Journal of Agriculture, Environment & Biotechnolog 9 (6): 1045 – 1059
dc.relation.referencesRICE, R.A. & R. GREENBERG. 2000. Cacao cultivation and the conservation of biological diversity. Journal of the Human Environment 29(3): 167-173,
dc.relation.referencesSILES, P., J. HARMAND & P. VAAST. 2010. Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Cos-ta Rica. Agroforestry systems 78(3): 269-286.
dc.relation.referencesSONWA, D. J., S. F. WEISE, B. A. NKONGMENECK, M. TCHATAT, & M. J. JANSSENS, 2017. Structure and composition of cocoa agroforests in the humid forest zone of Southern Cameroon. Agroforestry Systems 91(3): 451-470.
dc.relation.referencesSONWA, D. J., B. A. NKONGMENECK, S. F. WEISE, M. TCHATAT, A. A. ADESINA, & M. J. JANSSENS. 2007. Diversity of plants in cocoa agroforests in the humid forest zone of Southern Cameroon. Journal Biodiversity and Conservation 16(8): 2385-2400.
dc.relation.referencesSOMARRIBA, E & J. BEER. 2011. Productivity of Theobroma cacao agroforestry Systems with timber or legume service shade trees. Agroforestry Systems 81: 109-121.
dc.relation.referencesSCHWENDENMANN, L., E. VELDKAMP, G. MOSER, D. HÖLSCHER, M. KÖHLER, Y. CLOUGH, I. ANAS, G. DJAJAKIRANA, S. ERASMI, D. HERTEL, D., LEITNER, C. LEUSCHNER, B.MICHALZIK, P. PROPASTIN, A. TJOA, T. TSCHARNTKE. & O. VAN STRAATEN. 2010. Effects of an experimental drought on the functioning of a cacao agro-forestry system, Sulawesi, Indonesia. Global Change Biology 16: 1515–1530.
dc.relation.referencesSCHROTH, G., E. GARCIA, B.W. GRISCOM, W.G. TEIXEIRA & L.P BARROS. 2016. Commodity production as restoration driver in the Brazilian Amazon? Pasture re-agro-forestation with cocoa (Theobroma cacao) in southern Para. Sustainability Science 11(2): 277-293.
dc.relation.referencesSECRETARÍA DE AGRICULTURA Y MINERÍA DEL HUILA. 2015. Indicadores de la ca-dena del cacao. [En Línea] [Consultado 08-06-2015]. Disponible en: http://www.huila.gov.co/publicaciones/5067/cadena-productiva-cacao/
dc.relation.referencesSHIRIMA, D.D., M. PFEIFER, P.J. PLATTS PJ, S.R. TOTLAND. 2015. Interactions be-tween Canopy Structure and Herbaceous Biomass along Environmental Gradients in Moist Forest and Dry Miombo Woodland of Tanzania. PLoS ONE 10 (11): 1-15.
dc.relation.referencesSUÁREZ, J. C. S., M.A.N. BIENG, L.M. MELGAREJO, J.A. DI RIENZO & F. CA-SANOVES. 2018. First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability. PloS one 13 (2): 1-20.
dc.relation.referencesTEAM, R.D.C. 2016. R: A language and environment for statistical computing. R. In: Foun-dation for Statistical Computing V, Austria.
dc.relation.referencesTOMASSONE R., C. DERVIN & J.P. MASSON. 1993. Biometrie. Modelisation de phe-nomenes biologiques. Masson, Paris. 553 pp
dc.relation.referencesTOLEDO, V.M. & P. MOGUEL. 2012. Coffee and sustainability: the multiple values of tradi-tional shaded coffee. Journal of Sustainable Agriculture 36 (3): 353–377.
dc.relation.referencesYAPP, J.H.H & O. HADLEY. 1994. Inter-relationships between canopy architecture, light interception, vigour and yield in cocoa: implications for improving production efficiency. In: Proc. Int. Cocoa Conf.: Challenges in the 90s, pp 332-350.
dc.relation.referencesWORLD COCOA FOUNDATION .2014. [En Línea] [Consultado 02-10- 2016]. Disponible en: http://worldcocoafoundation.org
dc.relation.referencesBEER, J., A. BONNEMANN, W. CHAVEZ, H.W. FASSBENDER., A.C. IMBACH., I. MAR-TEL. 1990. Modelling agroforestry systems of cacao (Theobroma cacao) with laurel (Cor-dia alliodora) or poro (Erythrina poeppigiana) in Costa Rica. V. Productivity indices, organic material models and sustainability over ten years. Agrofor Syst 12: 229–249
dc.relation.referencesBENJAMIN, T., M. LUNDY., P. ABBOTT., G. BURNISKE., M. CROFT., M., FENTON, ... & M. WILCOX. 2017. Cacao para la Paz: Un Análisis de la Cadena Productiva de Cacao en Colombia. 43 pp.
dc.relation.referencesBISSELEUA, D., A.D. MISSOUP & S. VIDAL. 2009. Biodiversity conservation, ecosystem functioning, and economic incentives under cocoa agroforestry intensifica-tion. Conservation biology, 23(5): 1176-1184
dc.relation.referencesBLASER, W. J., J. OPPONG., E. YEBOAH & J. SIX. 2017. Shade trees have limited bene-fits for soil fertility in cocoa agroforests. Agriculture, Ecosystems & Environment, 243: 83-91.
dc.relation.referencesCERDA, R., O. DEHEUVELS., D. CALVACHE., L. NIEHAUS., Y. SAENZ., J. KENT, ... & E. SOMARRIB. 2014. Contribution of cocoa agroforestry systems to family income and domestic consumption: looking toward intensification. Agroforestry systems, 88(6): 957-981.
dc.relation.referencesDEHEUVELS, O., J. AVELINO., E. SOMARRIBA & E. MALEZIEUX. 2012. Vegetation structure and productivity in cocoa-based agroforestry systems in Talamanca, Costa Ri-ca. Agriculture, Ecosystems & Environment, 149: 181-188.
dc.relation.referencesDI RIENZO, J.A., F. CASANOVES., M.G. BALZARINI., L. GONZÁLEZ., M. TABLADA., C.W. ROBLEDO. 2017. InfoStat versión. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.
dc.relation.referencesFEDECACAO. 2017. Federación Nacional de Cacaoteros. Departamento de estadística. Colombia.http://www.fedecacao.com.co/portal/index.php/es/2015-02-12-17-20-59/nacionales.
dc.relation.referencesGARCÍA, R; P. PERDOMO., O. ORTIZ., P. BELTRÁN., K. LÓPEZ. 2014. Characterization of the supply and value 1. chains of Colombian cocoa. Dyna, 81: 30–40.
dc.relation.referencesINTERNATIONAL COCOA ORGANIZATION.2017. Quarterly Bulletin of Cocoa Statistics, Vol. XL, No. 1, Cocoa year 2016. [En Línea] [Consultado 10-11- 2015]. Disponible en: https://www.icco.org/about-us/icco-news/266-august-2014-quarterly-bulletin-of-cocoa-statistics.html
dc.relation.referencesJAGORET, P., I. MICHEL-DOUNIAS., D. SNOECK., H. TODEN NGNOGUÉ., E. MALÉ-ZIEUX. 2012. Afforestation of savannah with cocoa agroforestry systems: a small-farmer innovation in central Cameroon. Agrofor Syst 86: 493–504
dc.relation.referencesJAGORET, P., O. DEHEUVELS & P. BASTIDE. 2014. Sustainable cocoa production. Learning from agroforestry. Perspective-Cirad, (27): 1-4.
dc.relation.referencesJAGORET, P., I. MICHEL., H.T. NGNOGUÉ., P. LACHENAUD., D. SNOECK & E. MALÉ-ZIEUX. 2017. Structural characteristics determine productivity in complex cocoa agrofor-estry systems. Agronomy for Sustainable Development, 37(6): 60 p.
dc.relation.referencesKOKO, L. K., D. SNOECK., T.T. LEKADOU & A.A. ASSIRI. 2013. Cacao-fruit tree inter-cropping effects on cocoa yield, plant vigour and light interception in Côte d’Ivoire. Agroforestry systems, 87(5): 1043-1052
dc.relation.referencesLOZANO, A. P., V. VEGA & L. JHANORY. 2017. Desarrollo regional sostenible en zonas rurales: Una aproximación al cultivo de cacao en el departamento de Santander. 46 p.
dc.relation.referencesMBOW, C., P. SMITH., D. SKOLE., L. DUGUMA & M. BUSTAMANTE. 2014. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Current Opinion in Environmental Sustainability, 6: 8-14.
dc.relation.referencesMACHADO, L. 2016. Determinar la incidencia de las prácticas de procesos de cosecha y beneficio sobre las variables fisio-quimicas y calidad organoleptica en grano de cacao (Theobroma cacao L), en fincas cacaoteras de la zona norte del departamendel Huila. Tesis de Maestría. Universidad de la Amazonía, Florencia – Caquetá. 74 p.
dc.relation.referencesMINISTERIO DE AGRICULTURA Y DESARROLLO RURAL CONCEJO NACIONAL CA-CAOTERO - MADR CCN. 2012. Plan decenal cacaotero 2012 – 2021. (En Línea). Consul-tado 06 de Agosto. 2014. Disponible en: http://conectarural.org/sitio/sites/default/files/documentos/Plan%20Nacional %20desarrollo%cacaotero%202012-2021.pdf
dc.relation.referencesMALÉZIEUX, E., Y., CROZAT., C. DUPRAZ., M. LAURANS., D. MAKOWSKI., H. OZIER-LAFONTAINE., B. RAPIDEL., S. DE TOURDONNET., M. VALANTIN-MORISON. 2008. Mixing plant species in cropping systems: concepts, tools and models: a review. Agron Sustain Dev 29: 43–62.
dc.relation.referencesNARANJO, C. A., O.O. ORTÍZ-RODRIGUEZ & R.A. VILLAMIZAR-G. 2017. Assessing Green and Blue Water Footprints in the Supply Chain of Cocoa Production: A Case Study in the Northeast of Colombia. Sustainability, 10(1): 38.
dc.relation.referencesNGO BIENG, M.A., C. GIDOIN., J. AVELINO., C. CILAS., O. DEHEUVELS., J. WERY. 2013. Diversity and spatial clustering of shade trees affect cacao yield and pathogen pres-sure in Costa Rican agroforests. Basic Appl Ecol 14 (4):329–336
dc.relation.referencesPOCOMUCHA, V. S., J. ALEGRE & L. ABREGÚ. 2016. Análisis socio económico y car-bono almacenado en sistemas agroforestales de cacao (Theobroma cacao L.) en Huánu-co. Ecología aplicada, 15(2): 107-114.
dc.relation.referencesPINHEIRO, J., D. BATES., S. DEBROY., D. SARKAR. 2016. Effects Models_. R package version 3.1-128, <URL: http://CRAN.R-project.org/package=nlme>
dc.relation.referencesQUIROGA, S., C. SUÁREZ & J.D. SOLÍS. 2015. Exploring coffee farmers’ awareness about climate change and water needs: Smallholders’ perceptions of adaptive capaci-ty. Environmental Science & Policy, 45: 53-66.
dc.relation.referencesRAMÍREZ, O., E. SOMARRIBA., T. LUDEWIGS., P. FERREIRA. 2001. Financial returns, stability and risk of cacao-plantaintimber agroforestry systems in Central America. Agrofor Syst 51:141–154
dc.relation.referencesR DEVELOPMENT CORE TEAM. 2017. R: A language and environment for statistical computing. R. Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-070, URL http://www.R-project.org/
dc.relation.referencesRAFFLEGEAU, S., B. LOSCH., B. DAVIRON., P. BASTIDE., P. CHARMETANT., T. LES-COT., A. PRADES., J. SAINTEBEUVE. 2014. Chapitre7.Contribueràlaproduction et aux marchés internationaux. JM Sourisseau (Ed). Agricultures familiales et mondes à venir. Quae, Versailles. ISBN 978-2-7529-2141. pp 129–143
dc.relation.referencesSAJ, S., P. JAGORET., L.E. ETOA., E.E. FONKENG., J.N. TARLA., J.D.E. NIEBOUKAHO, & K.M. SAKOUMA. 2017. Lessons learned from the long-term analysis of cacao yield and stand structure in central Cameroonian agroforestry systems. Agricultural Systems, 156: 95-104.
dc.relation.referencesSTEFFAN, I., M. KESSLER., J. BARKMANN., M.M. BOS., D. BUCHORI., S. ERASMI, ... & E. GUHARDJA. 2007. Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proceedings of the National Academy of Sciences, 104(12): 4973-4978.
dc.relation.referencesSONWA, D. J. 2004. Biomass management and diversification within cocoa agroforests in the humid forest zone of southern Cameroon. PhD thesis. Institute fur Gartenbauwis-senshaft der Rheinischen FriedrichWilhelms-Universitat Bonn. 112 pp
dc.relation.referencesSOMARRIBA E., R., CERDA., L OROZCO., M. CIFUENTES.,………. O. Deheuvels. 2013. Carbon stocks and cocoa yields in agroforestry systems of Central America. Agric. Ecosyst. Environ: 173, 46‐57.
dc.relation.referencesSOMARRIBA, E., & P. LACHENAUD. 2013. Successional cocoa agroforests of the Ama-zon–Orinoco–Guiana shield. Forests, Trees and Livelihoods, 22(1): 51-59.
dc.relation.referencesTORRES J., A. TENORIO & A. GÓMEZ. 2008. Agroforestería: una estrategia de adapta-ción al cambio climático propuesta de adaptación tecnológica del cultivo de café y cacao en respuesta al cambio climático en San Martín. Ed. Soluciones Prácticas-ITDG. Lima, Perú. 124 p.
dc.relation.referencesWOOD, G.A.R & LASS, R. A (eds). 2001. Cocoa. Oxford: Blackwell Science Ltd. 610 pp..
dc.relation.referencesÁLVAREZ, E. 1993. Composición florística, diversidad, estructura y biomasa de un bosque inundable en la Amazonia Colombiana. Tesis de maestría. Universidad de Antioquia, De-partamento de biología, Facultad de Ciencias Exactas y Naturales. Medellín. 120 pp.
dc.relation.referencesARIAS, H., N.M. RIAÑO & M. ARISTIZÁBAL. 2014. Dinámica de la acumulación de mate-ria seca en dos especies de sombrío usadas en cafetales de Colombia. Revista Cenicafé 65 (2):7-17.
dc.relation.referencesANDRADE, H.J., J.M. FIGUEROA & D. P. SILVA. 2013. Almacenamiento de carbono en cacaotales (Theobroma cacao) en Armero-Guayabal (Tolima, Colombia). Scientia Agroa-limentaria 1: 6-10.
dc.relation.referencesARISTIZÁBAL, J. H., A.M. GUERRA., B.V. GUTIÉRREZ., & M.C. ROMERO. 2002. Estimación de la tasa de fijación de carbono en el sistema agroforestal Nogal cafete-ro (Cordia alliodora)-Cacao (Theobroma cacao L)-Plátano (Musa paradisíaca). Corpora-ción Colombiana de Investigación Agropecuaria, Bogotá (eds).108 pp. Bogotá.
dc.relation.referencesABBAS F, A. AHMAD, M. SAFEEQ, A. ALI, F. SALEEM, H.M. HAMAD, W. FARHAD. 2014. Changes in precipitation extremes over arid to semi-arid and sub-humid Punjab, Pakistan. Theor Appli Climatolo 116:671–680
dc.relation.referencesABBAS, F., H.M. HAMMAD, S. FAHAD, A. CERDÀ, M. RIZWAN, W. FARHAD ... & H.F BAKHAT. 2017. Agroforestry: a sustainable environmental practice for carbon sequestra-tion under the climate change scenarios—a review. Environmental Science and Pollution Research 24(12): 11177-11191
dc.relation.referencesALBRECHT, A., & S.T. KANDJI. 2003. Carbon sequestration in tropical agroforestry sys-tems. Agriculture, ecosystems & environment 99 (1-3): 15-27.
dc.relation.referencesBROWN, S., A.J.R. GILLESPIE, A.E. LUGO. 1991. Biomass of tropical forests of south and southeast Asia. Canadian Journal of Forest Research 21(1): 111-117
dc.relation.referencesBROWN, S & L.R. IVERSON. 1992. Biomass estimates for tropical forests. World Re-source Review 4 (3): 366–383.
dc.relation.referencesCAIRNS, M.A., S. BROWN, E.H. HELMER, G.A. BAUNGARDNER. 1997. Root biomass allocation in the world’s upland forests. Oecologia 111: 1–11.
dc.relation.referencesCONCHA, J., J. ALEGRE, V. POCOMUCHA. 2007. Determinación de las reservas de C en la biomasa aérea de sistemas agroforestales de Theobroma cacao, L. en el departa-mento de San Martín, Perú. Ecología Applicada 6: 75–82.
dc.relation.referencesCOSTANZA, R., R. D'ARGE., R. DE GROOT., S. FABER.,…….M. VAN DEN BELT. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260
dc.relation.referencesDEHEUVELS, O., J. AVELINO, E. SOMARRIBA & E. MALEZIEUX. 2012. Vegetation structure and productivity in cocoa-based agroforestry systems in Talamanca, Costa Rica. Agriculture, Ecosystems & Environment 149: 181-188.
dc.relation.referencesGAMA, E.F., A.C. GAMA-RODRIGUES & P.K.R. NAIR. 2011. Soil carbon seques- tration in cacao Agroforestry Systems: a case study from Bahia, Brazil. In: B.M. Kumar., P.K.R. Nair (Eds.), Carbon Sequestration Potential of Agroforestry Systems: Opportunities and Challenges. pp. 85–99. Springer-Science, New York.
dc.relation.referencesGOODMAN, R. C., O.L PHILLIPS, D. DEL CASTILLO, L. FREITAS, S.T CORTESE, A. MONTEAGUDO & T.R BAKER. 2013. Amazon palm biomass and allometry. Forest Ecolo-gy and Management 310: 994-1004.
dc.relation.referencesIPCC. 2014. Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change Geneva, Switzerland. 151 pp.
dc.relation.referencesINTERNATIONAL COCOA ORGANIZATION. 2017. Quarterly Bulletin of Cocoa Statistics, Vol. XL, No. 1, Cocoa year 2016. [En Línea] [Consultado 10-11- 2015]. Disponible en: https://www.icco.org/about-us/icco-news/266-august-2014-quarterly-bulletin-of-cocoa-statistics.html
dc.relation.referencesJADÁN, O., M. CIFUENTES, B. TORRES, D. SELESI., D. VEINTIMILLA & S. GÜNTER. 2015. Influence of tree cover on diversity, carbon sequestration and productivity of cocoa systems in the Ecuadorian Amazon. Bois et forêts des tropiques 325(3): 35–47.
dc.relation.referencesJOSE, S. 2009. Agroforestry for ecosystem services and environmental benefits: an over-view. Agroforestry Systems 76 (1): 1–10.
dc.relation.referencesJARAMILLO, V.J., B. Kauffman., L. Rentería-Rodríguez., D.L. Cummings., L.J. Ellingson. 2003. Biomass, Carbon, and Nitrogen Pools in Mexican Tropical Dry Forest Landscapes. Ecosystems 6 (7): 609-629
dc.relation.referencesC. Le Quéré., R. Moriarty., R. M. Andrew., J. G. Canadell., S. Sitch, J. I. Korsbakken.,P. Friedlingstein., ………. S. Zaehle, & N. Zeng. 2015. Global Carbon Budget 2015. Earth Syst. Sci. Data 7: 349–396.
dc.relation.referencesMONTAGNINI, F & P.K.R NAIR. 2004. Carbon sequestration: an underex- ploited envi-ronmental benefit of agroforestry systems. Agroforestry Systems 61: 281–295.
dc.relation.referencesMULKEY, S.S., S.J. WRIGHT & A.P. SMITH. 1996. Influence of seasonal drought on the carbon balance of tropical forest plants: 187-216. In: S. S. MULKEY, R. CHAZDON & A. P. SMITH (eds). Tropical Forest Plant Ecophysiology. Springer, Boston.
dc.relation.referencesNAIR, P.K.R & V.D. NAIR. 2014. Solid-fluid-gas: the state of knowledge on carbonseques-tration potential of agroforestry systems in Africa. Curr. Opin. Current Opinion in Environ-mental Sustainability 6: 22–27.
dc.relation.referencesNIJMEIJER, A., P.E. LAURI, J.M. HARMAND & S. SAJ. 2018. Carbon dynamics in cocoa agroforestry systems in Central Cameroon: afforestation of savannah as a sequestration opportunity. Agroforestry Systems 93(3): 851-868.
dc.relation.referencesNOUMI, V. N., V.A. DJONGMO, B. NYECK, R.B.T. MBOBDA & L. ZAPFACK . 2018. Veg-etation structure, carbon sequestration potential and species conservation in four agrofor-estry systems in Cameroon (Tropical Africa). Acta Botanica Brasilica, Acta Botanica Brasil-ica 32(2): 212-221.
dc.relation.referencesN’GBALA, F. N. G., A.M. GUÉI & J.E. TONDOH. 2017. Carbon stocks in selected tree plantations, as compared with semi-deciduous forests in centre-west Côte d’Ivoire. Agricul-ture, Ecosystems & Environment 239: 30-37.
dc.relation.referencesORTIZ, A., L. RIASCOS, E. SOMARRIBA. 2008. Almacenamiento y tasas de fijación de biomasa y C en sistemas agroforestales de cacao (Theobroma cacao) y laurel (Cordia alliodora). Agroforestería en las Américas 46: 26–29.
dc.relation.referencesPRECIADO, O., C.I. OCAMPO & W. B. POSSÚ. 2011. Caracterización del sistema tradi-cional de producción de cacao (Theobroma cacaol.), en seis núcleos productivos del mu-nicipio de Tumaco, Nariño. Revista de Ciencias Agrícolas 28(2): 58-69
dc.relation.referencesRAJAB, Y. A., C. LEUSCHNER., H. BARUS., A. TJOA & D. HERTEL. 2016. Cacao cultiva-tion under diverse shade tree cover allows high carbon storage and sequestration without yield losses. PloS one 11(2): 1- 22.
dc.relation.referencesR DEVELOPMENT CORE TEAM. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
dc.relation.referencesRAHERISON, S.M.; M. GROUZIS. 2005. Plant biomass, nutrient concentration and nutri
dc.relation.referencesSUÁREZ, J. C. 2018. Comportamiento ecofisiológico de Theobroma cacao L. en diferentes arreglos agroforestales bajo condiciones de la Amazonia Colombiana. Tesis Doctoral. Fa-cultad de Ciencias. Departamento de Biología. Universidad Nacional de Colombia-Sede Bogotá. Repositorio institucional. 147 pp.
dc.relation.referencesSONWA, D. J., B.A. NKONGMENECK, S.F. WEISE, M. TCHATAT, A.A. ADESINA & M.J. JANSSENS. 2007. Diversity of plants in cocoa agroforests in the humid forest zone of Southern Cameroon. Biodiversity and Conservation 16(8): 2385-2400
dc.relation.referencesTANAKA, A. & J. YAMAGUCHI, J. 1984. Producción de Materia Seca, Componentes del Rendimiento y Rendimiento del grano en Maíz. Traducido al español de J. Kohashi Shiba-ta. Taller del Colegio de postgraduados. Montecillo, México, 120 pp
dc.relation.referencesTAKIMOTO, A., P.R. NAIR & V.D. NAIR. 2008. Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agriculture, Ecosystems & Environment 125 (1-4): 159-166.
dc.relation.referencesTURNER, N.C., G.C. WRIGHT & K.H.M. SIDDIQUE. 2001. Adaptation of grain legumes (pulses) to water-limited environments. Advances in Agronomy 71: 193-231
dc.relation.referencesTSCHARNTKE, T., Y. CLOUGH, S.A. BHAGWAT, D. BUCHORI, H. FAUST, D. HERTEL, D. HÖLSCHER, J. JUHRBANDT, M. KESSLER, I. PERFECTO, C. SCHERBER, G. SCHROTH, E. VELDKAMP, T.C. WANGER. 2011. Multifunctional shade-tree management in tropical agroforestry landscapes–a review. Journal of Applied Ecology, 48(3), 619-629.
dc.relation.referencesVÁSQUEZ, A & H. ARELLANO. 2012. Estructura, Biomasa aérea y carbono almacenado en los bosques del Sur y Noroccidente de Córdoba. pp. 963–1009. En: J.O. Rangel-Ch. (ed.). Colombia Diversidad Biótica XII: La Región Caribe de Colombia. Universidad Nacional de Colombia. Instituto de Ciencias Naturales. 1046 pp. Bogotá D.C.
dc.relation.referencesALLEN, R., S. PEREIRA, D. RAES & M. SMITH. (eds.) 2006. Evapotranspiración del cultivo: Guías para determinación los requerimientos de agua de los cultivos.322 pp. FAO, Roma, Italia.
dc.relation.referencesBURGESS, S.S.O., M.A. ADAMS., N.C. TURNER., C.R. BEVERLY., C.K. ONG., A.A.H. KHAN., T.M. BLEBY. 2001. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology 21: 589–598.
dc.relation.referencesBRÉDA, N., R. HUC., A. GRANIER., E. DREYER. 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation process-es and long-term consedwquences. Annals of Forest Science 63 (6): 625–644.
dc.relation.referencesALI, M.H. 2010. Crop water requirement and irrigation scheduling. Fundamentals of irriga-tion an on farm water management: vol 1. Springer, New York, pp 399–452
dc.relation.referencesARGUS CONTROL SYSTEMS. 2009.Understanding and using VPD.Argus application Note.Argus Control Systems Ltd. White Rock.
dc.relation.referencesARAQUE, O., R. JAIMEZ., W. TEZARA., I. CORONEL., R. URICH., W. ESPINOZA. 2012. Comparative photosynthesis, water relations, Growth and survival rates in juvenile criollo Cacao cultivars (Theobroma cacao) during dry and wet seasons. Experimental Agriculture 48(4): 513–522.
dc.relation.referencesAZCÓN-BIETO., J. & M. TALÓN (eds). 2000. Fundamentos de la fisiología vegetal. 522 pp. Madrid, España.
dc.relation.referencesASSMANN., S. & D. GRANTZ. 1990. The magnitude of the stomatal response to blue light. Plant Physiology 93: 701-709.
dc.relation.referencesBLEBY, T. M., S.S. BURGESS & M.A. ADAMS. 2004. A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata sap-lings. Functional Plant Biology, 31(6): 645-658.
dc.relation.referencesBURGESS, S., & A. DOWNEY. 2014. SFM1 sap flow meter manual. ICT international Pty Ltd, Armidale, NSW, Australia. 128 pp.
dc.relation.referencesBURGESS, S.S.O., M.A. ADAMS., N.C. TURNER., C.K. ONG. 1998. The redistribution soil water by tree root systems. Oecologia: 115,306–311.
dc.relation.referencesCASSIANI, G., J. BOAGA., D. VANELLA., M.T. PERRI & S. CONSOLI. 2015. Monitoring and modelling of soil–plant interactions: the joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone. Hydrology and Earth System Sciences 19(5): 2213-2225.
dc.relation.referencesCERDA, R. 2009. La planta de cacao: Distribución eco fisiología – fenología. Centro Agronómico Tropical de Investigación y Enseñanza. Colombia. 189 pp.
dc.relation.referencesCONESA, M. R., TORRES, R., DOMINGO, R., NAVARRO, H., SOTO, F., & PÉREZ-PASTOR, A. 2016. Maximum daily trunk shrinkage and stem water potential reference equations for irrigation scheduling in table grapes. Agricultural Water Management 172: 51-61.
dc.relation.referencesCHEN, L.X., Z.Q. ZHANG., B.E. EWERS. 2012. Urban tree species show the same hy-draulic response to vapor pressure deficit across varying tree size and environmental con-ditions. PLoS One 7 (10): 1-10.
dc.relation.referencesCONEJERO, W., J.J. ALARCÓN., Y. GARCÍA-ORELLANA., E. NICOLÁS & A. TORRECI-LLA. 2007. Evaluation of sap flow and trunk diameter sensors for irrigation scheduling in early maturing peach trees. Tree physiology 27(12): 1753-1759.
dc.relation.referencesDAYMOND, A. J., P. HADLEY., R.C.R. MACHADO & E. NG. 2002. Canopy characteristics of contrasting clones of cocoa (Theobroma cacao). Experimental Agriculture 38:359–367
dc.relation.referencesDENG, X., R. JOLY & D. HAHN. 1990. The influence of plant water deficit on distribution of 14C-labelled assimilates in cacao seedlings. Annals of botany 66:211–217.
dc.relation.referencesDIERICK, D., N. KUNERT., M. KÖHLER., L. SCHWENDENMANN., D. HÖLSCHER. 2010. Comparison of tree water use characteristics in reforestation and agroforestry stands across the tropics. pp 293-308. In: TSCHARNTKE T., C. LEUSCHNER., E. VELDKAMP., H. FAUST., E. GUHARDJA., A. BIDIN (eds) Tropical Rainforests and Agroforests under Global Change. Environmental Science and Engineering (Environmental Engineering). Springer, Berlin, Heidelberg.
dc.relation.referencesDIXON, M. A., J. GRACE & M.T. TYREE. 1984. Concurrent measurements of stem densi-ty, leaf and stem water potential, stomatal conductance and cavitation on a spaling of Thu-ja occidentalis L. Plant, Cell & Environment 7(8): 615-618.
dc.relation.referencesDU, S., Y.L. WANG., T. KUME., J.G. ZHANG., K. OTSUKI., N. YAMANAKA & G.B. LIU. 2011. Sapflow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China. Agricultural and Forest Meteorology 151(1): 1-10.
dc.relation.referencesESPINAL, S. 1977. Zonas de vida y formaciones vegetales de Colombia. Instituto Geogra-fico Augustin Codazzi, IGAC, Vol. XIII No. 11. Bogotá. 337 pp.
dc.relation.referencesESPINAL., C., H. MARTÍNEZ COVALEDA & L. ORTIZ- HERMIDA. 2005. La cadena del cacao en Colombia: una mirada global de su estructura y dinámica 1991-2005. Documento de trabajo No. 58: pp 1-58. . [En
dc.relation.referencesEPILA, J., W.H. MAES., H. VERBEECK., J. VAN CAMP., J.B.L. OKULLO & K. STEPPE. 2017. Plant measurements on African tropical Maesopsis eminii seedlings contradict pio-neering water use behaviour. Environmental and experimental botany 135: 27-37.
dc.relation.referencesFRICKE, W. 2016. Water transport and energy. Plant Cell Environ 40: 977-994.
dc.relation.referencesFERNANDEZ, J.E. & M.V. CUEVAS. 2010. Irrigation scheduling from stem diameter varia-tions: a review. Agricultural and Forest Meteorology 150 (2): 135-151
dc.relation.referencesFERNANDES, T. J., A.D. DEL CAMPO., R. HERRERA., A.J. MOLINA. 2016. Simultane-ous assessment, through sap flow and stable isotopes, of water use efficiency (WUE) in thinned pines shows improvement in growth, tree-climate sensitivity and WUE, but not in WUEi. Forest Ecology and Management 361: 298-308.
dc.relation.referencesFORD, C. R., C.E. GORANSON., R.J. MITCHELL., R.E. WILL., R. O. TESKEY. 2004. Di-urnal and seasonal variability in the radial distribution of sap flow: predicting total stem flow in Pinus taeda trees. Tree Physiology 24(9): 951-960.
dc.relation.referencesFIORA, A., & A. CESCATTI. 2006. Diurnal and seasonal variability in radial distribution of sap flux density: implications for estimating stand transpiration. Tree physiology 26(9): 1217-1225.
dc.relation.referencesGARCÍA, L., C. ROMERO & L. ORTIZ. 2005. Evaluación edafoclimática de las tierras del trópico bajo y medio colombiano para el cultivo del cacao. Corpoica (ed.). 58 pp. Bogotá D.C.
dc.relation.referencesGRANIER, A., P. BIRON, B. KÖSTNER, L.W. GAY AND G. NAJJAR. 1996. Comparisons of xylem sap flow and water vapor flux at the stand level and derivation of canopy conduct-ance for Scots pine. Theoretical and Applied Climatology 53 (1-3): 115–122
dc.relation.referencesGHIMIRE, C.P., M.W. LUBCZYNSKI., L.A. BRUIJNZEEL., D. CHAVARRO-RINCÓN,. 2014. Transpiration and canopy conductance of two contrasting forest types in the Lesser Himalaya of Central Nepal. Agricultural and Forest Meteorology 197: 76-90
dc.relation.referencesHERNÁNDEZ-SANTANA, V., J.E. FERNÁNDEZ., C.M. RODRIGUEZ-DOMINGUEZ., R. ROMERO., A. DIAZ-ESPEJO. 2016. The dynamics of radial sap flux density reflects changes in stomatal conductance in response to soil and air water deficit. Agricultural and Forest Meteorology 218: 92-101.
dc.relation.referencesJUNG, E.Y., D. OTIENO., H. KWON., S. BERGER., M. HAUER., J. TENHUNEN. 2014. Influence of elevation on canopy transpiration of temperate deciduous forests in a complex mountainous terrain of South Korea. Plant Soil 378:153–172.
dc.relation.referencesKÖHLER, M., D. DIERICK., L. SCHWENDENMANN & D. HÖLSCHER. 2009. Water use characteristics of cacao and Gliricidia trees in an agroforest in Central Sulawesi, Indonesia. Ecohydrology 2: 520-529.
dc.relation.referencesKÖHLER, M., L. SCHWENDENMANN., D. HÖLSCHER. 2010. Throughfall reduction in a cacao agroforest: tree water use and soil water budgeting. Agricultural and forest meteor-ology 150(7): 1079-1089.
dc.relation.referencesKÖHLER, M., A. HANF., H. BARUS & D. HÖLSCHER. 2014. Cacao trees under different shade tree shelter: effects on water use. Agroforestry systems 88 (1): 63-73.
dc.relation.referencesLOOKER, N., J. MARTIN., K. JENCSO., J. HU. 2016. Contribution of sapwood traits to uncertainty in conifer sap flow as estimated with the heat-ratio method. Agricultural and Forest Meteorology: 223: 60-71.
dc.relation.referencesLIN, B. 2010. The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agroecosystems. Agricultural and Forest Meteorology 50(2): 135-151
dc.relation.referencesLIU, Y., W. DAWSON., D. PRATI., E. HAEUSER., Y. FENG., M. VAN KLEUNEN. 2016. Does greater specific leaf area plasticity help plants to maintain a high performance when shaded?. Annals of Botany 118(7): 1329-1336.
dc.relation.referencesMADURAPPERUMA W.S., T.M. BLEBY., S.S.O. BURGESS. 2009. Evaluation of sap flow methods to determine water use by cultivated palms. Environmental and Experimental Bo-tany 66 (3): 372-380.
dc.relation.referencesMINER, G. L., J.M. HAM & G.L. KLUITENBERG. 2017. A heat-pulse method for measuring sap flow in corn and sunflower using 3D-printed sensor bodies and low-cost electronics. Agricultural and Forest Meteorology 246: 86-97
dc.relation.referencesMOTZER, T., N. MUNZ., M. KÜPPERS., D. SCHMITT & D. ANHUF. 2005. Stomatal con-ductance, transpiration and sap flow of tropical montane rain forest trees in the southern Ecuadorian Andes. Tree Physiology 25 (10): 1283-1293.
dc.relation.referencesMUÑOZ-VILLERS L.E. F. HOLWERD., M. GÓMEZ-CÁRDENAS., M. EQUIHUA ., H. AS-BJORNSEN., L.A. BRUIJNZEEL., B.E. MARÍN-CASTRO., C. TOBÓN. 2012. Water bal-ances of old-growth and regenerating montane cloud forests in central Veracruz, Mexico. Journal of Hydrology 462–463: 53-66
dc.relation.referencesPATAKI, D.E., OREN, R., 2003. Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest. Advances in Water Resources 26 (12), 1267–1278.
dc.relation.referencesPIMENTEL, J. D. S., T.J. SILVA., J.C.F. BORGES., M.V. FOLEGATTI., A.A. MONTENE-GRO. 2010.Estimativa da transpiração em cafeeiros utilizando-se sensores de dissipação térmica. Revista Brasileira de Engenharia Agrícola e Ambiental 14(2): 187-195.
dc.relation.referencesROUSSEAUX, M. C., P.I. FIGUEROLA., G. CORREA-TEDESCO., P.S SEARLES. 2009. Seasonal variations in sap flow and soil evaporation in an olive (Olea europaea L.) grove under two irrigation regimes in an arid region of Argentina. Agricultural Water Management 96(6): 1037-1044.
dc.relation.referencesRADA, F., R.E. JAIMEZ., C. GARCIA- NUNEZ., A. AZOCAR., M.E. RAMIREZ. 2005. Wa-ter relations and gas Exchange in Theobroma cacao var. Guasare under periods of water deficits.Revista de la Facultad de Agronomia 22:105–112
dc.relation.referencesSALISBURY, F. & C. ROSS. 2000. Fisiología vegetal. Editorial Iberoamericana. 759 pp. México.
dc.relation.referencesSHE, D.L, Y. XIA., M.A. SHAO., S.Z. PENG., S. YU. 2013. Transpiration and canopy con-ductance of Caragana korshinskii trees in response to soil moisture in sand land of China. Agroforestry Systems 87:667–678.
dc.relation.referencesSHUAI, F. U., L. SUN & Y. LUO. 2016. Canopy conductance and stand transpiration of Populus simonii Carr in response to soil and atmospheric water deficits in farmland shel-terbelt, Northwest China. Agroforestry Systems 91(6): 1165-1180.
dc.relation.referencesSIRIRI, D., J. WILSON., R. COE., M.M. TENYWA., M.A. BEKUNDA., C.K. ONG., C.R. BLACK. 2013. Trees improve water storage and reduce soil evaporation in agroforestry systems on bench terraces in SW Uganda. Agroforestry systems 87(1): 45-58.
dc.relation.referencesSOMARRIBA, E & P. LACHENAUD. 2013. Successional cocoa agroforests of the Ama-zon–Orinoco–Guiana shield, Forests, Trees and Livelihoods 22:1, 51-59.
dc.relation.referencesSOLARTE, M.E., L.V. PÉREZ & L.M. MELGAREJO. 2010. Ecofisiología vegetal. pp. 137-167. En: Melgarejo, L.M. (ed.). Experimentos en fisiología vegetal. Universidad Nacional de Colombia, Bogotá.
dc.relation.referencesSTASIK, O. & H.G. JONES. 2007. Response of photosynthetic apparatus to moderate high temperature in contrasting wheat cultivars at different oxygen concentrations. Journal of Experimental Botany 58 (8): 2133–2143
dc.relation.referencesSTOOCHNOFF, J. A., T. GRAHAM & M.A. DIXON. 2018. Drip irrigation scheduling for container grown trees based on plant water status. Irrigation Science 36(3): 179-186.
dc.relation.referencesTAIZ, L., & E. ZEIGER. (2010). Plant Physiology. Sunderland, MA: Sinauer Associates, Inc. pp. 163 -197
dc.relation.referencesURIBE, A., H. MÉNDEZ & J. MANTILLA. 1998. Efecto de niveles de nitrógeno, fósforo y potasio sobre la producción de cacao en suelo del Departamento de Santander. Revista Suelos Ecuatoriales 28: 31-36.
dc.relation.referencesVAN LEEUWEN, C., P. PIERI & P. VIVIN. 2010. Comparison of Three Operational ools for the Assessment of Vine Water water Status: Stem Water Potential stem water potential, Carbon Isotope Discrimination carbon isotope discrimination Measured on Grape grape Sugar and Water Balance. pp. 87-106. In: DELROT S., H. MEDRANO., E. OR., L. BAVA-RESCO., S. GRANDO (eds). Methodologies and Results in Grapevine Research. Springer, Dordrecht
dc.relation.referencesZHOU, S., B. MEDLYN, S. SABATÉ, D. SPERLICH E I.C. PRENTICE. 2014. Short-term water stress impacts on stomatal, mesophyll and biochemical limitations to photosyn-thesis differ consistently among tree species from contrasting climates. Tree Physiolo-gy 34 (10): 1035-1046
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalComposición florística
dc.subject.proposalFloristic composition
dc.subject.proposalEstructura
dc.subject.proposalStructure
dc.subject.proposalYield
dc.subject.proposalRendimiento
dc.subject.proposalSistemas agroforestales
dc.subject.proposalAgroforestry systems
dc.subject.proposalBosque tropical seco
dc.subject.proposalTropical dry forest
dc.subject.proposalVariables ambientales
dc.subject.proposalEnvironmental variables
dc.subject.proposalSap flow
dc.subject.proposalFlujo de savia
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito