Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRojas Reyes, Néstor Ricardo
dc.contributor.advisorGómez Zapata, Adrian Augusto
dc.contributor.authorMuñoz Mizuno, Andrea Lucía
dc.date.accessioned2020-08-24T16:24:56Z
dc.date.available2020-08-24T16:24:56Z
dc.date.issued2020-04-23
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78192
dc.description.abstractThe magnetocaloric effect (EMC) is defined as the heating or cooling of magnetic material when the applied magnetic field changes. Various types and families of magnetocaloric materials (MMC) have been developed around the theme of EMC, within which are ceramic magnetocaloric materials (MMCC), and within these, lanthanum manganites. The last one has become a focus of research interest, due to the good properties that have been obtained for technological applications in the area of solid state refrigeration. In studies on magnetic refrigeration, a point that must be taken into account; but that is poorly evaluated, is the interaction of the working fluid with the magnetocaloric material, that is, the chemical stability and degradation of the material when exposed to the corrosive/erosive action of the working fluid. The manganites synthesized in this work, have the general formula La0.7Ca0.3Mn1-xNixO3 (x = 0; 0,02; 0,07; 0,1), which were made by solution combustion method. Morphological and structural characterization was performed by Field Emission Scanning Electron Microscopy (FE-SEM) and X-ray diffraction, respectively. Electrochemical behavior was evaluated by Electrochemical Impedance Spectroscopy and Potentiodynamic Polarization curves in a 3.5% NaCl solution. The electrochemical results indicated that the Ecorr values were 2; 87; 79 and 88 mV and for the icorr were 0,78; 0,55; 0,48 and 0,39 µA/cm2 for x = 0; 0.02; 0.07 and 0.1, indicating that doping with nickel could improve the electrochemical resistance of the material. On the other hand, the possible mechanism of degradation of the MMC is the dissolution, evidenced in the overpotential curves, the SEM micrographs and in the color change observed in the electrolyte at the end of the polarization tests.
dc.description.abstractEl efecto magnetocalórico (EMC) consiste en el cambio de temperatura que experimenta un material magnético cuando éste es expuesto a un campo magnético externo variable. Alrededor de la temática del EMC se han desarrollado varios tipos y familias de materiales magnetocalóricos (MMC), dentro de los cuales se encuentran los materiales magnetocalóricos cerámicos (MMCC), y dentro de éstos, las manganitas de lantano. Estas últimas se han convertido en foco de interés investigativo, debido a las buenas propiedades que se han obtenido para aplicaciones tecnológicas en el área de la refrigeración en estado sólido. En estudios sobre refrigeración magnética, un punto que debe tenerse en cuenta; pero que ha sido poco evaluado, es la interacción entre el MMC y el fluido en el que estará inmerso, es decir, la estabilidad química y la degradación del material cuando se expone a la acción oxidante/corrosiva/erosiva del fluido de trabajo. Las manganitas sintetizadas en el presente trabajo, tienen la fórmula general La0.7Ca0.3Mn1-xNixO3 (x = 0; 0,02; 0,07; 0,1), las cuales fueron fabricadas por autocombustión. Al MMC obtenido se le realizó una caracterización morfológica y estructural mediante microscopía electrónica de barrido de emisión de campo y difracción de rayos X, respectivamente. El comportamiento electroquímico del material en estudio se evaluó mediante espectroscopía de impedancia electroquímica y curvas de polarización potenciodinámicas en una solución de NaCl al 3,5%. Los resultados electroquímicos mostraron que los valores de Ecorr fueron de 2; 87; 79 y 88 mV y los de icorr de 0,78; 0,55; 0,48 y 0,39 µA/cm2 para x = 0; 0,02; 0,07 y 0,1, respectivamente, indicando que el dopaje con níquel podría mejorar la resistencia electroquímica del material. Por otro lado, el posible mecanismo de degradación identificado del MMC es la disolución, evidenciado en las curvas de sobrepotencial, las micrografías SEM y en el cambio de coloración observado en el electrolito al finalizar los ensayos de polarización. (texto tomado de la fuente)
dc.format.extent86 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleSíntesis y evaluación de la morfología, estructura y parámetros electroquímicos de un material magnetocalórico (MMC) fabricado por autocombustión.
dc.typeTrabajo de grado - Maestría
dcterms.audienceEspecializada
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellín
dc.contributor.researchgroupInstituto de Minerales CIMEX
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería – Materiales y Procesos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Materiales y Minerales
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.references“Efecto Magnetocalórico,” La Crónica, 2013. [Online]. Available: http://www.cronica.com.mx/notas/2013/794577.html. [Accessed: 27-Jan-2020].
dc.relation.referencesV. M. Andrade et al., “Magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 tunable by particle size and dimensionality,” Acta Mater., vol. 102, pp. 49–55, 2016.
dc.relation.referencesH. Jie, F. Song, H. Yan, L. Yi, and X. Jianing, “Effect of impurity phase on corrosion resistance and magnetic entropy change for LaFe11.3Co0.4Si1.3C0.15 magnetocaloric compound,” J. Rare Earths, vol. 34, no. 3, pp. 283–287, 2016.
dc.relation.referencesF. Canepa, S. Cirafici, M. Napoletano, M. R. Cimberle, L. Tagliafico, and F. Scarpa, “Ageing effect on the magnetocaloric properties of Gd, Gd5Si1.9Ge2.1and on the eutectic composition Gd75Cd25,” J. Phys. D. Appl. Phys., vol. 41, no. 15, 2008.
dc.relation.referencesM. Chennabasappa, B. Chevalier, M. Lahaye, C. Labrugere, and O. Toulemonde, “A core-shell phenomenon maintain the magnetocaloric properties of the ternary silicide Gd6Co1.67Si3 during water flux ageing,” J. Alloys Compd., vol. 584, pp. 34–40, 2014.
dc.relation.referencesF. Guillou, U. Legait, A. Kedous-Lebouc, and V. Hardy, “Development of a new magnetocaloric material used in a magnetic refrigeration device,” EPJ Web Conf., vol. 29, no. 00021, pp. 1–10, 2012.
dc.relation.referencesF. Deganello and A. K. Tyagi, “Solution combustion synthesis, energy and environment: Best parameters for better materials,” Prog. Cryst. Growth Charact. Mater., vol. 64, no. 2, pp. 23–61, 2018.
dc.relation.referencesE. Sellami-Jmal et al., “Effect of Calcium Deficiency on the Structural , Magnetic and Magnetocaloric Properties in La0.65Ca0.35MnO3 Manganites Oxides,” J. Supercond. Nov. Magn., vol. 28, pp. 2409–2415, 2015.
dc.relation.referencesA. Yadav, J. Shah, R. Gupta, A. Shukla, S. Singh, and R. K. Kotnala, “Role of spin-glass phase for magnetoresistance enhancement in nickel substituted lanthanum calcium manganite,” Ceram. Int., vol. 42, no. 11, pp. 12630–12638, 2016.
dc.relation.referencesB. M. Nagabhushana, R. P. S. Chakradhar, K. P. Ramesh, C. Shivakumara, and G. T. Chandrappa, “Combustion synthesis, characterization and metal-insulator transition studies of nanocrystalline La1-xCaxMnO3 (0.0 ≤ x ≤ 0.5),” Mater. Chem. Phys., vol. 102, no. 1, pp. 47–52, 2007.
dc.relation.referencesE. Oumezzine, S. Hcini, E. K. Hlil, E. Dhahri, and M. Oumezzine, “Effect of Ni-doping on structural, magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3Mn1-xNixO3 nanocrystalline manganites synthesized by Pechini sol-gel method,” J. Alloys Compd., vol. 615, pp. 553–560, 2014.
dc.relation.referencesA. Gómez, E. Chavarriaga, I. Supelano, C. A. Parra, O. Morán, and E. Chavarriaga, “Evaluation of the magnetocaloric response of nano-sized La0.7Ca0.3Mn1-xNixO3 manganites synthesized by auto-combustion method,” Am. Inst. Phys., vol. 056430, pp. 0–6, 2018.
dc.relation.referencesA. Gómez et al., “Assessment of the relationship between magnetotransport and magnetocaloric properties in nano-sized La0.7Ca0.3Mn1−xNixO3 manganites,” J. Magn. Magn. Mater. Magn. Magn. Mater., vol. 469, pp. 558–569, 2019.
dc.relation.referencesO. Morán, A. Gómez, I. Supelano, C. A. Parra, and J. L. Izquierdo, “Assessment of the critical behavior near the FM to PM phase transition in nano-crystalline La0.7Ca0.3Mn1−xNixO3 (x = 0, 0.02, 0.07, 0.10) samples synthesized by auto-combustion,” J. Magn. Magn. Mater., vol. 477, no. January, pp. 22–26, 2019.
dc.relation.referencesJ. Hu, L. Guan, S. Fu, Y. Sun, and Y. Long, “Corrosion and latent heat in thermal cycles for La(Fe,Mn,Si)13 magnetocaloric compounds,” J. Magn. Magn. Mater., vol. 354, pp. 336–339, 2014.
dc.relation.referencesM. Zhang, W. Sun, Y. Long, C. Qiu, and R. Ye, “Effect of chromium on magnetic properties and corrosion resistance of LaFe11.5Si1.5 compound,” J. Rare Earths, vol. 31, no. 1, pp. 69–72, 2013.
dc.relation.referencesM. H. Phan and S. C. Yu, “Review of the magnetocaloric effect in manganite materials,” J. Magn. Magn. Mater., vol. 308, no. 2, pp. 325–340, 2007.
dc.relation.referencesV. Franco, J. S. Blázquez, B. Ingale, and A. Conde, “The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models,” Annu. Rev. Mater. Res., vol. 42, no. 1, pp. 305–342, 2012.
dc.relation.referencesS. Wieland and F. Petzoldt, “Powder-extrusion and sintering of magnetocaloric LaCe(FeMnSi)13alloy,” J. Alloys Compd., vol. 719, pp. 182–188, 2017.
dc.relation.referencesN. Assoudi, I. Walha, E. Dhahri, S. Alleg, and E. K. Hlil, “Structural, magnetic and on magnetocaloric properties near the paramagnetic to ferromagnetic phase transition in La 0.5 □ 0.1Ca0.4MnO3 oxide,” Solid State Commun., vol. 277, no. November 2017, pp. 13–18, 2018.
dc.relation.referencesV. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and A. Conde, “Magnetocaloric effect: From materials research to refrigeration devices,” Prog. Mater. Sci., vol. 93, pp. 112–232, 2018.
dc.relation.referencesK. El Maalam et al., “Composite (La0.45Nd0.25)Sr0.3MnO3/5CuO materials for magnetic refrigeration applications,” J. Magn. Magn. Mater., vol. 449, pp. 25–32, 2018.
dc.relation.referencesO. Gutfleisch, M. A. Willard, E. Brück, C. H. Chen, S. G. Sankar, and J. P. Liu, “Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient,” Adv. Mater., vol. 23, no. 7, pp. 821–842, 2011.
dc.relation.referencesJ. Liu et al., “Exploring La(Fe,Si)13-based magnetic refrigerants towards application,” Scr. Mater., vol. 67, no. 6, pp. 584–589, 2012.
dc.relation.referencesB. G. Shen, J. R. Sun, F. X. Hu, H. W. Zhang, and Z. H. Cheng, “Recent progress in exploring magnetocaloric materials,” Adv. Mater., vol. 21, no. 45, pp. 4545–4564, 2009.
dc.relation.referencesL. A. Burrola Gándara, “Propiedades magnetocalóricas y transiciones de fase en manganitas y aleaciones de SmCoFe,” Centro de Investigación en Materiales Avanzados, 2015.
dc.relation.referencesV. K. Pecharsky and K. A. Gschneidner, Jr., “Giant Magnetocaloric Effect in Gd5sSi2Ge2,” Phys. Rev. Lett., vol. 78, no. 23, pp. 4494–4497, 1997.
dc.relation.referencesY. Wang et al., “Outstanding Comprehensive Performance of La(Fe, Si)13Hy/In Composite with Durable Service Life for Magnetic Refrigeration,” Adv. Electron. Mater., vol. 1700636, pp. 1–8, 2018.
dc.relation.referencesP. Wikus, E. Canavan, S. T. Heine, K. Matsumoto, and T. Numazawa, “Magnetocaloric materials and the optimization of cooling power density,” Cryogenics (Guildf)., vol. 62, pp. 150–162, 2014.
dc.relation.referencesF. Ayadi, S. Ammar, S. Nowak, W. Cheikhrouhou-koubaa, Y. Regaieg, and M. Koubaa, “Importance of the synthesis and sintering methods on the properties of manganite ceramics: The example of La0.7Ca0.3MnO3,” J. Alloys Compd., vol. 759, pp. 52–59, 2018.
dc.relation.referencesM. Pȩkała, V. Drozd, J. F. Fagnard, P. Vanderbemden, and M. Ausloos, “Magnetocaloric effect in nano- and polycrystalline manganite La 0.7Ca0.3MnO3,” Appl. Phys. A Mater. Sci. Process., vol. 90, no. 2, pp. 237–241, 2008.
dc.relation.referencesV. Markovich, A. Wisniewski, and H. Szymczak, Magnetic Properties of Perovskite Manganites and Their Modifications, 1st ed., vol. 22. Elsevier B.V., 2014.
dc.relation.referencesN. G. Bebenin, “Ferromagnetic Manganites La1−xCaxMnO3,” Phys. Met. Metallogr., vol. 111, no. 3, pp. 236–252, 2011.
dc.relation.referencesI. Walha, H. Ehrenberg, H. Fuess, and A. Cheikhrouhou, “Structure and magnetic properties of lanthanum and calcium-deficient La0.5Ca0.5MnO3 manganites,” J. Alloys Compd., vol. 433, no. 1–2, pp. 63–67, 2007.
dc.relation.referencesS. Hua, P. Zhang, H. Yang, S. Zhang, and H. Ge, “The Magnetic and Magnetocaloric Properties of the Perovskite La0.7Ca0.3Mn1-xNixO3,” J. Magn., vol. 18, no. 1, pp. 34–38, 2013.
dc.relation.referencesR. Skini, A. Omri, M. Khlifi, E. Dhahri, and E. K. Hlil, “Large magnetocaloric effect in lanthanum-deficiency manganites La0.8-x□xCa0.2MnO3(0.00≤x≤0.20) with a first-order magnetic phase transition,” J. Magn. Magn. Mater., vol. 364, pp. 5–10, 2014.
dc.relation.referencesA. Gómez, J. L. Izquierdo, I. Supelano, C. A. Parra, E. Chavarriaga, and O. Morán, “Ferromagnetic long-range ordering in nano-crystalline La0.7Ca0.3Mn1-xNixO3 (x = 0, 0.02) manganites,” J. Magn. Magn. Mater., vol. 475, no. November 2018, pp. 524–532, 2019.
dc.relation.referencesA. Gómez, E. Chavarriaga, I. Supelano, C. A. Parra, and O. Morán, “Tuning the magnetocaloric properties of La0.7Ca0.3MnO3 manganites through Ni-doping,” Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 382, no. 13, pp. 911–919, 2018.
dc.relation.referencesE. A. Chavarriaga Miranda, N. Betancur Granados, O. J. Restrepo Baena, and J. F. Montoya, “Synthesis and characterization of CuCr2O4spinel type pigments, by the use of the in solution auto combustion method,” Rev. Lasallista Investig., vol. 9, no. 1, pp. 62–69, 2013.
dc.relation.referencesM. Pérez et al., “Síntesis de óxidos mixtos tipo perovskitas de LaxSr1-xNiyAl1-yO3 preparados vía combustión en solución (SCS),” Rev. Cienc. e Ing., vol. 46, no. 2, pp. 93–104, 2015.
dc.relation.referencesL. Narayan, H. Kumar, R. Kumar, A. V Anupama, and B. Sahoo, “Structural , optical and Mössbauer spectroscopic investigations on the environment of Fe in Fe-doped ZnO ( Zn 1-x Fe x O ) ceramics synthesized by solution combustion method,” Ceram. Int., no. August, pp. 0–1, 2019.
dc.relation.referencesH. A. Asghari, A. M. Arabi, and H. Haratizadeh, “A novel approach for solution combustion synthesis of tungsten oxide nanoparticles for photocatalytic and electrochromic applications,” Ceram. Int., 2019.
dc.relation.referencesM. Tadić, D. Marković, M. Panjan, and V. Spasojević, “Solution combustion synthesis method and magnetic properties of synthesized polycrystalline calcium manganite CaMnO3−δ powder,” Ceram. Int., vol. 42, no. 16, pp. 19365–19371, 2016.
dc.relation.referencesA. S. Diez, S. Schlichter, V. Tomanech, E. V. P. Miner, M. Alvarez, and M. Dennehy, “Spinel manganites synthesized by combustion method: Structural characterization and catalytic activity in the oxidative degradation of organic pollutants,” J. Environ. Chem. Eng., vol. 5, no. 4, pp. 3690–3697, 2017.
dc.relation.referencesE. Vera, “USO DE MÉTODOS ELECTROQUÍMICOS COMO HERRAMIENTAS PARA EVALUAR PARÁMETROS DE INTERFASE EN SISTEMAS HETEROGÉNEOS METAL/MEDIO ACUOSO,” Rev. Académica Colomb. Ciencias, vol. 34, no. 131, pp. 241–252, 2010.
dc.relation.referencesM. Mora, W. Aperador, and E. Vera, “Descripción de la modulación de frecuencia electroquímica utilizada para las medidas de velocidad de corrosión.,” Rev. Colomb. Física, vol. 39, no. 1, pp. 143–146, 2007.
dc.relation.referencesE. Otero, Corrosión y degradación de materiales, Primera Ed. Madrid, 2001.
dc.relation.referencesT. Pajkossy and R. Jurczakowski, “Electrochemical impedance spectroscopy in interfacial studies,” Curr. Opin. Electrochem., vol. 1, no. 1, pp. 53–58, 2017.
dc.relation.referencesF. Ciucci, “Modeling electrochemical impedance spectroscopy,” Curr. Opin. Electrochem., vol. 13, pp. 132–139, 2019.
dc.relation.referencesM. Zhang, Y. Long, R. Ye, and Y. Chang, “Corrosion behavior of magnetic refrigeration material La–Fe–Co–Si in distilled water,” J. Alloys Compd., vol. 509, no. 8, pp. 3627–3631, 2011.
dc.relation.referencesM. Balli, O. Sari, L. Zamni, C. Mahmed, and J. Forchelet, “Implementation of La(Fe, Co)13-xSix materials in magnetic refrigerators: Practical aspects,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 177, no. 8, pp. 629–634, 2012.
dc.relation.referencesJ. Hu, M. Zhang, Y. Long, S. Fu, H. Wang, and K. Zhong, “Corrosion behavior and Δs-Tcrelation of LaFe13-x-yCoxSiyCz compounds near room temperature,” J. Magn. Magn. Mater., vol. 377, pp. 368–372, 2015.
dc.relation.referencesH. Wu, J. Liu, H. Zhao, Q. Jiang, Y. Xu, and J. Xu, “Effect of surface microstructure of aluminum coating on corrosion properties of magnetic refrigerant gadolinium,” Trans. Nonferrous Met. Soc. China, vol. 23, pp. 3280–3285, 2013.
dc.relation.referencesX. Zhong, X. Shen, and Z. Liu, “Magnetocaloric properties , microhardness and corrosion resistance of Gd100-xZrx alloys,” J. Rare Earths, vol. 34, no. 9, pp. 889–894, 2016.
dc.relation.referencesJ. Hu, Z. Dong, Y. Shen, B. Fu, and B. Zhang, “Effect of excess lanthanum on corrosion and magnetocaloric property of LaFe11.5Si1.5 compounds,” J. Rare Earths, vol. 37, no. 10, pp. 1116–1120, 2019.
dc.relation.referencesW. H. Wang et al., “Magnetocaloric effect , corrosion and mechanical properties of Mn1.05Fe0.9P0.5Si0.5Cux alloys,” Intermetallics, vol. 113, p. 106539, 2019.
dc.relation.referencesP. A. Schweitzer, Fundamentals of Corrosion. Mechanisms, Causes, and Preventive Methods. Taylor & Francis Group, 2010.
dc.relation.referencesW. B. White, “Theory of Corrosion of Glass and Ceramics,” in Corrosion of Glass, Ceramics and Ceramic Superconductors, no. 4, 1992, pp. 2–28.
dc.relation.referencesS. A. Speakman, “Fundamentals of Rietveld Refinement I . XRD Pattern Calculation and Refinement Parameters,” Massachusets Inst. Technol., p. 60, 2010.
dc.relation.referencesS. A. Speakman, “Fundamentals of Rietveld Refinement II. Refinement of a Single Phase,” Massachusets Inst. Technol., p. 58, 2010.
dc.relation.referencesC. You, S. Wang, J. Zhang, N. Yang, and N. Tian, “Improvement of magnetic hysteresis loss, corrosion resistance and compressive strength through spark plasma sintering magnetocaloric LaFe 11.65 Si 1.35 /Cu core-shell powders,” AIP Adv., vol. 6, no. 5, p. 055321, 2016.
dc.relation.referencesM. Afzal, C. Xia, and B. Zhu, “Lanthanum-doped Calcium Manganite (La0.1Ca0.9MnO3) Cathode for Advanced Solid Oxide Fuel Cell (SOFC),” Mater. Today Proc., vol. 3, no. 8, pp. 2698–2706, 2016.
dc.relation.referencesA. Lazo, “Síntesis y propiedades ópticas y magnéticas del YCrO3 preparado por los métodos precursor polimérico modificado y reacción de combustión.,” Universidade Federal de Goiás, 2014.
dc.relation.referencesJ. F. Montoya Carvajal, E. A. Chavarriaga Miranda, and S. Villada Gil, “Synthesis of spinel zncrxfe2-xo4 (0 ≤ x ≤ 1) by combustion in solution and thermodynamic study of phase stability,” Prod. + Limpia, vol. 13, no. 2, pp. 119–132, 2018.
dc.relation.referencesE. A. Chavarriaga Miranda, A. A. Lopera Sepúlveda, J. F. Montoya Carvajal, S. Villada Gil, and O. J. Restrepo Baena, “Síntesis y Caracterización de Pigmentos Inorgánicos Azules CoAl1.95Cr0.05O4 y Zn0.8Co0.2Al2O4 por Combustión en Solución,” Sci. Tech., vol. 23, no. 04, pp. 462–470, 2018.
dc.relation.referencesM. Tapia, “ImageJ para microscopía,” Ciudad de México, 2013.
dc.relation.referencesS. P. Altintas, N. Mahamdioua, A. Amira, and C. Terzioglu, “Effect of anionic substitution on the structural and magneto-electrical properties of La-Ca-Mn-O perovskite manganites,” J. Magn. Magn. Mater., vol. 368, pp. 111–115, 2014.
dc.relation.referencesL. Damari et al., “The effect of Ni doping on the magnetic and transport properties in Pr 0.5 Ca0.5 Mn1-x Nix O3 manganites,” J. Appl. Phys., vol. 106, no. 1, pp. 1–11, 2009.
dc.relation.referencesA. M. Ahmed, A. E. M. A. Mohamed, M. A. Abdellateef, and H. A. Abd El-Ghanny, “Magnetoresistive properties of Ni-doped La0.7Sr0.3MnO3 manganites,” Rare Met., vol. 35, no. 7, pp. 551–558, 2016.
dc.relation.referencesA. F. Mahecha Gómez, “Evaluación de la resistencia a la corrosión a altas temperaturas y desgaste adhesivo de recubrimientos nanoestructurados de la aleación Zirconia ( ZrO 2 ) -Sílice ( SiO 2 ) depositados con la técnica Sputtering reactivo,” Universidad Nacional de Colombia, 2017.
dc.relation.referencesO. M. Prada Ramírez, “Estudo da resistencia a corrosao da liga de alumínio 2024-T3 clad anodizada em ácido tartárico sulfúrico e pós-tratada em banho contendo íons Ce,” Universidade de Sao Paulo, 2019.
dc.relation.referencesJ. M. Hernández-López, A. Conde, J. J. de Damborenea, and M. A. Arenas, “Electrochemical response of TiO2 anodic layers fabricated on Ti6Al4V alloy with nanoporous, dual and nanotubular morphology,” Corros. Sci., vol. 112, pp. 194–203, 2016.
dc.relation.referencesA. Munoz-Mizuno, A. Sandoval-Amador, M. M. Cely, D. Y. Pena-Ballesteros, and R. J. Hernandez, “TiO2 Nanostructures: Voltage Influence in Corrosion Resistance and Human Osteosarcoma HOS Cell Responses,” Indian J. Sci. Technol., vol. 11, no. 22, pp. 1–9, 2018.
dc.relation.referencesC. Boissy, C. Alemany-Dumont, and B. Normand, “EIS evaluation of steady-state characteristic of 316L stainless steel passive film grown in acidic solution,” Electrochem. commun., vol. 26, no. 1, pp. 10–12, 2013.
dc.relation.referencesI. Ziadi et al., “Microbiologically influenced corrosion mechanism of 304L stainless steel in treated urban wastewater and protective effect of silane-TiO2 coating,” Bioelectrochemistry, vol. 132, p. 107413, 2020.
dc.relation.referencesL. Liang, X. Guo, X. Liao, and Z. Chang, “Improve the interfacial adhesion, corrosion resistance and combustion properties of aluminum powder by modification of nickel and dopamine,” Appl. Surf. Sci., p. 144790, 2019.
dc.relation.referencesA. H. Noorbakhsh Nezhad, R. Arefinia, M. Kashefi, A. Davoodi, and S. Hosseinpour, “Compatibility of fabrication of superhydrophobic surfaces and addition of inhibitors in designing corrosion prevention strategies for electrodeposited nickel in saline solutions,” Appl. Surf. Sci., vol. 493, no. May, pp. 1243–1254, 2019.
dc.relation.referencesC. Singh, S. K. Tiwari, and R. Singh, “Exploring environment friendly nickel electrodeposition on AZ91 magnesium alloy: Effect of prior surface treatments and temperature of the bath on corrosion behaviour,” Corros. Sci., vol. 151, no. June 2018, pp. 1–19, 2019.
dc.relation.referencesC. Palumbro, “Caracterizacao da reatividade das ligas aluminio AA2024-T3 e AA7475-T651 soldadas por firccao (FSW),” Universidade de Sao Paulo, 2016.
dc.relation.referencesA. Gebert, M. Krautz, and A. Waske, “Exploring corrosion protection of La-Fe-Si magnetocaloric alloys by passivation,” Intermetallics, vol. 75, pp. 88–95, 2016.
dc.relation.referencesP. Acuña-Goycolea, “Fundamentos de Cinética Electroquímica. Parte I.,” Santiago de Chile, 2003.
dc.relation.referencesM. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Second. Houston, Texas, USA, 1974.
dc.relation.referencesE. Zhang, Y. Chen, and Y. Tang, “Effect of copper ion implantation on corrosion morphology and corrosion behavior of LaFe11.6Si1.4alloy,” J. Rare Earths, vol. 30, no. 3, pp. 269–273, 2012.
dc.relation.referencesC.-C. Fang et al., “Study on magnetic and corrosion properties of Ce16Fe95-xCoxB8(x=0-4) alloys,” Mater. Sci. Forum, vol. 914, pp. 73–79, 2018.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalEfecto magnetocalórico
dc.subject.proposalMagnetocaloric effect
dc.subject.proposalmanganitas de lantano
dc.subject.proposallanthanum manganites
dc.subject.proposaldegradación del material
dc.subject.proposalmaterials degradation
dc.subject.proposalEIS
dc.subject.proposalEIS
dc.title.translatedSynthesis and evaluation of the morphology, structure and electrochemical parameters of a magnetocaloric material (MMC) manufactured by auto-combustion
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito