Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorSánchez de Gómez, Myriam
dc.contributor.authorVallejo Pulido, Andrés Felipe
dc.date.accessioned2020-08-23T04:50:01Z
dc.date.available2020-08-23T04:50:01Z
dc.date.issued2010-06-01
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78186
dc.description.abstractLas células son dispositivos de procesamiento de información, que integran millones de señales extracelulares e intracelulares para producir una respuesta celular óptima dentro de un organismo. Muchas enfermedades, por ejemplo el cáncer, pueden ser entendidas como alteraciones patológicas en las redes de señalización. Por lo que el estudio de los mecanismos de procesamiento de señales constituye uno de los problemas más complejos y al mismo tiempo más significativos en las investigaciones biológicas. Los eventos de señalización incluyen intrincadas redes de señalización, que encierran “loops” de retroalimentación, señalización cruzada con otras redes y la integración del estado interno de la célula, todos estos, regulados espacial y temporalmente. El sistema de señalización de los IGFs es una compleja red regulatoria que tiene funciones en todo el organismo, a nivel celular y subcelular. El sistema IGF está relacionado con el desarrollo del organismo y mantenimiento de la función celular normal. Además, ha sido relacionado en diversas condiciones patológicas con un papel particularmente importante en cáncer. Las similaridades estructurales entre el receptor de IGF y el receptor de insulina, permiten la formación de receptores híbridos, en donde una cadena IGF-1R αβ está conectada a una cadena InsR-A o InsR-B. Cuando se coexpresan los receptores de IGF y de insulina en la misma célula, estos receptores híbridos pueden formarse aleatoriamente y representan el tipo de receptor más abundante. Sin embargo, se conoce muy poco sobre su importancia en la transducción de señales y de los efectos biológicos que pueden estar modulando; este trabajo aborda el problema del estudio de la señalización del sistema IGF desde una perspectiva integradora que refleja el entorno biológico en el que se encuentra; haciendo uso tanto de técnicas clásicas de análisis, como técnicas de vanguardia se buscó entender los mecanismos que subyacen en el procesamiento de señales que desencadena en un efecto biológico. Las células de trofoblasto hacen parte de la placenta y son las encargadas de invadir el endometrio materno durante el proceso de implantación del blastocisto, además, evaden los efectores de la respuesta inmune materna, siendo de vital importancia para el desarrollo fetoplacental. La invasión del trofoblasto a la matriz extracelular del útero es un ejemplo de invasión altamente controlada. Este proceso comparte muchas características con tumores metastásicos, sin embargo se encuentra regulado espacial y temporalmente. A partir de la línea de trofoblasto HTR8, se obtuvieron dos líneas celulares establemente silenciadas en los receptores IGF-1R e IGF-2R/M6P con las que se realizaron ensayos de proliferación, migración, invasión, expresión de Mmp-9 y cAMP, paralelamente se efectuó un estudio proteómico de las proteínas activadas por IGF-2 en los modelos normal y silenciados con miras a obtener una visión integral delos fenómenos biológicos inducidos en la célula luego de la estimulación con IGFs. Los resultaron mostraron que los ligandos IGF son mediadores importantes de los fenómenos malignos compartidos entre las células de trofoblasto y las células cancerosas, tales como proliferación, migración e invasión. Estos efectos son mediados por los receptores híbridos InsR/IGF-1R y en ellos participan decenas de proteínas que fueron identificadas por medio de espectrometría de masas. Se estudiaron proteínas activadas por IGF-2 y se construyeron, a partir de ellas, redes de interacción proteína-proteína relacionadas con los principales efectos mediados por este ligando en células trofoblásticas. Empleando electroforesis en dos dimensiones y el modelo celular silenciado para el receptor IGF-1R, se evaluó su papel al analizar los cambios inducidos por su depleción en los mapas activación de proteínas. Finalmente, se empleo la línea celular silenciada establemente en el receptor IGF-2/M6P para estudiar su papel en los efectos bilógicos mediados por los IGFs y en las redes de señalización. Se encontró que la presencia del receptor tipo 2 es clave en la migración, invasión y expresión de Mmp-9. Adicionalmente se obtuvo evidencia de que este receptor puede activar receptores acoplados a proteína G, probablemente con intermediación de la S1P. Este trabajo es el primer estudio que aborda el problema de la señalización del sistema IGF desde una visión que enmarca las proteínas dentro de complejas redes de señalización. Empleando técnicas de análisis de fosfoproteómica en conjunto con ensayos de actividad biológica, se presenta evidencia sólida de la estrecha relación entre los tres receptores del sistema IGF en la regulación de los efectos biológicos mediados por los ligandos IGF-1 e IGF-2. Además, muestra el papel central del receptor IGF-2/M6P en la transducción de señales del sistema IGF y como su ausencia genera cambios notorios en el fosfoproteoma que se ven reflejados en los fenómenos biológicos más importantes en cáncer, migración e invasión. Estos resultados amplían el conocimiento de la señalización mediada por los IGFs, destacan la importancia del receptor IGF-2/M6P como un mediador clave en los fenómenos de transducción de señales; representan el primer estudio a gran escala de las redes de señalización activadas por los IGFs y su relación con fenómenos biológicos importantes para el desarrollo del cáncer.
dc.description.abstractCells are information processing devices, which integrate millions of extracellular and intracellular signals to produce an optimal cellular response within of an organism. Many diseases, for example cancer, can be understood as pathological alterations in the signalling networks. Therefore, the study of the signal processing mechanisms constitutes one of the most complex and at the same time more significant in biological research questions. The signaling events include intricate signaling networks, which enclose "feedback loops, cross-signaling with other networks and the integration of the internal state of the cell, all of these, regulated spatially and temporally. The signalling system of the IGFs is a complex regulatory network that has functions throughout the body, at the cellular and sub-cellular levels. The IGF system isrelated to the development of the organism and maintenance of cell function normal. In addition, it has been linked in various pathological conditions to a role particularly important in cancer. The structural similarities between the receptor of IGF and the insulin receptor, allow the formation of hybrid receptors, where an IGF-1R αβ string is connected to an InsR-A or InsR-B string. When co-express IGF and insulin receptors in the same cell, these receptors hybrids can be formed randomly and represent the most abundant receptor form. However, very little is known about its importance in transduction of signals and the biological effects they may be modulating; this paper addresses the problem of studying the signalling of the IGF system from a that reflects the biological environment in which it is found; making use of both of classic analysis techniques, as well as avant-garde techniques, we sought to understand the mechanisms underlying the signal processing that triggers an effect biological. The trophoblast cells are part of the placenta and are responsible for invading the maternal endometrium during the blastocyst implantation process, furthermore, they evade the effectors of the maternal immune response, being of vital importance for the fetoplacental development. The invasion of the trophoblast into the extracellular matrix of the uterus is an example of a highly controlled invasion. This process shares many characteristics with metastatic tumors, however it is spatially regulated and temporarily. From the HTR8 trophoblast line, two lines were obtained Stably silenced cell phones in the IGF-1R and IGF-2R/M6P receptors with which proliferation, migration, invasion, MMP-9 expression and cAMP, a parallel proteomic study of the proteins activated by IGF-2 in normal and silenced models in order to obtain a comprehensive view of biological phenomena induced in the cell after IGF stimulation. The results showed that IGF ligands are important mediators of the malignant phenomena shared between trophoblast cells and cells cancers, such as proliferation, migration and invasion. These effects are mediated by the InsR/IGF-1R hybrid receptors and involve dozens of proteins that were identified by mass spectrometry. Proteins were studied activated by IGF-2 and built from them networks of interaction protein-protein related to the main effects mediated by this ligand in trophoblastic cells. Using two-dimensional electrophoresis and the cell model silenced for the IGF-1R receptor, its role was evaluated by analyzing the induced changes for their depletion in the protein activation maps. Finally, the silenced cell line was used stably in the IGF-2/M6P to study its role in IGF-mediated bilogical effects and in the signalling networks. The presence of the type 2 receptor was found to be key in the migration, invasion and expression of Mmp-9. Additionally, evidence was obtained that this receptor can activate G-protein-coupled receptors, probably with intermediation of the S1P. This work is the first study to address the problem of system signalling IGF from a vision that frames proteins within complex networks of signaling. Using phosphoprotein analysis techniques in conjunction with biological activity tests, there is strong evidence of the close relationship between the three receptors of the IGF system in the regulation of biological effects mediated by ligands IGF-1 and IGF-2. It also shows the central role of the IGF-2/M6P receptor in the signal transduction of the IGF system and how its absence generates noticeable changes in the phosphoprotein which are reflected in the most important biological agents in cancer, migration and invasion. These results extend the knowledge of the signaling mediated by the IGFs, highlight the importance of IGF-2/M6P receptor as a key mediator in the transduction phenomena of signals; they represent the first large-scale study of signalling networks activated by the IGFs and their relationship with biological phenomena important to the development of cancer.
dc.format.extent148
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.titleImportancia de los receptores híbridos receptor de insulina/receptor del factor de crecimiento similar a la insulina tipo I (InsR/IGF-1R) en las redes de señalización del sistema IGF
dc.typeTrabajo de grado - Doctorado
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Química
dc.contributor.researchgroupGrupo de Investigación en Hormonas
dc.description.degreelevelDoctorado
dc.publisher.departmentDepartamento de Química
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesPapa, V., et al., Insulin-like growth factor-I receptors are overexpressed and predict a low risk in human breast cancer. Cancer Res, 1993. 53(16): p. 3736-40.
dc.relation.referencesPandini, G., et al., Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast cancers leads to insulin/IGF-I hybrid receptor overexpression: evidence for a second mechanism of IGF-I signaling. Clin Cancer Res, 1999. 5(7): p. 1935-44.
dc.relation.referencesPandini, G., et al., Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem, 2002. 277(42): p. 39684-95.
dc.relation.referencesSalmon Jr, W., Se Daughaday W. H. J. Lab. Clin. Med, 1957. 49: p. 825.
dc.relation.referencesDaughaday, W., et al., Somatomedin: proposed designation for sulphation factor. 1972.
dc.relation.referencesRinderknecht, E. and R. Humbel, Primary structure of human insulin-like growth factor II. FEBS Letters, 1978. 89(2): p. 283.
dc.relation.referencesBaserga, R., et al., The IGF-I receptor in cell growth, transformation and apoptosis. Biochimica et biophysica acta, CR. Reviews on cancer, 1997. 1332(3).
dc.relation.referencesLeRoith, D. and C. Roberts, The insulin-like growth factor system and cancer. Cancer Letters, 2003. 195(2): p. 127-137.
dc.relation.referencesDenley, A., et al., Molecular interactions of the IGF system. Cytokine & Growth Factor Reviews, 2005. 16(4-5): p. 421-439.
dc.relation.referencesDiaz, L.E., et al., IGF-II regulates metastatic properties of choriocarcinoma cells through the activation of the insulin receptor. Molecular Human Reproduction, 2007. 13(8): p. 567-576.
dc.relation.referencesShimatsu, A. and P. Rotwein, Mosaic evolution of the insulin-like growth factors. Organization, sequence, and expression of the rat insulin-like growth factor I gene. J Biol Chem, 1987. 262(16): p. 7894-900.
dc.relation.referencesHan, V.K., et al., Expression of somatomedin/insulin-like growth factor messenger ribonucleic acids in the human fetus: identification, characterization, and tissue distribution. J Clin Endocrinol Metab, 1988. 66(2): p. 422-9.
dc.relation.referencesHynes, M.A., et al., Insulin-like growth factor II messenger ribonucleic acids are synthesized in the choroid plexus of the rat brain. Mol Endocrinol, 1988. 2(1): p. 47-54.
dc.relation.referencesStylianopoulou, F., et al., Pattern of the insulin-like growth factor II gene expression during rat embryogenesis. Development, 1988. 103(3): p. 497-506.
dc.relation.referencesLeRoith, D., et al., Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocrine Reviews, 1995. 16(2): p. 143.
dc.relation.referencesUllrich, A., et al., Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. The EMBO Journal, 1986. 5(10): p. 2503.
dc.relation.referencesFavelyukis, S., et al., Structure and autoregulation of the insulin-like growth factor 1 receptor kinase. Nature Structural & Molecular Biology, 2001. 8(12): p. 1058-1063.
dc.relation.referencesLi, W. and W. Miller, Role of the activation loop tyrosines in regulation of the insulin-like growth factor I receptor-tyrosine kinase. Journal of Biological Chemistry, 2006. 281(33): p. 23785.
dc.relation.referencesButler, A.A., et al., Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comp Biochem Physiol B Biochem Mol Biol, 1998. 121(1): p. 19-26.
dc.relation.referencesLeRoith and D., The insulin-like growth factor system and cancer. Cancer Letters, 2003.
dc.relation.referencesPeruzzi, F., et al., Anti-apoptotic signaling of the insulin-like growth factor-I receptor through mitochondrial translocation of c-Raf and Nedd4. J Biol Chem, 2001. 276(28): p. 25990-6.
dc.relation.referencesSamani, A.Y., S; LeRoith, D; Brodt, P, The Role of the IGF System in Cancer Growth and Metastasis: Overview and Recent Insights. Endocrine Reviews, 2008. 28(1): p. 20 - 47.
dc.relation.referencesBaron, V.C., V; Ferrari, P; Alengrin, F; Van Obberghen, E, p125Fak focal adhesion kinase is a substrate for the insulin and insulin-like growth factor-I tyrosine kinase receptors. J Biol Chem, 1998. 273: p. 7162–7168.
dc.relation.referencesKoval, A.P.K., M; Zick, Y; LeRoith, D Interplay of the proto-oncogene proteins CrkL and CrkII in insulin-like growth factor-I receptor-mediated signal transduction. J Biol Chem, 1998. 273: p. 14780–14787.
dc.relation.referencesCasamassima, A.R., E Insulin-like growth factor I stimulates tyrosine phosphorylation of p130(Cas), focal adhesion kinase, and paxillin. Role of phosphatidylinositol 3 -kinase and formation of a p130(Cas).Crk complex. J Biol Chem, 1998. 273: p. 26149–26156.
dc.relation.referencesDe Meyts, P., Insulin and its receptor: structure, function and evolution. BioEssays, 2004. 26(12): p. 1351-1362.
dc.relation.referencesHuang, K., et al., How Insulin Binds: the B-Chain [alpha]-Helix Contacts the L1 [beta]-Helix of the Insulin Receptor. Journal of Molecular Biology, 2004. 341(2): p. 529-550.
dc.relation.referencesDe Meyts, P. and J. Whittaker, Structural biology of insulin and IGF1 receptors: implications for drug design. Nature Reviews Drug Discovery, 2002. 1(10): p. 769-783.
dc.relation.referencesDenley, A., et al., Differential Activation of Insulin Receptor Isoforms by Insulin-Like Growth Factors Is Determined by the C Domain. Endocrinology, 2005.
dc.relation.referencesBelfiore, A., et al., Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev, 2009. 30(6): p. 586-623.
dc.relation.referencesYamaguchi, Y., et al., Ligand-binding properties of the two isoforms of the human insulin receptor. Endocrinology, 1993. 132(3): p. 1132-8.
dc.relation.referencesBenyoucef, S., et al., Characterization of insulin/IGF hybrid receptors: contributions of the insulin receptor L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation. Biochem J, 2007. 403(3): p. 603-13.
dc.relation.referencesFrasca, F., et al., Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol, 1999. 19(5): p. 3278-88.
dc.relation.referencesBlanquart, C., J. Achi, and T. Issad, Characterization of IRA/IRB hybrid insulin receptors using bioluminescence resonance energy transfer. Biochem Pharmacol, 2008. 76(7): p. 873-83.
dc.relation.referencesPandini, G., Insulin/Insulin-like Growth Factor I Hybrid Receptors Have Different Biological Characteristics Depending on the Insulin Receptor Isoform Involved. Journal of Biological Chemistry, 2002. 277(42): p. 39684-39695.
dc.relation.referencesDenley, A., Structural Determinants for High-Affinity Binding of Insulin-Like Growth Factor II to Insulin Receptor (IR)-A, the Exon 11 Minus Isoform of the IR. Molecular Endocrinology, 2004. 18(10): p. 2502-2512.
dc.relation.referencesDi Guglielmo, G., et al., Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. The EMBO Journal, 1994. 13(18): p. 4269.
dc.relation.referencesRizzo, M., et al., The recruitment of Raf-1 to membranes is mediated by direct interaction with phosphatidic acid and is independent of association with Ras. Journal of Biological Chemistry, 2000. 275(31): p. 23911.
dc.relation.referencesCeresa, B., et al., Inhibition of clathrin-mediated endocytosis selectively attenuates specific insulin receptor signal transduction pathways. Molecular and Cellular Biology, 1998. 18(7): p. 3862.
dc.relation.referencesHamer, I., et al., An arginine to cysteine 252 mutation in insulin receptors from a patient with severe insulin resistance inhibits receptor internalisation but preserves signalling events. Diabetologia, 2002. 45(5): p. 657-667.
dc.relation.referencesChow, J., G. Condorelli, and R. Smith, Insulin-like growth factor-I receptor internalization regulates signaling via the Shc/mitogen-activated protein kinase pathway, but not the insulin receptor substrate-1 pathway. Journal of Biological Chemistry, 1998. 273(8): p. 4672.
dc.relation.referencesJensen, M. and P. De Meyts, Molecular mechanisms of differential intracellular signaling from the insulin receptor. Vitamins & Hormones, 2009. 80: p. 51-75.
dc.relation.referencesEl-Shewy, H. and L. Luttrell, Insulin-like growth factor-2/mannose-6 phosphate receptors. Vitamins & Hormones, 2009. 80: p. 667-697.
dc.relation.referencesBraulke, T., Type-2 IGF receptor: a multi-ligand binding protein. Horm Metab Res, 1999. 31(2-3): p. 242-6.
dc.relation.referencesLobel, P., et al., Cloning of the bovine 215-kDa cation-independent mannose 6-phosphate receptor. Proc Natl Acad Sci U S A, 1987. 84(8): p. 2233-7.
dc.relation.referencesBrown, J., et al., Structure of a functional IGF2R fragment determined from the anomalous scattering of sulfur. EMBO J, 2002. 21(5): p. 1054-62.
dc.relation.referencesDahms, N.M. and M.K. Hancock, P-type lectins. Biochim Biophys Acta, 2002. 1572(2-3): p. 317-40.
dc.relation.referencesHawkes, C. and S. Kar, The insulin-like growth factor-II/mannose-6-phosphate receptor: structure, distribution and function in the central nervous system. Brain Research Reviews, 2004. 44(2-3): p. 117-140.
dc.relation.referencesNishimoto, I., et al., Insulin-like growth factor II increases cytoplasmic free calcium in competent Balb/c 3T3 cells treated with epidermal growth factor. Biochem Biophys Res Commun, 1987. 142(1): p. 275-86.
dc.relation.referencesMartínez, U., et al., Oleoylethanolamide, a natural ligand for PPAR-alpha, inhibits insulin receptor signalling in HTC rat hepatoma cells. Biochimica et biophysica acta, 2009. 1791(8): p. 740.
dc.relation.referencesGhahary, A., et al., Cellular response to latent TGF-beta1 is facilitated by insulin-like growth factor-II/mannose-6-phosphate receptors on MS-9 cells. Exp Cell Res, 1999. 251(1): p. 111-20.
dc.relation.referencesHarris, L.K., et al., IGF2 Actions on Trophoblast in Human Placenta Are Regulated by the Insulin-Like Growth Factor 2 Receptor, Which Can Function as Both a Signaling and Clearance Receptor. Biol Reprod, 2010.
dc.relation.referencesEl-Shewy, H.M., et al., Insulin-like Growth Factors Mediate Heterotrimeric G Protein-dependent ERK1/2 Activation by Transactivating Sphingosine 1-Phosphate Receptors. Journal of Biological Chemistry, 2006. 281(42): p. 31399-31407.
dc.relation.referencesOkamoto, T., et al., A simple structure encodes G protein-activating function of the IGF-II/mannose 6-phosphate receptor. Cell, 1990. 62(4): p. 709-717.
dc.relation.referencesKörner, C., et al., Mannose 6-phosphate/insulin-like growth factor II receptor fails to interact with G-proteins. Analysis of mutant cytoplasmic receptor domains. The Journal of biological chemistry, 1995. 270(1): p. 287.
dc.relation.referencesEl-Shewy, H.M., et al., The Insulin-like Growth Factor Type 1 and Insulin-like Growth Factor Type 2/Mannose-6-phosphate Receptors Independently Regulate ERK1/2 Activity in HEK293 Cells. Journal of Biological Chemistry, 2007. 282(36): p. 26150-26157.
dc.relation.referencesSoos, M.A., C.E. Field, and K. Siddle, Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochem J, 1993. 290 ( Pt 2): p. 419-26.
dc.relation.referencesSlaaby, R., et al., Hybrid receptors formed by insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) have low insulin and high IGF-1 affinity irrespective of the IR splice variant. J Biol Chem, 2006. 281(36): p. 25869-74.
dc.relation.referencesModan-Moses, D., et al., Expression and function of insulin/insulin-like growth factor I hybrid receptors during differentiation of 3T3-L1 preadipocytes. Biochemical Journal, 1998. 333(Pt 3): p. 825.
dc.relation.referencesSachdev, D., et al., Down-regulation of insulin receptor by antibodies against the type I insulin-like growth factor receptor: implications for anti-insulin-like growth factor therapy in breast cancer. Cancer Res, 2006. 66(4): p. 2391-402.
dc.relation.referencesBischof, P., A. Meisser, and A. Campana, Biochemistry and Molecular Biology of Trophoblast Invasion. Ann NY Acad Sci, 2001. 943(1): p. 157-162.
dc.relation.referencesFerretti, C., et al., Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum Reprod Update, 2007. 13(2): p. 121-141.
dc.relation.referencesStaun-Ram, E., et al., Expression and importance of matrix metalloproteinase 2 and 9 (MMP-2 and -9) in human trophoblast invasion. Reproductive Biology and Endocrinology, 2004. 2(1): p. 59.
dc.relation.referencesIsaka, K., et al., Expression and Activity of Matrix Metalloproteinase 2 and 9 in Human Trophoblasts. Placenta, 2003. 24(1): p. 53-64.
dc.relation.referencesBischof, P., K. Truong, and A. Campana, Regulation of Trophoblastic Gelatinases by Proto-oncogenes. Placenta, 2003. 24(2-3): p. 155-163.
dc.relation.referencesZygmunt, M., et al., HCG increases trophoblast migration in vitro via the insulin-like growth factor-II/mannose-6 phosphate receptor. Mol. Hum. Reprod., 2005. 11(4): p. 261-267.
dc.relation.referencesIrwin, J.C., et al., Insulin like growth factor (IGF)-II inhibition of endometrial stromal cell tissue inhibitor of metalloproteinase‐3 and IGF‐binding protein‐1 suggests paracrine interactions at the decidua:trophoblast interface during human implantation. J Clin Endocrinol Metab, 2001. 86(5): p. 2060-4.
dc.relation.referencesFowden, A.L., The Insulin-like Growth Factors and feto-placental Growth. Placenta, 2003. 24(8-9): p. 803-812.
dc.relation.referencesForbes, K., et al., Insulin like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. Am J Physiol Cell Physiol, 2008. 294(6): p. C1313-22.
dc.relation.referencesCantero, M.E., Estudio Predictivo de algunos Marcadores Bioquímicos en Suero de Pacientes con Mola Hidatidiforme, in in Tesis de Maestría en Bioquímica. 2004, Universidad Nacional de Colombia: Bogotá.
dc.relation.referencesMcKinnon, T., et al., Stimulation of Human Extravillous Trophoblast Migration by IGF-II Is Mediated by IGF Type 2 Receptor Involving Inhibitory G Protein(s) and Phosphorylation of MAPK. J Clin Endocrinol Metab, 2001. 86(8): p. 3665-3674.
dc.relation.referencesChiesa, C., et al., Ghrelin, leptin, IGF‐1, IGFBP‐3, and insulin concentrations at birth: is there a relationship with fetal growth and neonatal anthropometry? . Clin Chem, 2008. 54(3): p. 550-8.
dc.relation.referencesFreyre, S., Vallejo AF, Sánchez-gómez M., OR10, 60 IGF-IIR: A novel autocrine loop between IGF-II and hCG. Growth Hormone & IGF Research, 2010. 20: p. S27.
dc.relation.referencesCohen, P., The regulation of protein function by multisite phosphorylation-a 25 year update. Trends in Biochemical Sciences, 2000. 25(12): p. 596-601.
dc.relation.referencesHunter, T., Signaling-2000 and beyond. Cell, 2000. 100(1): p. 113-128.
dc.relation.referencesOng, S.-E. and M. Mann, Mass spectrometry–based proteomics turns quantitative. Nature Chemical Biology, 2005. 1(5): p. 252-262.
dc.relation.referencesFicarro, S., et al., Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nature Biotechnology, 2002. 20(3): p. 301-305.
dc.relation.referencesOlsen, J., et al., Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 2006. 127(3): p. 635-648.
dc.relation.referencesBeausoleil, S., et al., Large-scale characterization of HeLa cell nuclear phosphoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(33): p. 12130.
dc.relation.referencesOng, S., et al., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & Cellular Proteomics, 2002. 1(5): p. 376.
dc.relation.referencesOda, Y., et al., Accurate quantitation of protein expression and site-specific phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(12): p. 6591.
dc.relation.referencesSechi, S. and Y. Oda, Quantitative proteomics using mass spectrometry. Current Opinion in Chemical Biology, 2003. 7(1): p. 70-77.
dc.relation.referencesGeiger, T., et al., Super-SILAC mix for quantitative proteomics of human tumor tissue. Nature Methods, 2010. 7(5): p. 383-385.
dc.relation.referencesGygil, S., et al., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnology, 1999. 17(10): p. 994-999.
dc.relation.referencesRoss, P., et al., Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Molecular & Cellular Proteomics, 2004. 3(12): p. 1154.
dc.relation.referencesSchulze, W. and M. Mann, A novel proteomic screen for peptide-protein interactions. Journal of Biological Chemistry, 2004. 279(11): p. 10756.
dc.relation.referencesMujezinovic, N., et al., Cleaning of raw peptide MS/MS spectra: Improved protein identification following deconvolution of multiply charged peaks, isotope clusters, and removal of background noise. Proteomics, 2006. 6(19): p. 5117-5131.
dc.relation.referencesBell, A., et al., A HUPO test sample study reveals common problems in mass spectrometry–based proteomics. Nature Methods, 2009. 6(6): p. 423-430.
dc.relation.referencesLane, W., et al., Bioinformatic Evaluation of Datasets Derived from the ABRF sPRG Proteomics Standard. Association of Biomolecular Resource Facilities, ABRF. 7.
dc.relation.referencesSearle, B.C., Scaffold: A bioinformatic tool for validating MS/MS-based proteomic studies. Proteomics, 2010. 10(6): p. 1265-1269.
dc.relation.referencesGraham, C.H., et al., Establishment and Characterization of First Trimester Human Trophoblast Cells with Extended Lifespan. Experimental Cell Research, 1993. 206(2): p. 204-211.
dc.relation.referencesKhoo, N.K., et al., SV40 Tag transformation of the normal invasive trophoblast results in a premalignant phenotype. I. Mechanisms responsible for hyperinvasiveness and resistance to anti-invasive action of TGFbeta. Int J Cancer, 1998. 77(3): p. 429-39.
dc.relation.referencesIrving, J.A. and P.K. Lala, Functional Role of Cell Surface Integrins on Human Trophoblast Cell Migration: Regulation by TGF-[beta], IGF-II, and IGFBP-1. Experimental Cell Research, 1995. 217(2): p. 419-427.
dc.relation.referencesMosmann, T., Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Meth, 1983. 65: p. 55-63.
dc.relation.referencesThingholm, T.E., O.N. Jensen, and M.R. Larsen, Analytical strategies for phosphoproteomics. Proteomics, 2009. 9(6): p. 1451–1468.
dc.relation.referencesCandiano, G., et al., Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis, 2004. 25(9): p. 1327-33.
dc.relation.referencesShevchenko, A., et al., In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc, 2006. 1(6): p. 2856-60.
dc.relation.referencesBhatia, V., et al., Software Tool for Researching Annotations of Proteins: Open-Source Protein Annotation Software with Data Visualization. Analytical chemistry, 2009. 81(20): p. 8387-8395.
dc.relation.referencesMedina-Aunon, J., et al., PIKE: discovering biological information from proteomics data. Proteomics.
dc.relation.referencesDennis Jr, G., et al., DAVID: database for annotation, visualization, and integrated discovery. Genome Biol, 2003. 4(5): p. P3.
dc.relation.referencesHuang, D.W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 2008. 4(1): p. 44-57.
dc.relation.referencesSoos, M., C. Field, and K. Siddle, Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochemical Journal, 1993. 290(Pt 2): p. 419.
dc.relation.referencesNelson, P., et al., Smooth muscle cell migration and proliferation are mediated by distinct phases of activation of the intracellular messenger mitogen-activated protein kinase. Journal of Vascular Surgery, 1998. 27(1): p. 117-125.
dc.relation.referencesKhanna, C., et al., The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nature Medicine, 2004. 10(2): p. 182-186.
dc.relation.referencesYu, Y., et al., Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nature Medicine, 2004. 10(2): p. 175-181.
dc.relation.referencesHunter, K., Ezrin, a key component in tumor metastasis. Trends in Molecular Medicine, 2004. 10(5): p. 201-204.
dc.relation.referencesWick, W., et al., Ezrin-Dependent Promotion of Glioma Cell Clonogenicity, Motility, and Invasion Mediated by BCL-2 and Transforming Growth Factor-{beta} 2. Journal of Neuroscience, 2001. 21(10): p. 3360.
dc.relation.referencesHauck, C., D. Hsia, and D. Schlaepfer, The focal adhesion kinase--a regulator of cell migration and invasion. IUBMB Life, 2002. 53(2): p. 115-119.
dc.relation.referencesPatil, N., R. Pandey, and M. Rao, Proteases and Protease Inhibitors: Implications in Antitumorigenesis and Drug Development. INTERNATIONAL JOURNAL OF HUMAN GENETICS, 2007. 7(1): p. 67-82.
dc.relation.referencesMcDonnell, S. and B. Fingleton, Role of matrix metalloproteinases in invasion and metastasis: biology, diagnosis and inhibitors. Cytotechnology, 1993. 12(1-3): p. 367-84.
dc.relation.referencesMasson, V., Roles of serine proteases and matrix metalloproteinases in tumor invasion and angiogenesis. Bull Mem Acad R Med Belg, 2006. 161(5): p. 320-6.
dc.relation.referencesJ.M. Ray and W.G. Stetler-Stevenson, The role of matrix metalloproteases and their inhibitors in tumour invasion, metastasis and angiogenesis. European Respiratory Journal, 1994. 7: p. 2062–2072.
dc.relation.referencesFerretti, C., et al., Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Human Reproduction Update, 2007. 13(2): p. 121.
dc.relation.referencesBelfiore A, F.F., Pandini G, Sciacca L, Vigneri R, Insulin Receptor Isoforms and Insulin Receptor/Insulin-Like Growth Factor Receptor Hybrids in Physiology and Disease. Endocrine Reviews, 2009. 30(6): p. 586-623.
dc.relation.referencesDaub, H., et al., Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. 1996.
dc.relation.referencesLuttrell, L., Y. Daaka, and R. Lefkowitz, Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Current Opinion in Cell Biology, 1999. 11(2): p. 177-183.
dc.relation.referencesMarinissen, M. and J. Gutkind, G-protein-coupled receptors and signaling networks: emerging paradigms. Trends in Pharmacological Sciences, 2001. 22(7): p. 368-376.
dc.relation.referencesDalle, S., et al., Insulin and insulin-like growth factor I receptors utilize different G protein signaling components. Journal of Biological Chemistry, 2001. 276(19): p. 15688.
dc.relation.referencesDahms, N. and M. Hancock, P-type lectins. Biochimica et Biophysica Acta (BBA)-General Subjects, 2002. 1572(2-3): p. 317-340.
dc.relation.referencesFrasca, F., et al., Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Molecular and Cellular Biology, 1999. 19(5): p. 3278.
dc.relation.referencesBrown, J., E. Jones, and B. Forbes, Interactions of IGF-II with the IGF2R/Cation-Independent Mannose-6-Phosphate Receptor:: Mechanism and Biological Outcomes. Vitamins & Hormones, 2009. 80: p. 699-719.
dc.relation.referencesLeksa, V., et al., TGF-beta-induced apoptosis in endothelial cells mediated by M6P/IGFII-R and mini-plasminogen. Journal of Cell Science, 2005. 118(Pt 19): p. 4577.
dc.relation.referencesSchiller, H., et al., Mannose 6-Phosphate/Insulin-like Growth Factor 2 Receptor Limits Cell Invasion by Controlling $# x003b1; V $# x003b2; 3 Integrin Expression and Proteolytic Processing of Urokinase-type Plasminogen Activator Receptor. Molecular Biology of the Cell, 2009. 20(3): p. 745.
dc.relation.referencesF, M.-S., et al., Integrin alpha(v)beta(3), metalloproteinases, and sphingomyelinase-2 mediate urokinase mitogenic effect. Cell Signal, 2009. 21(12): p. 1925-34.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposaltrophoblast
dc.subject.proposalreceptores híbridos.
dc.subject.proposalhybrid receptors
dc.subject.proposalFosfoproteómica
dc.subject.proposalphosphoproteomics
dc.subject.proposaltrofoblasto
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito