Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorVélez Upegui, Jaime Ignacio
dc.contributor.advisorVelásquez Girón, Nicolás
dc.contributor.authorSalamanca Jiménez, Sandra Patricia
dc.date.accessioned2020-08-21T20:20:00Z
dc.date.available2020-08-21T20:20:00Z
dc.date.issued2020-08-12
dc.identifier.citationSalamanca, Sandra. Efectos de escala espacial y temporal en la modelación hidro-sedimentológica distribuida de una cuenca tropical. Caso de estudio San Lorenzo. Universidad Nacional de Colombia, Sede Medellín, Tesis de Grado, 2020. – 100 p.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78159
dc.descriptionilustraciones, diagramas, mapas, tablas
dc.description.abstractEn Colombia una de las principales causas de degradación del suelo es la erosión, afecta cerca de 32 millones de hectáreas. Sin embargo, a nivel nacional no existe un consenso en cuanto a la escala espacial y temporal apropiada para representar este proceso a escala de cuenca. En este contexto, se han desarrollado diferentes modelos basados en datos empíricos para representar la erosión, transporte y depositación de sedimentos; entre estos se encuentran Universal Soil Loss Equation -USLE y CASC2D-SED. Sin embargo, la mayoría de trabajos encontrados en el estado del arte se enfocan en cuencas extra-tropicales cuyos conclusiones no se puedan aplicar a cuencas de la región andina Colombiana. En este trabajo de investigación se realizó un análisis de escala espacial y temporal de la cuenca del río Nare, afluente del embalse San Lorenzo. En la metodología se usaron dos modelos para evaluar la variabilidad espacial de la pérdida del suelo, Revised USLE -RUSLE y CASC2D-SED. RUSLE se usó como una aproximación para identificar zonas de producción de sedimentos dentro de la cuenca sin tener en cuenta variabilidad en los campos de precipitación y CASC2D-SED, para evaluar el efecto de la escorrentía superficial que produce los eventos de tormenta. En el estudio de la escala temporal, se usaron 5 escalas desde diaria a horaria. En los resultados de la investigación se demuestra que la escala espacial y temporal para representar procesos erosivos debe seleccionarse de acuerdo al objeto del análisis. Para identificar zonas de producción, escalas espaciales finas, sin importar el modelo, logran delimitar entre 10 y 100 veces más zonas con producciones mayores a 0.5 kton/Año km2 respecto a escalas más gruesas. Si el interés es en el transporte de sedimentos en un punto específico durante eventos, una escala temporal fina, logra identificar caudales sólidos con picos 10% mayores que una escala gruesa. Los resultados de este estudio son insumo para la gestión del recurso hídrico de una importante empresa de generación eléctrica del país. (Texto tomado de la fuente)
dc.description.abstractThe erosion is one of the main soil degradation causes in Colombia affecting nearly 32 million hectares, however, at a national level, there is no consensus regarding the appropriate temporal and spatial scale to represents this process.  At basin level, different empirical data-based models have been developed to represent sediment erosion, transport, and deposition. Among the most common are -USLE and CASC2D-SED. Most of the research works found in the state of the art were focused on extra-tropical basins whose conclusions cannot be applied to basins in the Colombian Andean region. In this research, a spatial-temporal analysis of the Nare River (a tributary of the San Lorenzo reservoir) basin was carried out. Two models were used in the methodology to assess the spatial variability of soil loss. RUSLE- was used to identify sediment production zones within the basin without considering variability in precipitation fields. CASC2D-SED was used to evaluate the effect of runoff produced by storm events. In the temporal scale study, 5 temporal scales were used in the CASC2D-SED model. The research results show the goal of the analysis influences the selection of the spatial and temporal scale to represent erosive processes. Finer scales, regardless of the model, achieve between 10 and 100 times more areas delimitation with productions greater than 0.5 kton/Year km2 than coarser scales. If the interest is in the sediment transportation at a specific point during events, a fine time scale identifies soil flows peaks 10% greater than a coarser scale.The research results are used for resource management of an important energy generation company in the country.
dc.format.extentx, 62 páginas + 1 Anexo/PDF
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
dc.titleEfectos de escala espacial y temporal en la modelación hidro-sedimentológica distribuida de una cuenca tropical. Caso de estudio San Lorenzo
dc.typeTrabajo de grado - Maestría
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
dc.contributor.researchgroupPosgrado en Aprovechamiento de Recursos Hidráulicos (PARH)
dc.coverage.regionAntioquia, Colombia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Geociencias y Medo Ambiente
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesArias, Santiago G. ; Serna, Luis Fernando C.: Regionalizacio ́n de curvas de duracio ́n de caudales en el Departamento de Antioquia-Colombia. En: Revista EIA 14 (2017), Nr. 27, p. 21–30
dc.relation.referencesBabak, Olena ; Deutsch, Clayton V.: Statistical approach to inverse distance inter- polation. En: Stochastic Environmental Research and Risk Assessment 23 (2009), Nr. 5, p. 543–553
dc.relation.referencesBenavidez, Rubianca ; Jackson, Bethanna ; Maxwell, Deborah ; Norton, Kevin: A-review-of-the-Revised-Universal-Soil-Loss-Equation-RUSLE-With-a-view- to-increasing-its-global-applicability-and-improving-soil-loss-estimates2018Hydrology- and-Earth-System-SciencesOpen-Access.pdf. (2018), Nr. 1995, p. 6059–6086
dc.relation.referencesBennett, James C. ; Robertson, David E. ; Ward, Phillip G. ; Hapuarachchi, HA P. ; Wang, QJ: Calibrating hourly rainfall-runoff models with daily forcings for streamflow forecasting applications in meso-scale catchments. En: Environmental Mo- delling & Software 76 (2016), p. 20–36
dc.relation.referencesBeven, Keith J.: Rainfall-runoff modelling: the primer. John Wiley & Sons, 2011
dc.relation.referencesBindlish, Rajat ; Barros, Ana P.: Aggregation of digital terrain data using a modified fractal interpolation scheme. En: Computers and Geosciences 22 (1996), Nr. 8, p. 907– 917. – ISSN 00983004
dc.relation.referencesBlo ̈schl, Gu ̈nter ; Sivapalan, Murugesu: Scale issues in hydrological modelling: a review. En: Hydrological processes 9 (1995), Nr. 3-4, p. 251–290
dc.relation.referencesBlo ̈schl, Gu ̈nter ; Sivapalan, Murugesu ; Wagener, Thorsten ; Savenije, Hubert ; Viglione, Alberto: Runoff prediction in ungauged basins: synthesis across processes, places and scales. Cambridge University Press, 2013
dc.relation.referencesBussi, Gianbattista ; France ́s, F ́elix ; Montoya, Juan J. ; Julien, Pierre Y.: Dis- tributed sediment yield modelling: Importance of initial sediment conditions. En: En- vironmental Modelling and Software 58 (2014), p. 58–70. – ISSN 1364–8152
dc.relation.referencesBussi, Gianbattista ; Rodr ́ıguez-Lloveras, Xavier ; France ́s, F ́elix ; Benito, Ge- rardo ; Sa ́nchez-Moya, Yolanda ; Sopen ̃a, Alfonso: Sediment yield model implemen- tation based on check dam infill stratigraphy in a semiarid Mediterranean catchment. En: Hydrology and Earth System Science 17 (2013)
dc.relation.referencesCamargos, Carla ; Julich, Stefan ; Houska, Tobias ; Bach, Martin ; Breuer, Lutz: Effects of input data content on the uncertainty of simulating water resources. En: Water 10 (2018), Nr. 5, p. 621
dc.relation.referencesCampbell, Frank B. ; Bauder, HA: A rating-curve method for determining silt- discharge of streams. En: Eos, Transactions American Geophysical Union 21 (1940), Nr. 2, p. 603–607
dc.relation.referencesChaubey, I ; Cotter, AS ; Costello, TA ; Soerens, TS: Effect of DEM data resolution on SWAT output uncertainty. En: Hydrological Processes: An International Journal 19 (2005), Nr. 3, p. 621–628
dc.relation.referencesChaubey, I ; Haan, CT ; Grunwald, S ; Salisbury, JM: Uncertainty in the model parameters due to spatial variability of rainfall. En: Journal of Hydrology 220 (1999), Nr. 1-2, p. 48–61
dc.relation.referencesChen, Feng-Wen ; Liu, Chen-Wuing: Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. En: Paddy and Water Environment 10 (2012), Nr. 3, p. 209–222
dc.relation.referencesChen, Tao ; Niu, Rui-qing ; Li, Ping-xiang ; Zhang, Liang-pei ; Du, Bo: Regional soil erosion risk mapping using RUSLE, GIS, and remote sensing: a case study in Miyun Watershed, North China. En: Environmental Earth Sciences 63 (2011), Nr. 3, p. 533– 541
dc.relation.referencesColby, BR: Relationship of sediment discharge to streamflow / US Dept. of the Interior, Geological Survey, Water Resources Division,. 1956. – Informe de Investigaci ́on
dc.relation.referencesCollins, Brian D. ; Bedford, David R. ; Corbett, Skye C. ; Cronkite-Ratcliff, Collin ; Fairley, Helen C.: Relations between rainfall–runoff-induced erosion and aeolian deposition at archaeological sites in a semi-arid dam-controlled river corridor. En: Earth Surface Processes and Landforms 41 (2016), Nr. 7, p. 899–917
dc.relation.referencesCORNARE. POMCA r ́ıo Nare: Cap ́ıtulo 4.11 Coberturas y uso de la tierra. 2016
dc.relation.referencesCrave, A ; Gascuel-Odoux, C: The influence of topography on time and space distribution of soil surface water content. En: Hydrological processes 11 (1997), Nr. 2, p. 203–210
dc.relation.referencesDehvari, Abdolhamid ; Heck, Richard J.: Effect of LiDAR derived DEM resolution on terrain attributes, stream characterization and watershed delineation. En: International Journal of Agriculture and Crop Sciences 6 (2013), Nr. 13, p. 949
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible, M: Pol ́ıtica para la gestio ́n sostenible del suelo / MADS. 2016. – Informe de Investigacio ́n
dc.relation.referencesDesmet, PJJ ; Govers, Gerard: A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. En: Journal of soil and water conservation 51 (1996), Nr. 5, p. 427–433
dc.relation.referencesDi Stefano, Costanza ; Ferro, Vito: Testing sediment connectivity at the experi- mental SPA2 basin, Sicily (Italy). En: Land Degradation & Development 28 (2017), Nr. 7, p. 1992–2000
dc.relation.referencesEfstratiadis, Andreas ; Koutsoyiannis, Demetris: One decade of multi-objective calibration approaches in hydrological modelling: a review. En: Hydrological Sciences Journal–Journal Des Sciences Hydrologiques 55 (2010), Nr. 1, p. 58–78
dc.relation.referencesElliott, AH ; Oehler, F ; Schmidt, J ; Ekanayake, JC: Sediment modelling with fine temporal and spatial resolution for a hilly catchment. En: Hydrological Processes 26 (2012), Nr. 24, p. 3645–3660
dc.relation.referencesEngelund, Frank ; Hansen, Eggert: A monograph on sediment transport in alluvial streams. En: Technical University of Denmark 0stervoldgade 10, Copenhagen K. (1967)
dc.relation.referencesFox, GA ; Sheshukov, A ; Cruse, Rick ; Kolar, RL ; Guertault, L ; Gesch, KR ; Dutnell, RC: Reservoir sedimentation and upstream sediment sources: perspec- tives and future research needs on streambank and gully erosion. En: Environmental management 57 (2016), Nr. 5, p. 945–955
dc.relation.referencesFrance ́s, F ́elix ; Ve ́lez, Jaime I. ; Ve ́lez, Jorge J.: Split-parameter structure for the automatic calibration of distributed hydrological models. En: Journal of Hydrology 332 (2007), Nr. 1-2, p. 226–240. – ISSN 00221694
dc.relation.referencesFrance ́s, F ́elix ; Ve ́lez, Jorge J. ; Ve ́lez, JI ; Puricelli, M: Distributed modelling of large basins for a real time flood forecasting system in Spain. En: Proceedings Second Federal Interagency Hydrologic Modelling Conference, Gan, TY and Biftu, Las Vegas, 2002, p. 3513–3524
dc.relation.referencesFu, Baihua ; Merritt, Wendy S. ; Croke, Barry F. ; Weber, Tony R. ; Jake- man, Anthony J.: A review of catchment-scale water quality and erosion models and a synthesis of future prospects. En: Environmental modelling & software 114 (2019), p. 75–97
dc.relation.referencesFu, Suhua ; Cao, Longxi ; Liu, Baoyuan ; Wu, Zhiping ; Savabi, Mohammad R.: Effects of DEM grid size on predicting soil loss from small watersheds in China. En: Environmental Earth Sciences 73 (2015), Nr. 5, p. 2141–2151
dc.relation.referencesGarcia, Matthew ; Peters-Lidard, Christa D. ; Goodrich, David C.: Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States. En: Water Resources Research 44 (2008), Nr. 5
dc.relation.referencesGrum, Berhane ; Woldearegay, Kifle ; Hessel, Rudi ; Baartman, Jantiene E. ; Abdulkadir, Mohammed ; Yazew, Eyasu ; Kessler, Aad ; Ritsema, Coen J. ; Geissen, Violette: Assessing the effect of water harvesting techniques on event-based hydrological responses and sediment yield at a catchment scale in northern Ethiopia using the Limburg Soil Erosion Model (LISEM). En: Catena 159 (2017), p. 20–34
dc.relation.referencesGupta, Hoshin V. ; Kling, Harald ; Yilmaz, Koray K. ; Martinez, Guillermo F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. En: Journal of hydrology 377 (2009), Nr. 1-2, p. 80–91
dc.relation.referencesHorritt, Matthew S. ; Bates, Paul D.: Effects of spatial resolution on a raster based model of flood flow. En: Journal of Hydrology 253 (2001), Nr. 1-4, p. 239–249
dc.relation.referencesIDEAM ; UDCA: S ́ıntesis: Estudio nacional de la degradacio ́n de suelos por erosio ́n en Colombia / IDEAM. 2015. – Informe de Investigacio ́n
dc.relation.referencesIDEAM, I d. Estudio Nacional del Agua 2014. 2015
dc.relation.referencesIDEAM, PNN I. ; MADS: Mapa de Coberturas de la Tierra Metodolog ́ıa CORINE Land Cover Adaptada para Colombia Escala 1:100.000 Periodo(2010-2012) / IDEAM. 2014. – Informe de Investigaci ́on. – 1 p.
dc.relation.referencesIGAC: Estudio General de Suelos y Zonificacio ́n de Tierras Departamento de Antioquia / IGAC. 2007. – Informe de Investigacio ́n. – 1074 p.
dc.relation.referencesISAGEN-UNAL: Informe avance literal 4: Estudios para modelaci ́on y an ́alisis hi- drosedimentolo ́gico de las cuencas tributarias a los embalses San Lorenzo y Aman ́ı. / Universidad Nacional de Colombia, Sede Medellin. Medell ́ın, 2018. – Informe de Investigaci ́on. – 249 p.
dc.relation.referencesJulien, Pierre Y.: Erosion and sedimentation. Cambridge university press, 1995
dc.relation.referencesKavetski, Dmitri ; Fenicia, Fabrizio ; Clark, Martyn P.: Impact of temporal data resolution on parameter inference and model identification in conceptual hydrological modeling: Insights from an experimental catchment. En: Water Resources Research 47 (2011), Nr. 5
dc.relation.referencesKirchner, James W.: Getting the right answers for the right reasons: Linking measu- rements, analyses, and models to advance the science of hydrology. En: Water Resources Research 42 (2006), Nr. 3
dc.relation.referencesKirchner, James W.: Catchments as simple dynamical systems: Catchment characte- rization, rainfall-runoff modeling, and doing hydrology backward. En: Water Resources Research 45 (2009), Nr. 2
dc.relation.referencesKling, Harald ; Fuchs, Martin ; Paulin, Maria: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. En: Journal of Hydrology 424 (2012), p. 264–277
dc.relation.referencesKumar, Brijesh ; Lakshmi, Venkat ; Patra, Kanhu C.: Evaluating the uncertainties in the SWAT Model outputs due to DEM grid size and resampling techniques in a large Himalayan river basin. En: Journal of Hydrologic Engineering 22 (2017), Nr. 9, p. 04017039
dc.relation.referencesKurtzman, Daniel ; Navon, Shilo ; Morin, Efrat: Improving interpolation of daily precipitation for hydrologic modelling: spatial patterns of preferred interpolators. En: Hydrological Processes: An International Journal 23 (2009), Nr. 23, p. 3281–3291
dc.relation.referencesLauri, Hannu ; Kummu, Matti: Improving the accuracy of a grid-based distributed hydrological model using slope and river length corrections in a large river basin: case Mekong. En: Hydrology Research 45 (2014), Nr. 4-5, p. 715–726. – ISBN 0029–1277 96. %0 Journal Article
dc.relation.referencesLin, Shengpan ; Jing, Changwei ; Coles, Neil A. ; Chaplot, Vincent ; Moore, Nathan J. ; Wu, Jiaping: Evaluating DEM source and resolution uncertainties in the Soil and Water Assessment Tool. En: Stochastic Environmental Research and Risk Assessment 27 (2013), Nr. 1, p. 209–221. – ISBN 1436–3240
dc.relation.referencesMcKee, Jack L. ; Binns, Andrew D.: A review of gauge–radar merging methods for quantitative precipitation estimation in hydrology. En: Canadian Water Resources Journal/Revue canadienne des ressources hydriques 41 (2016), Nr. 1-2, p. 186–203
dc.relation.referencesMelsen, Lieke ; Teuling, Adriaan ; Torfs, Paul ; Zappa, Massimiliano ; Mizukami, Naoki ; Clark, Martyn ; Uijlenhoet, Remko: Representation of spatial and temporal variability in large-domain hydrological models: case study for a mesoscale pre-Alpine basin. En: Hydrology and Earth System Sciences 20 (2016), Nr. 6, p. 2207
dc.relation.referencesMergili, Martin ; Marchant, Carla ; Moreiras, Stella M.: Causas, caracter ́ısticas e impacto de los procesos de remoci ́on en masa, en ́areas contrastantes de la regio ́n Andina. En: Cuadernos de Geograf ́ıa: Revista Colombiana de Geograf ́ıa 24 (2015), Nr. 2, p. 113–131
dc.relation.referencesMerritt, Wendy S. ; Letcher, Rebecca A. ; Jakeman, Anthony J.: A review of erosion and sediment transport models. En: Environmental Modelling & Software 18 (2003), Nr. 8-9, p. 761–799
dc.relation.referencesMontoya, Juan J.: Desarrollo de un modelo conceptual y de producci ́on, transporte y dep ́osito de sedimentos, Universidad Polit ́ecnica de Valencia, Tesis de Grado, 2008. – 236 p.
dc.relation.referencesMorbidelli, Renato ; Saltalippi, Carla ; Flammini, Alessia ; Corradini, Corrado ; Brocca, Luca ; Govindaraju, Rao S.: An investigation of the effects of spatial heterogeneity of initial soil moisture content on surface runoff simulation at a small watershed scale. En: Journal of Hydrology 539 (2016), p. 589–598
dc.relation.referencesMorgan, R: Soil erosion and conservation. National Soil Resources Institute. En: Crainfield University, 125 (2005)
dc.relation.referencesNash, J E. ; Sutcliffe, Jonh V.: River flow forecasting through conceptual models part I—A discussion of principles. En: Journal of hydrology 10 (1970), Nr. 3, p. 282–290
dc.relation.referencesOrtega, Rodrigo ; Ortega, Jorge ; Orellana, Carolina ; Garc ́ıa, Anamar ́ıa ; Ospi- na, Paula ; Torres, Beatriz ; Molina, Mauricio ; Gallardo, Alexis: Sistematizacio ́n de pr ́acticas de conservacio ́n de suelos y aguas para la adaptacio ́n al cambio clim ́atico / FAO. 2014. – Informe de Investigacio ́n
dc.relation.referencesPALSAR, ALOS: ALPSRP JAXA/METI. En: Accessed through https://vertex. daac. asf. alaska. edu/(Last visit 26/02/2019) (2011)
dc.relation.referencesPandey, Ashish ; Himanshu, Sushil K. ; Mishra, SK ; Singh, Vijay P.: Physically based soil erosion and sediment yield models revisited. En: Catena 147 (2016), p. 595–620
dc.relation.referencesPavanelli, Donatella ; Cavazza, Claudio: River suspended sediment control through riparian vegetation: a method to detect the functionality of riparian vegetation. En: CLEAN–Soil, Air, Water 38 (2010), Nr. 11, p. 1039–1046
dc.relation.referencesPeters-Ku ̈mmerly, Barbara E.: Untersuchungen u ̈ber zusammensetzung und trans- port von schwebstoffen in einigen schweizer flu ̈ssen, Verlag nicht ermittelbar, Tesis de Grado, 1971
dc.relation.referencesPool, Sandra ; Vis, Marc ; Seibert, Jan: Evaluating model performance: towards a non-parametric variant of the Kling-Gupta efficiency. En: Hydrological sciences journal 63 (2018), Nr. 13-14, p. 1941–1953
dc.relation.referencesPe ́rez Arango, Juan ; Mesa, Oscar: Estimaci ́on del factor de erosividad de la lluvia en Colombia, 2002
dc.relation.referencesRenschler, CS ; Flanagan, DC: Site-specific decision-making based on RTK GPS survey and six alternative elevation data sources: Soil erosion predictions. En: Transac- tions of the ASABE 51 (2008), Nr. 2, p. 413–424
dc.relation.referencesReynolds, JE ; Halldin, Sven ; Xu, Chong-Yu ; Seibert, Jan ; Kauffeldt, Anna: Sub-daily runoff predictions using parameters calibrated on the basis of data with a daily temporal resolution. En: Journal of hydrology 550 (2017), p. 399–411
dc.relation.referencesRojas, R ; Julien, P ; Johnson, B: A 2-Dimensional Rainfall-Runoff and Sediment Model. En: CASC2D-SED reference manual . . . (2003), Nr. July
dc.relation.referencesRojas, Rosalia ; Velleux, Mark ; Julien, Pierre Y. ; Johnson, Billy E.: Grid scale effects on watershed soil erosion models. En: Journal of Hydrologic Engineering 13 (2008), Nr. 9, p. 793–802
dc.relation.referencesRymszewicz, A ; Bruen, M ; O’Sullivan, JJ ; Turner, JN ; Lawler, DM ; Ha- rrington, JR ; Conroy, E ; Kelly-Quinn, M: Modelling spatial and temporal variations of annual suspended sediment yields from small agricultural catchments. En: Science of The Total Environment 619 (2018), p. 672–684
dc.relation.referencesSanders, Laura L.: Manual of field hydrogeology. Prentice Hall, 1998
dc.relation.referencesSaxton, Keith E. ; Willey, Patrick H.: The SPAW model for agricultural field and pond hydrologic simulation. En: Watershed models (2005), p. 400–435
dc.relation.referencesSepu ́lveda Berr ́ıo, Julia ́n [u. a.]: Estimaci ́on cuantitativa de precipitaci ́on a partir de la informaci ́on de Radar Meteorol ́ogico del Area Metropolitana del Valle de Aburr ́a, Universidad Nacional de Colombia-Sede Medell ́ın, Tesis de Grado, 2015
dc.relation.referencesSmith, Michael P. ; Zhu, A-Xing ; Burt, James E. ; Stiles, Cynthia: The effects of DEM resolution and neighborhood size on digital soil survey. En: Geoderma 137 (2006), Nr. 1-2, p. 58–69
dc.relation.referencesTang, Qing ; Xu, Yong ; Bennett, Sean J. ; Li, Yang: Assessment of soil erosion using RUSLE and GIS: a case study of the Yangou watershed in the Loess Plateau, China. En: Environmental Earth Sciences 73 (2015), Nr. 4, p. 1715–1724. – ISSN 18666299
dc.relation.referencesTe, Chow V. ; Maidment, David R. ; Mays, Larry W.: Applied hydrology. En: Water Resources Handbook; McGraw-Hill: New York, NY, USA (1988)
dc.relation.referencesThompson, James A. ; Bell, Jay C. ; Butler, Charles A.: Digital elevation mo- del resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling. En: Geoderma 100 (2001), Nr. 1-2, p. 67–89
dc.relation.referencesVelasquez, Nicolas: Simulaci ́on de sedimentos a partir de un modelo conceptual y distribuido no lineal, Universidad Nacional de Colombia, Sede Medell ́ın, Tesis de Grado, 2011. – 116 p.
dc.relation.referencesVelasquez, Nicolas. Watershed Modelling Framework. https://github.com/ nicolas998/WMF. 2020
dc.relation.referencesVela ́squez, Nicol ́as ; Hoyos, Carlos D. ; Ve ́lez, Jaime I. ; Zapata, Esneider: Recons- tructing the 2015 Salgar flash flood using radar retrievals and a conceptual modeling framework in an ungauged basin. En: Hydrology & Earth System Sciences 24 (2020), Nr. 3
dc.relation.referencesVe ́lez Upegui, Jaime I.: Desarrollo de un modelo hidrol ́ogico conceptual y distribuido orientado a la simulaci ́on de las crecidas. En: Universidad Polit ́ecnica de Valencia, Deparamento de Ingenier ́ıa Hidr ́aulica y Medio Ambiente 266 (2001)
dc.relation.referencesVillatoro-Sa ́nchez, Mario ; Le Bissonnais, Yves ; Moussa, Roger ; Rapidel, Bruno: Temporal dynamics of runoff and soil loss on a plot scale under a coffee plantation on steep soil (Ultisol), Costa Rica. En: Journal of Hydrology 523 (2015), p. 409–426
dc.relation.referencesWang, Guoqiang ; Hapuarachchi, HAP ; Takeuchi, Kuniyoshi ; Ishidaira, Hi- roshi: Grid-based distribution model for simulating runoff and soil erosion from a large- scale river basin. En: Hydrological Processes: An International Journal 24 (2010), Nr. 5, p. 641–653
dc.relation.referencesWischmeier, Walter H. ; Smith, Dwight D.: Predicting rainfall erosion losses: a guide to conservation planning. Department of Agriculture, Science and Education Administration, 1978 ( 537)
dc.relation.referencesWohl, Ellen: The challenges of channel heads. En: Earth-Science Reviews 185 (2018), p. 649–664
dc.relation.referencesWolock, David M. ; Price, Curtis V.: Effects of digital elevation model map scale and data resolution on a topography-based watershed model. En: Water Resources Research 30 (1994), Nr. 11, p. 3041–3052
dc.relation.referencesWu, Simon ; Li, Jonathan ; Huang, Gordon: An evaluation of grid size uncertainty in empirical soil loss modeling with digital elevation models. En: Environmental Modeling & Assessment 10 (2005), Nr. 1, p. 33–42
dc.relation.referencesWu, Xinliang ; Wei, Yujie ; Wang, Junguang ; Xia, Jinwen ; Cai, Chongfa ; Wei, Zhiyuan: Effects of soil type and rainfall intensity on sheet erosion processes and sedi- ment characteristics along the climatic gradient in central-south China. En: Science of the Total Environment 621 (2018), p. 54–66
dc.relation.referencesYang, Chih T. ; Wang, Lawrence K.: Advances in Water Resources Engineering. Springer, Dezember 2014
dc.relation.referencesYang, Xihua ; Yu, Bofu: Modelling and mapping rainfall erosivity in New South Wales, Australia. En: Soil Research 53 (2015), Nr. 2, p. 178–189
dc.relation.referencesZhang, Peipei ; Liu, Ruimin ; Bao, Yimeng ; Wang, Jiawei ; Yu, Wenwen ; Shen, Zhenyao: Uncertainty of SWAT model at different DEM resolutions in a large moun- tainous watershed. En: Water research 53 (2014), p. 132–144
dc.relation.referencesZheng, Yi ; Keller, Arturo A.: Understanding parameter sensitivity and its mana- gement implications in watershed-scale water quality modeling. En: Water resources research 42 (2006), Nr. 5
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalErosión de suelos
dc.subject.proposalRUSLE
dc.subject.proposalEscala temporal y espacial
dc.subject.proposalSHIA
dc.subject.proposalCASC2DSED
dc.subject.proposalSoil erosion
dc.subject.proposalTemporal And Spatial Scale
dc.title.translatedEfects of spatial and temporal scale in the distributed hydro-sedimentological modeling of a tropical basin. Case study: San Lorenzo
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaÁrea Curricular de Medio Ambiente


Archivos en el documento

Thumbnail
Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito