Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorBranch Bedoya, John William
dc.contributor.advisorSanchez Torrez, German
dc.contributor.authorLeal Narváez, Esmeide Alberto
dc.date.accessioned2020-08-25T20:17:02Z
dc.date.available2020-08-25T20:17:02Z
dc.date.issued2020-07-29
dc.identifier.citationLeal, Esmeide. "Sparse Representation Based Algorithms for Pre Processing Point Clouds". Phd. Thesis. Universidad Nacional de Colombia - Sede Medellín. 2020
dc.identifier.citationLeal, Esmeide. "Algoritmos Para el Pre Procesamiento de Nubes de Puntos Mediante Representaciones Dispersas". Tesis Doctoral. Universidad Nacional de Colombia - Sede Medellín. 2020
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78223
dc.description.abstractNowadays, 3D scanners have become a standard source that provides millions of points as input for a growing number of applications areas such as industry, entertainment, medicine, computer vision, photogrammetry, etc. The large number of points generated by the scanning device is called point clouds. Point clouds often become complicated to handle due to multiple problems, such as the noise produced in the scanning process, lack of information (holes), or excess of information (points). Also, it is crucial in some applications to detect sharp features, like edges and valleys. We addressed all these problems in a stage of surface reconstruction called point cloud pre-processing. The focus of this thesis is the use of sparse representations for developing robust computational algorithms to solve the problems included in the pre-processing stage. Sparse representations are methods inspired in the human visual system, which can be adapted to the characteristics of problems found in the pre-processing of point clouds. We present contributions on some fundamental topics as denoising, sharp features extraction, hole detection, and simplification. With the direct use of the 3D points, we avoid the need for surface reconstruction methods, which are computationally complex and time-consuming. In this thesis, we introduce a smoothing method, which is effective in removing noise and preserving the sharp features and corners. The features preserving capability comes from the combining L1 median and L1 norm to estimate the normals and the point positions update. To reduce the sampling complexity of the cloud, we present a simplification method based on saliency. A Dictionary learning and sparse coding process are carried out over the normals and curvatures to find the saliencies. Next, it makes a selection of the sparse coefficients that represent the most salient features, carrying out in this way the simplification. We introduce a method for detecting features and holes in point clouds. First, we build a covariance matrix from the geometric information in a neighborhood around each point in the cloud. Then we estimate the eigenvalues of the covariance matrix, and combining them, we build feature vectors. The feature vectors are the signals to carry out a dictionary learning followed by a sparse coding process. At last, Imposing a threshold over the sparse coefficients, we detect features (edges, corners, valleys) and holes. We show the effectivity of our algorithms in a wide range of scanned geometric models of varying sizes, complexity, and details.
dc.description.abstractHoy en día, los escáneres 3D se han convertido en una fuente estándar que proporciona millones de puntos como entrada para un número creciente de áreas de aplicaciones como: industria, entretenimiento, medicina, fotogrametría, visión por computadora etc. La gran cantidad de puntos que se generan a partir del proceso de escaneo se denomina nube de puntos y, a menudo, se vuelve complicado de manejar debido a múltiples problemas, como el ruido producido por el proceso de escaneo, la falta de información (agujeros) y el exceso de información (puntos), también es importante en algunas aplicaciones detecta características sobresalientes, como bordes y valles. Todos estos problemas se abordan en la etapa de la reconstrucción de superficies llamada preprocesamiento de la nube de puntos. El objetivo de esta tesis es el uso de representaciones para desarrollar algoritmos computacionales robustos para resolver los problemas presentes en el preprocesamiento de nubes de puntos.Las representaciones dispersas son métodos inspirados in el sistema de visión humano, los cuales pueden ser adaptados a las características de los problemas encontrados en el pre procesamiento de nubes de puntos. Presentamos contribuciones sobre algunos temas fundamentales como, la eliminación de ruido, la extracción de características finas, la simplificación de puntos y la detección de huecos. Al usar directamente los puntos 3D, evitamos la necesidad de métodos de reconstrucción de superficie, que son complejos y requieren mucho tiempo de procesamiento. En esta tesis, se introduce un método de suavizado el cual es efectivo para eliminar el ruido y preservar las bordes y esquinas en nubes de puntos. La capacidad de preservación de características proviene de la combinación de la mediana L1 y la norma L1 para estimar las normales y la actualización de las posiciones de los puntos. Para reducir la complejidad del muestreo de la nube, presentamos un método de simplificación basado en saliencia. Para ello, se lleva a cabo un proceso de aprendizaje de diccionario y codificación dispersa sobre las normales y las curvaturas para encontrar las saliencias. A continuación, se realiza una selección de los vectores dispersos que representan las características con mas saliencia, llevando a cabo de esta manera la simplificación. Introducimos un método para detectar bordes y huecos en nubes de puntos. Primero,construimos una matriz de covarianza a partir de la información geométrica en un vecindario alrededor de cada punto en la nube. Luego se estiman los valores propios de la matriz de covarianza, y se combinan para formar vectores de características, que se utilizan como señales para llevar a cabo un aprendizaje de diccionario seguido de un proceso de codificación disperso. Finalmente, al imponer un umbral sobre los coeficientes dispersos, detectamos las características (bordes, esquinas, valles) y agujeros. Demostramos la utilidad de todos nuestros algoritmos en una amplia variedad de modelos geométricos escaneados de diferentes tamaños, complejidad y detalles.
dc.description.sponsorshipCOLCIENCIAS - MINCIENCIAS
dc.format.extent156
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemas
dc.titleAlgoritmos para el pre procesamiento de nubes de puntos mediante representaciones dispersas
dc.title.alternativeSparse representation based algorithms for pre processing point clouds
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectConvocatorial para estudios doctorales 727-2015
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellín
dc.contributor.researchgroupGIDIA: Grupo de Investigación y Desarrollo en Inteligencia Artificial
dc.description.degreelevelDoctorado
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesMarco Attene, Marcel Campen, and Leif Kobbelt. Polygon mesh repairing: An application perspective. ACM Computing Surveys (CSUR), 45(2):15:1–15:33, March 2013.
dc.relation.referencesM. Aharon, M. Elad, and A. Bruckstein. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Transactions on Signal Processing, 54(11):4311–4322, November 2006.
dc.relation.referencesM. Attene, B. Falcidieno, J. Rossignac, and M. Spagnuolo. Sharpen amp;Bend: recovering curved sharp edges in triangle meshes produced by feature-insensitive sampling. IEEE Transactions on Visualization and Computer Graphics, 11(2):181–192, March 2005.
dc.relation.referencesOytun Akman and Pieter Jonker. Computing Saliency Map from Spatial Information in Point Cloud Data. In Advanced Concepts for Intelligent Vision Systems, Lecture Notes in Computer Science, pages 290–299. Springer, Berlin, Heidelberg, December 2010.
dc.relation.referencesHaim Avron, Andrei Sharf, Chen Greif, and Daniel Cohen-Or. L1 Sparse Reconstruction of Sharp Point Set Surfaces. ACM Trans. Graph., 29(5):135:1–135:12, November 2010.
dc.relation.referencesG. An, T. Watanabe, and M. Kakimoto. Mesh Simplification Using Hybrid Saliency. In 2016 International Conference on Cyberworlds (CW), pages 231–234, September 2016.
dc.relation.referencesSimon Brezovnik, Miran Brezovnik, Simon Klanˇcnik, Ivo Pahole, and Karl Gotlih. A Reverse Engineering Technique for Creating Virtual Robots. Strojniški vestnik - Journal of Mechanical Engineering, 55(6):347–355, 2009.
dc.relation.referencesA. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image denoising. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 2, pages 60–65 vol. 2, June 2005. ISSN: 1063-6919.
dc.relation.referencesD. Bazazian, J. R. Casas, and J. Ruiz-Hidalgo. Fast and Robust Edge Extraction in Unorganized Point Clouds. In 2015 International Conference on Digital Image Computing: Techniques and Applications(DICTA), pages 1–8, November 2015.
dc.relation.referencesA. Borji and L. Itti. Exploiting local and global patch rarities for saliency detection. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 478–485, June 2012.
dc.relation.referencesC. Bao, H. Ji, Y. Quan, and Z. Shen. Dictionary Learning for Sparse Coding: Algorithms and Convergence Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7):1356–1369, July 2016.
dc.relation.referencesF. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics, 5(4):349–359, October 1999. Conference Name: IEEE Transactions on Visualization and Computer Graphics. Pál Benk˝o, Ralph R. Martin, and Tamás Várady. Algorithms for reverse engineering boundary representation models. Computer-Aided Design, 33(11):839–851, September 2001.
dc.relation.referencesJohn Branch, Flavio Prieto, and Pierre Boulanger. Automatic Hole-Filling of Triangular Meshes Using Local Radial Basis Function. In Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’06), pages 727–734, June 2006.
dc.relation.referencesGerhard H. Bendels, Ruwen Schnabel, and Reinhard Klein. Detecting Holes in Point Set Surfaces. Journal of WSCG, 14, February 2006.
dc.relation.referencesIgor Budak, Mirko Sokovi´c, Janez Kopaˇc, and Janko Hodoliˇc. Point data pre-processing based on fuzzy logic for reverse engineering modelling. Journal of Mechanical Engineering, 55(12):755–765, 2009.
dc.relation.referencesNeil D. B. Bruce and John K. Tsotsos. Saliency Based on Information Maximization. In Proceedings of the 18th International Conference on Neural Information Processing Systems, NIPS’05, pages 155–162, Cambridge, MA, USA, 2005. MIT Press.
dc.relation.referencesMatthew Berger, Andrea Tagliasacchi, Lee M. Seversky, Pierre Alliez, Joshua A. Levine, Andrei Sharf, and Claudio T. Silva. State of the Art in Surface Reconstruction from Point Clouds. In Sylvain Lefebvre and Michela Spagnuolo, editors, Eurographics 2014 - State of the Art Reports, pages 161–185. The Eurographics Association, 2014. Marcel Campen, Marco Attene, and Leif Kobbelt. A Practical Guide to Polygon Mesh Repairing. EUROGRAPHICS, page pages 50, 2012.
dc.relation.referencesU. Clarenz, U. Diewald, and M. Rumpf. Anisotropic geometric diffusion in surface processing. In Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145), pages 397–405, October 2000. Y.-P. Cao, T. Ju, J. Xu, and S.-M. Hu. Extracting Sharp Features from RGB-D Images. Computer Graphics Forum, 36(8):138–152, December 2017.
dc.relation.referencesE.J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2):489–509, February 2006.
dc.relation.referencesXiaobai Chen, Abulhair Saparov, Bill Pang, and Thomas Funkhouser. Schelling Points on 3D Surface Meshes. ACM Trans. Graph., 31(4):29:1–29:12, July 2012.
dc.relation.referencesSiheng Chen, Dong Tian, Chen Feng, Anthony Vetro, and Jelena Kovaˇcevi´c. Fast Resampling of ThreeDimensional Point Clouds via Graphs. IEEE Transactions on Signal Processing, 66(3):666–681, February 2018. Conference Name: IEEE Transactions on Signal Processing.
dc.relation.referencesJ. Cao, S. Wushour, X. Yao, N. Li, J. Liang, and X. Liang. Sharp feature extraction in point clouds. IET Image Processing, 6(7):863–869, October 2012. Yonghui Chen and Lihua Yue. A method for dynamic simplification of massive point cloud. In 2016 IEEE International Conference on Industrial Technology (ICIT), pages 1690–1693, March 2016.
dc.relation.referencesSomnath Dutta, Sumandeep Banerjee, Prabir K. Biswas, and Partha Bhowmick. Mesh Denoising Using Multi-scale Curvature-Based Saliency. In Computer Vision - ACCV 2014 Workshops, Lecture Notes in Computer Science, pages 507–516. Springer, Cham, November 2014.
dc.relation.referencesChinthaka Dinesh, Gene Cheung, Ivan V. Bajic, and Cheng Yang. Fast 3D Point Cloud Denoising via Bipartite Graph Approximation & Total Variation. arXiv:1804.10831 [eess], April 2018. arXiv: 1804.10831.
dc.relation.referencesChaojing Duan, Siheng Chen, and Jelena Kovacevic. Weighted Multi-Projection: 3D Point Cloud Denoising With Tangent Planes. In 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pages 725–729, November 2018.
dc.relation.referencesJulie Digne, David Cohen-Steiner, Pierre Alliez, Fernando de Goes, and Mathieu Desbrun. Feature Preserving Surface Reconstruction and Simplification from Defect-Laden Point Sets. Journal of Mathematical Imaging and Vision, 48(2):369–382, February 2014.
dc.relation.referencesD.L. Donoho, M. Elad, and V.N. Temlyakov. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory, 52(1):6–18, January 2006.
dc.relation.referencesKostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image Denoising by Sparse 3D Transform-Domain Collaborative Filtering. IEEE Transactions on Image Processing, 16(8):2080–2095, August 2007. Conference Name: IEEE Transactions on Image Processing.
dc.relation.referencesJean-Emmanuel Deschaud and François Goulette. Point cloud non local denoising using local surface descriptor similarity. In ISPRS Technical Commission III Symposium, PCV 2010-Photogrametric Computer Vision and Image Analysis XXXVIII, pages 109–114, int-Mandé, France, S, 2010. D. L. Donoho. Compressed Sensing. IEEE Trans. Inf. Theor., 52(4):1289–1306, April 2006.
dc.relation.referencesJames R. Diebel, Sebastian Thrun, and Michael Brünig. A Bayesian method for probable surface reconstruction and decimation. ACM Transactions on Graphics (TOG), 25(1):39–59, January 2006.
dc.relation.referencesKris Demarsin, Denis Vanderstraeten, Tim Volodine, Dirk Roose, Kris Demarsin, Denis Vanderstraeten, Tim Volodine, Dirk Roose, Kris Demarsin, Denis V, Tim Volodine, and Dirk Roose. Detection of Closed Sharp Feature Lines in Point Clouds for Reverse Engineering Applications. Springer, Berlin, Heidelberg, 2006.
dc.relation.referencesK. Engan, S.O. Aase, and J. Hakon Husoy. Method of optimal directions for frame design. In 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), volume 5, pages 2443–2446 vol.5, March 1999. ISSN: 1520-6149.
dc.relation.referencesBradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. The Annals of Statistics, 32(2):407–499, April 2004.
dc.relation.referencesM. Elad, J. L. Starck, P. Querre, and D. L. Donoho. Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Applied and Computational Harmonic Analysis, 19(3):340– 358, November 2005.
dc.relation.referencesShachar Fleishman, Iddo Drori, and Daniel Cohen-Or. Bilateral mesh denoising. ACM Transactions on Graphics (TOG), 22(3):950–953, July 2003.
dc.relation.referencesThierry Guillemot, Andres Almansa, and Tamy Boubekeur. Non Local Point Set Surfaces. In Proceedings of the 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, 3DIMPVT ’12, pages 324–331, USA, October 2012. IEEE Computer Society.
dc.relation.referencesRan Gal and Daniel Cohen-Or. Salient Geometric Features for Partial Shape Matching and Similarity. ACM Trans. Graph., 25(1):130–150, January 2006. Gaël Guennebaud and Markus Gross. Algebraic point set surfaces. ACM Transactions on Graphics, 26(3):23– es, July 2007.
dc.relation.referencesShun Guo, Donghui Guo, Lifei Chen, and Qingshan Jiang. A L1-regularized feature selection method for local dimension reduction on microarray data. Computational Biology and Chemistry, 67:92–101, April 2017.
dc.relation.referencesYi Gong and Yuan-Fang Wang. Multi-View Stereo Point Clouds Visualization. In Stefan Gumhold, Xinlong Wang, and Rob S. MacLeod. Feature Extraction From Point Clouds. In IMR 10th International Meshing Roundtable, Sandia National Laboratories, pages pp.293–305, 2001.
dc.relation.referencesYu Guo, Fei Wang, and Jingmin Xin. Point-wise saliency detection on 3D point clouds via covariance descriptors. The Visual Computer, pages 1–14, June 2017.
dc.relation.referencesKenneth M. Hanson. Introduction to Bayesian image analysis. In Medical Imaging 1993: Image Processing, volume 1898, pages 716–731. International Society for Optics and Photonics, September 1993.
dc.relation.referencesLaurent Husson, Thomas Bodin, Giorgio Spada, Gaël Choblet, and Corné Kreemer. Bayesian surface reconstruction of geodetic uplift rates: Mapping the global fingerprint of Glacial Isostatic Adjustment. Journal of Geodynamics, 122:25–40, December 2018.
dc.relation.referencesHugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. Surface reconstruction from unorganized points. ACM SIGGRAPH Computer Graphics, 26(2):71–78, July 1992.
dc.relation.referencesA. Hubeli and M. Gross. Multiresolution feature extraction for unstructured meshes. In Proceedings Visualization, 2001. VIS ’01., pages 287–294, October 2001.
dc.relation.referencesHuiyan Han, Xie Han, Fusheng Sun, and Chunyan Huang. Point cloud simplification with preserved edge based on normal vector. Optik - International Journal for Light and Electron Optics, 126(19):2157–2162, October 2015.
dc.relation.referencesHui Huang, Dan Li, Hao Zhang, Uri Ascher, and Daniel Cohen-Or. Consolidation of unorganized point clouds for surface reconstruction. ACM Transactions on Graphics, 28(5):1–7, December 2009.
dc.relation.referencesLei He and Scott Schaefer. Mesh denoising via L0 minimization. ACM Transactions on Graphics (TOG), 32(4):64:1–64:8, July 2013.
dc.relation.referencesHui Huang, Shihao Wu, Daniel Cohen-Or, Minglun Gong, Hao Zhang, Guiqing Li, and Baoquan Chen. L1-medial skeleton of point cloud. ACM Transactions on Graphics, 32(4):65:1–65:8, July 2013.
dc.relation.referencesHui Huang, Shihao Wu, Minglun Gong, Daniel Cohen-Or, Uri Ascher, and Hao (Richard) Zhang. Edgeaware point set resampling. ACM Transactions on Graphics, 32(1):9:1–9:12, February 2013.
dc.relation.referencesLaurent Itti and Christof Koch. Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3):194–203, March 2001.
dc.relation.referencesL. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11):1254–1259, November 1998.
dc.relation.referencesThouis R. Jones, Frédo Durand, and Mathieu Desbrun. Non-iterative, feature-preserving mesh smoothing. ACM Transactions on Graphics (TOG), 22(3):943–949, July 2003.
dc.relation.referencesChunyang Ji, Ying Li, Jiahao Fan, and Shumei Lan. A Novel Simplification Method for 3D Geometric Point Cloud Based on the Importance of Point. IEEE Access, 7:129029–129042, 2019. Conference Name: IEEE Access.
dc.relation.referencesI. T. Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer-Verlag, New York, 1986.
dc.relation.referencesS. W. Jeong and J. Y. Sim. Saliency Detection for 3D Surface Geometry Using Semi-regular Meshes. IEEE Transactions on Multimedia, 19(12):2692–2705, December 2017.
dc.relation.referencesP. Jenke, M. Wand, M. Bokeloh, A. Schilling, and W. Straßer. Bayesian Point Cloud Reconstruction. Computer Graphics Forum, 25(3):379–388, 2006.
dc.relation.referencesXue Jiao, Tieru Wu, and Xuzhou Qin. Mesh segmentation by combining mesh saliency with spectral clustering. Journal of Computational and Applied Mathematics, 329:134–146, February 2018.
dc.relation.referencesShixiang Jia, Caiming Zhang, Xuemei Li, and Yuanfeng Zhou. Mesh resizing based on hierarchical saliency detection. Graphical Models, 76(5):355–362, September 2014.
dc.relation.referencesR. Kalboussi, M. Abdellaoui, and A. Douik. A spatiotemporal model for video saliency detection. In 2016 International Image Processing, Applications and Systems (IPAS), pages 1–6, November 2016.
dc.relation.referencesGeorgios A. Kordelas, Petros Daras, Patrycia Klavdianos, Ebroul Izquierdo, and Qianni Zhang. Accurate stereo 3D point cloud generation suitable for multi-view stereo reconstruction. In 2014 IEEE Visual Communications and Image Processing Conference, pages 307–310, December 2014.
dc.relation.referencesChristof Koch and Tomaso Poggio. Predicting the visual world: silence is golden. Nature Neuroscience, 2(1):9–10, January 1999.
dc.relation.referencesYoungmin Kim, Amitabh Varshney, David W. Jacobs, and François Guimbretière. Mesh Saliency and Human Eye Fixations. ACM Trans. Appl. Percept., 7(2):12:1–12:13, February 2010.
dc.relation.referencesYaron Lipman, Daniel Cohen-Or, David Levin, and Hillel Tal-Ezer. Parameterization-free Projection for Geometry Reconstruction. In ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07, New York, NY, USA, 2007. ACM. event-place: San Diego, California.
dc.relation.referencesXuequan Lu, Wenzhi Chen, and Scott Schaefer. Robust mesh denoising via vertex pre-filtering and L1median normal filtering. Computer Aided Geometric Design, 54:49–60, May 2017.
dc.relation.referencesXuequan Lu, Zhigang Deng, and Wenzhi Chen. A Robust Scheme for Feature-Preserving Mesh Denoising. IEEE Transactions on Visualization and Computer Graphics, 22(3):1181–1194, March 2016.
dc.relation.referencesManfred Lau, Kapil Dev, Weiqi Shi, Julie Dorsey, and Holly Rushmeier. Tactile Mesh Saliency. ACM Trans.Graph., 35(4):52:1–52:11, July 2016.
dc.relation.referencesQi Li, Xiang Huang, Shuanggao Li, and Zhengping Deng. Feature extraction from point clouds for rigid aircraft part inspection using an improved Harris algorithm. Measurement Science and Technology, 29(11):115202, 2018.
dc.relation.referencesM. Limper, A. Kuijper, and D. W. Fellner. Mesh Saliency Analysis via Local Curvature Entropy. In Proceedings of the 37th Annual Conference of the European Association for Computer Graphics: Short Papers, EG ’16, pages 13–16, Goslar Germany, Germany, 2016. Eurographics Association.
dc.relation.referencesEsmeide Leal and Nallig Leal. Point Cloud Denoising Using Robust Principal Component Analysis. In Proceedings of the First International Conference on Computer Graphics Theory and Applications, pages 51–58, Setúbal, Portugal, 2006. SciTePress - Science and and Technology Publications.
dc.relation.referencesNallig E. Leal, Esmeide A. Leal, and John W. Branch. Simplificación robusta de nubes de puntos usando análisis de componentes principales y algoritmos genéticos. Avances en Sistemas e Informática, 6(3):45–50, September 2009.
dc.relation.referencesNallig Leal, Esmeide Leal, and Sanchez-Torres German. A Linear Programming Approach for 3D Point Cloud Simplification. International Journal of Computer Science, 44:60–67, 2017.
dc.relation.referencesShifan Liu, Jin Liang, Maodong Ren, JingBin He, Chunyuan Gong, Wang Lu, and Zehua Miao. An edge-sensitive simplification method for scanned point clouds. Measurement Science and Technology, 31(4):045203, January 2020. Publisher: IOP Publishing.
dc.relation.referencesXian-yong Liu, Li-zhuang Ma, and Li-gang Liu. P2: A robust and rotationally invariant shape descriptor with applications to mesh saliency. Applied Mathematics-A Journal of Chinese Universities, 31(1):53–67, March 2016.
dc.relation.referencesMarc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller, Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Ginsberg, Jonathan Shade, and Duane Fulk. The digital Michelangelo project: 3D scanning of large statues. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, SIGGRAPH ’00, pages 131–144, USA, July 2000. ACM Press/Addison-Wesley Publishing Co.
dc.relation.referencesBao Li, Ruwen Schnabel, Reinhard Klein, Zhiquan Cheng, Gang Dang, and Shiyao Jin. Robust normal estimation for point clouds with sharp features. Computers & Graphics, 34(2):94–106, April 2010.
dc.relation.referencesG. Leifman, E. Shtrom, and A. Tal. Surface regions of interest for viewpoint selection. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 414–421, June 2012.
dc.relation.referencesXiuping Liu, Pingping Tao, Junjie Cao, He Chen, and Changqing Zou. Mesh saliency detection via double absorbing Markov chain in feature space. The Visual Computer, 32(9):1121–1132, September 2016.
dc.relation.referencesChang Ha Lee, Amitabh Varshney, and David W. Jacobs. Mesh Saliency. In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages 659–666, New York, NY, USA, 2005. ACM.
dc.relation.referencesQingshan Liu and Jun Wang. L1-Minimization Algorithms for Sparse Signal Reconstruction Based on a Projection Neural Network. IEEE Transactions on Neural Networks and Learning Systems, 27(3):698–707, March 2016.
dc.relation.referencesDavid Luebke, Benjamin Watson, Jonathan D. Cohen, Martin Reddy, and Amitabh Varshney. Level of Detail for 3D Graphics. Elsevier Science Inc., USA, 2002.
dc.relation.referencesBin Liao, Chunxia Xiao, Liqiang Jin, and Hongbo Fu. Efficient feature-preserving local projection operator for geometry reconstruction. Computer-Aided Design, 45(5):861–874, May 2013.
dc.relation.referencesYin Li, Yue Zhou, Lei Xu, Xiaochao Yang, and Jie Yang. Incremental sparse saliency detection. In 2009 16th IEEE International Conference on Image Processing (ICIP), pages 3093–3096, November 2009.
dc.relation.referencesAbdelaaziz Mahdaoui, Aziz Bouazi, Abdallah Marhraoui Hsaini, and El Hassan Sbai. Comparison of K-Means and Fuzzy C-Means Algorithms on Simplification of 3D Point Cloud Based on Entropy Estimation. Advances in Science, Technology and Engineering Systems Journal, 2:38–44, December 2017.Library Catalog: astesj.com.
dc.relation.referencesE. Mattei and A. Castrodad. Point Cloud Denoising via Moving RPCA. Computer Graphics Forum, 36(8):123–137, 2017.
dc.relation.referencesNiloy J. Mitra and An Nguyen. Estimating Surface Normals in Noisy Point Cloud Data. In Proceedings of the Nineteenth Annual Symposium on Computational Geometry, SCG ’03, pages 322–328, New York, NY, USA, 2003. ACM.
dc.relation.referencesBoris Mederos, Luiz Velho, and Luiz Henrique de Figueiredo. Robust smoothing of noisy point clouds. In Proc. Siam Conference on Geometric Design and Computing, 2003.
dc.relation.referencesClaudio Mura, Gregory Wyss, and Renato Pajarola. Robust normal estimation in unstructured 3D point clouds by selective normal space exploration. The Visual Computer, 34(6):961–971, June 2018.
dc.relation.referencesAnass Nouri, Christophe Charrier, and Olivier Lézoray. Multi-scale mesh saliency with local adaptive patches for viewpoint selection. Signal Processing: Image Communication, 38:151–166, October 2015.
dc.relation.referencesAndrew Y. Ng. Feature Selection, L1 vs. L2 Regularization, and Rotational Invariance. In Proceedings of the Twenty-first International Conference on Machine Learning, ICML ’04, pages 78–, New York, NY, USA, 2004. ACM. event-place: Banff, Alberta, Canada.
dc.relation.referencesHuan Ni, Xiangguo Lin, Xiaogang Ning, Jixian Zhang, Huan Ni, Xiangguo Lin, Xiaogang Ning, and Jixian Zhang. Edge Detection and Feature Line Tracing in 3D-Point Clouds by Analyzing Geometric Properties of Neighborhoods. Remote Sensing, 8(9):710, September 2016.
dc.relation.referencesVan Sinh Nguyen, Trong Hai Trinh, and Manh Ha Tran. Hole Boundary Detection of a Surface of 3D Point Clouds. In 2015 International Conference on Advanced Computing and Applications (ACOMP), pages 124– 129, November 2015. DOI: 10.1109/ACOMP.2015.12.
dc.relation.referencesYutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel. Ridge-valley Lines on Meshes via Implicit Surface Fitting. In ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04, pages 609–612, New York, NY, USA, 2004. ACM.
dc.relation.referencesBruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583):607–609, June 1996.
dc.relation.referencesBruno A. Olshausen and David J. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37(23):3311–3325, December 1997.
dc.relation.referencesA. C. Oztireli, G. Guennebaud, and M. Gross. Feature preserving point set surfaces based on non-linear kernel regression. Computer Graphics Forum, 28(2):493–501, 2009. Neal Parikh and Stephen Boyd. Proximal Algorithms. Found. Trends Optim., 1(3):127–239, January 2014.
dc.relation.referencesRasmus R. Paulsen, Jakob Andreas Baerentzen, and Rasmus Larsen. Markov Random Field Surface Reconstruction. IEEE Transactions on Visualization and Computer Graphics, 16(4):636–646, July 2010.
dc.relation.referencesMark Pauly and Markus Gross. Spectral processing of point-sampled geometry. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, SIGGRAPH ’01, pages 379–386, New York, NY, USA, August 2001. Association for Computing Machinery.
dc.relation.referencesM. Pauly, M. Gross, and L.P. Kobbelt. Efficient simplification of point-sampled surfaces. In IEEE Visualization, 2002. VIS 2002., pages 163–170, October 2002.
dc.relation.referencesMark Pauly, Richard Keiser, and Markus Gross. Multi-scale Feature Extraction on Point-Sampled Surfaces.Computer Graphics Forum, 22(3):281–289, 2003.
dc.relation.referencesJunkun Qi, Wei Hu, and Zongming Guo. Feature Preserving and Uniformity-Controllable Point Cloud Simplification on Graph. In 2019 IEEE International Conference on Multimedia and Expo (ICME), pages 284–289, July 2019. ISSN: 1945-7871.
dc.relation.referencesG. Rosman, A. Dubrovina, and R. Kimmel. Patch-Collaborative Spectral Point-Cloud Denoising: PatchCollaborative Spectral Point-Cloud Denoising. Computer Graphics Forum, 32(8):1–12, December 2013.
dc.relation.referencesNadejda Roubtsova and Jean-Yves Guillemaut. A Bayesian framework for enhanced geometric reconstruction of complex objects by Helmholtz stereopsis. In 2014 International Conference on Computer Vision Theory and Applications (VISAPP), volume 3, pages 335–342, January 2014.
dc.relation.referencesJ. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, September 1978.
dc.relation.referencesLeonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal algorithms. In Physica D, volume 60, pages 259–268. Elsevier Science Publishers B. V., January 1992.
dc.relation.referencesI. Ramirez and G. Sapiro. An MDL Framework for Sparse Coding and Dictionary Learning. IEEE Transactions on Signal Processing, 60(6):2913–2927, June 2012.
dc.relation.referencesGerman Sanchez and John William Branch. Toward an automatic hole characterization for surface correction. In Proceedings of the 6th international conference on Advances in visual computing - Volume Part I, ISVC’10, pages 602–611, Las Vegas, NV, USA, November 2010. Springer-Verlag.
dc.relation.referencesOliver Schall, Alexander Belyaev, and Hans-Peter Seidel. Robust filtering of noisy scattered point data. In Proceedings of the Second Eurographics / IEEE VGTC conference on Point-Based Graphics, SPBG’05, pages 71–77, New York, USA, June 2005. Eurographics Association.
dc.relation.referencesKripasindhu Sarkar, Florian Bernard, Kiran Varanasi, Christian Theobalt, and Didier Stricker. Structured Low-Rank Matrix Factorization for Point-Cloud Denoising. In 2018 International Conference on 3D Vision (3DV), pages 444–453, September 2018. ISSN: 2475-7888, 2378-3826.
dc.relation.referencesMuhammad Shoaib, Joono Cheong, Younghwan Kim, and Hyeonjoong Cho. Fractal bubble algorithm for simplification of 3D point cloud data. Journal of Intelligent & Fuzzy Systems, 37(6):7815–7830, January 2019. Publisher: IOS Press.
dc.relation.referencesGuruprasad Somasundaram, Anoop Cherian, Vassilios Morellas, and Nikolaos Papanikolopoulos. Action recognition using global spatio-temporal features derived from sparse representations. Computer Vision and Image Understanding, 123:1–13, June 2014.
dc.relation.referencesShaobing Chen and D. Donoho. Basis pursuit. In Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers, volume 1, pages 41–44 vol.1, October 1994. ISSN: 1058-6393.
dc.relation.referencesBatchimeg Sosorbaram, Tadahiro Fujimoto, and Norishige Chiba. Simplification of Point Set Surfaces using Bilateral Filter and Multi-Sized Splats. The Journal of the Society for Art and Science, 9(3):140–153, 2010.
dc.relation.referencesLászló Szirmay-Kalos, Balázs Tóth, and Gábor Jakab. Efficient Bregman iteration in fully 3D PET. In 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), pages 1–7, November 2014.
dc.relation.referencesBao-Quan Shi, Jin Liang, and Qing Liu. Adaptive simplification of point cloud using k-means clustering. Computer-Aided Design, 43(8):910–922, August 2011.
dc.relation.referencesRan Song, Yonghuai Liu, Ralph R. Martin, and Karina Rodriguez Echavarria. Local-to-global mesh saliency. The Visual Computer, 34(3):323–336, November 2016. Ran Song, Yonghuai Liu, Ralph R. Martin, and Paul L. Rosin. Mesh Saliency via Spectral Processing. ACM Trans. Graph., 33(1):6:1–6:17, February 2014.
dc.relation.referencesE. Shtrom, G. Leifman, and A. Tal. Saliency Detection in Large Point Sets. In 2013 IEEE International Conference on Computer Vision, pages 3591–3598, December 2013.
dc.relation.referencesYann Schoenenberger, Johan Paratte, and Pierre Vandergheynst. Graph-based denoising for time-varying point clouds. In 2015 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video(3DTV-CON), pages 1–4, July 2015. ISSN: 2161-2021.
dc.relation.referencesAparajithan Sampath and Jie Shan. Building Boundary Tracing and Regularization from Airborne Lidar Point Clouds. American Society for Photogrammetry and Remote Sensing, 7:pp. 805–812(8), 2007.
dc.relation.referencesQiqi Shen, Yun Sheng, Congkun Chen, Guixu Zhang, and Hassan Ugail. A PDE patch-based spectral method for progressive mesh compression and mesh denoising. The Visual Computer, 34(11):1563–1577, November 2018.
dc.relation.referencesYujing Sun, Scott Schaefer, and Wenping Wang. Denoising point sets via L0 minimization. Computer Aided Geometric Design, 35-36:2–15, May 2015.
dc.relation.referencesSyeda Mariam Ahmed, Yan Zhi Tan, Chee Meng Chew, Abdullah Al Mamun, and Fook Seng Wong. Edge and corner detection for unorganized 3d point clouds with application to robotic welding. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 7350–7355, October 2018.
dc.relation.referencesGabriel Taubin. A signal processing approach to fair surface design. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, SIGGRAPH ’95, pages 351–358, New York, NY, USA, September 1995. Association for Computing Machinery.
dc.relation.referencesPingping Tao, Junjie Cao, Shuhua Li, Xiuping Liu, and Ligang Liu. Mesh saliency via ranking unsalient patches in a descriptor space. Computers & Graphics, 46:264–274, February 2015.
dc.relation.referencesT. Tran, V. Cao, V. T. Nguyen, S. Ali, and D. Laurendeau. Automatic method for sharp feature extraction from 3D data of man-made objects. In 2014 International Conference on Computer Graphics Theory and Applications (GRAPP), pages 1–8, January 2014.
dc.relation.referencesF. P. Tasse, J. Kosinka, and N. Dodgson. Cluster-Based Point Set Saliency. In 2015 IEEE International Conference on Computer Vision (ICCV), pages 163–171, December 2015.
dc.relation.referencesF. P. Tasse, J. Kosinka, and N. A. Dodgson. Quantitative Analysis of Saliency Models. In SIGGRAPH ASIA 2016 Technical Briefs, SA ’16, pages 19:1–19:4, New York, NY, USA, 2016. ACM.
dc.relation.referencesFlora Ponjou Tasse, Jiˇrí Kosinka, and Neil Dodgson. How Well Do Saliency-based Features Perform for Shape Retrieval? Comput. Graph., 59(C):57–67, October 2016.
dc.relation.referencesC. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), pages 839–846, January 1998.
dc.relation.referencesJavier Turek. Topics in Sparse Representation Modeling and Applications. PhD thesis, Technion — Israel Institute of Technology, The address of the publisher, 3 2015.
dc.relation.referencesW. E. Vinje and J. L. Gallant. Sparse coding and decorrelation in primary visual cortex during natural vision. Science (New York, N.Y.), 287(5456):1273–1276, February 2000.
dc.relation.referencesJ. Vollmer, R. Mencl, and H. Müller. Improved Laplacian Smoothing of Noisy Surface Meshes. Computer Graphics Forum, 18(3):131–138, 1999.
dc.relation.referencesC. C. L. Wang. Bilateral recovering of sharp edges on feature-insensitive sampled meshes. IEEE Transactions on Visualization and Computer Graphics, 12(4):629–639, July 2006.
dc.relation.referencesKouki Watanabe and Alexander G. Belyaev. Detection of Salient Curvature Features on Polygonal Surfaces. Computer Graphics Forum, 20(3):385–392, September 2001.
dc.relation.referencesXiao-chao Wang, Jun-jie Cao, Xiu-ping Liu, Bao-jun Li, Xi-quan Shi, and Yi-zhen Sun. Feature detection of triangular meshes via neighbor supporting. Journal of Zhejiang University SCIENCE C, 13(6):440–451, June 2012.
dc.relation.referencesWang Weiming, Chao Haiyuan, Tong Jing, Yang Zhouwang, Tong Xin, Li Hang, Liu Xiuping, and Liu Ligang. Saliency-Preserving Slicing Optimization for Effective 3D Printing. Computer Graphics Forum,34(6):148–160, September 2015.
dc.relation.referencesChristopher Weber, Stefanie Hahmann, and Hans Hagen. Sharp Feature Detection in Point Clouds. In Proceedings of the 2010 Shape Modeling International Conference, SMI ’10, pages 175–186, USA, June 2010. IEEE Computer Society.
dc.relation.referencesShengfa Wang, Nannan Li, Shuai Li, Zhongxuan Luo, Zhixun Su, and Hong Qin. Multi-scale mesh saliency based on low-rank and sparse analysis in shape feature space. Computer Aided Geometric Design, 3536:206–214, May 2015.
dc.relation.referencesPeng-Shuai Wang, Yang Liu, and Xin Tong. Mesh denoising via cascaded normal regression. ACM Transactions on Graphics (TOG), 35(6):232:1–232:12, November 2016.
dc.relation.referencesJeremy M. Wolfe. Guided Search 2.0 A revised model of visual search. Psychonomic Bulletin & Review, 1(2):202–238, June 1994.
dc.relation.referencesAaron Wetzler, Guy Rosman, and Ron Kimmel. Patch-space Beltrami denoising of 3D point clouds. In 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, pages 1–5, November 2012.
dc.relation.referencesJinliang Wu, Xiaoyong Shen, Wei Zhu, and Ligang Liu. Mesh saliency with global rarity. Graphical Models, 75(5):255–264, September 2013.
dc.relation.referencesYuan Wang, Jiajing Wang, Xiuwan Chen, Tianxing Chu, Maolin Liu, Ting Yang, Yuan Wang, Jiajing Wang, Xiuwan Chen, Tianxing Chu, Maolin Liu, and Ting Yang. Feature Surface Extraction and Reconstruction from Industrial Components Using Multistep Segmentation and Optimization. Remote Sensing, 10(7):1073, July 2018.
dc.relation.referencesRuimin Wang, Zhouwang Yang, Ligang Liu, Jiansong Deng, and Falai Chen. Decoupling noise and features via weighted l1-analysis compressed sensing. ACM Transactions on Graphics (TOG), 33(2):18:1–18:12, April 2014.
dc.relation.referencesMingqiang Wei, Jinze Yu, Wai-Man Pang, Jun Wang, Jing Qin, Ligang Liu, and Pheng-Ann Heng. BiNormal Filtering for Mesh Denoising. IEEE Transactions on Visualization and Computer Graphics, 21(1):43–55, January 2015.
dc.relation.referencesWei Xuan, Xianghong Hua, Xijiang Chen, Jingui Zou, and Xiaoxing He. A New Progressive Simplification Method for Point Cloud Using Local Entropy of Normal Angle. Journal of the Indian Society of Remote Sensing, 2018.
dc.relation.referencesLinlin Xu, Ruimin Wang, Juyong Zhang, Zhouwang Yang, Jiansong Deng, Falai Chen, and Ligang Liu. Survey on sparsity in geometric modeling and processing. Graphical Models, 82:160–180, November 2015.
dc.relation.referencesH. Xianfeng, C. Xiaoguang, Z. Fan, and G. Jianya. Side Ratio Constrain BasedPrecise Boundary Tracing Algorithm for Discrete Point Clouds. TheInternational Archives of the Photogrammetry, Remote Sensing andSpatial Information Sciences, Volume. XXXVII, Part. B3b, 2008.
dc.relation.referencesJiangyong Xu, Mingquan Zhou, Zhongke Wu, Wuyang Shui, and Sajid Ali. Robust surface segmentation and edge feature lines extraction from fractured fragments of relics. Journal of Computational Design and Engineering, 2(2):79–87, April 2015.
dc.relation.referencesShiyao Xiong, Juyong Zhang, Jianmin Zheng, Jianfei Cai, and Ligang Liu. Robust surface reconstruction via dictionary learning. ACM Transactions on Graphics (TOG), 33(6):201:1–201:12, November 2014.
dc.relation.referencesShin Yoshizawa, A. Belyaev, and H.-P. Seidel. Smoothing by Example: Mesh Denoising by Averaging with Similarity-Based Weights. In IEEE International Conference on Shape Modeling and Applications 2006(SMI’06), pages 9–9, June 2006.
dc.relation.referencesSunil Kumar Yadav, Ulrich Reitebuch, Martin Skrodzki, Eric Zimmermann, and Konrad Polthier. Constraint-based point set denoising using normal voting tensor and restricted quadratic error metrics. Computers & Graphics, 74:234–243, August 2018.
dc.relation.referencesHaifeng Yu, Rui Wang, Junli Chen, Liang Liu, and Wanggen Wan. Saliency computation and simplification of point cloud data. In Proceedings of 2012 2nd International Conference on Computer Science and Network Technology, pages 1350–1353. IEEE, December 2012.
dc.relation.referencesZhiqiang Yu, Taiyong Wang, Ting Guo, Hongbin Li, and Jingchuan Dong. Robust point cloud normal estimation via neighborhood reconstruction. Advances in Mechanical Engineering, 11(4):1687814019836043, April 2019.
dc.relation.referencesJ. Zhang, J. Cao, X. Liu, C. He, B. Li, and L. Liu. Multi-Normal Estimation via Pair Consistency Voting. IEEE Transactions on Visualization and Computer Graphics, pages 1–1, 2018.
dc.relation.referencesJin Zeng, Gene Cheung, Michael Ng, Jiahao Pang, and Cheng Yang. 3D Point Cloud Denoising Using Graph Laplacian Regularization of a Low Dimensional Manifold Model. IEEE Transactions on Image Processing, 29:3474–3489, 2020.
dc.relation.referencesWangyu Zhang, Bailin Deng, Juyong Zhang, Sofien Bouaziz, and Ligang Liu. Guided Mesh Normal Filtering. Computer Graphics Forum, 34(7):23–34, 2015.
dc.relation.referencesYouyi Zheng, Hongbo Fu, Oscar Kin-Chung Au, and Chiew-Lan Tai. Bilateral Normal Filtering for Mesh Denoising. IEEE Transactions on Visualization and Computer Graphics, 17(10):1521–1530, October 2011.
dc.relation.referencesLingli Zhu, Antero Kukko, Juho-Pekka Virtanen, Juha Hyyppä, Harri Kaartinen, Hannu Hyyppä, and Tuomas Turppa. Multisource Point Clouds, Point Simplification and Surface Reconstruction. Remote Sensing, 11(22):2659, January 2019.
dc.relation.referencesYitian Zhao, Yonghuai Liu, Yongjun Wang, Baogang Wei, Jian Yang, Yifan Zhao, and Yongtian Wang. Region-based saliency estimation for 3D shape analysis and understanding. Neurocomputing, 197:1–13, July 2016.
dc.relation.referencesYinglong Zheng, Guiqing Li, Shihao Wu, Yuxin Liu, and Yuefang Gao. Guided point cloud denoising via sharp feature skeletons. The Visual Computer, 33(6):857–867, June 2017.
dc.relation.referencesYinglong Zheng, Guiqing Li, Xuemiao Xu, Shihao Wu, and Yongwei Nie. Rolling normal filtering for point clouds. Computer Aided Geometric Design, 62:16–28, May 2018.
dc.relation.referencesKun Zhang, Shiquan Qiao, Xiaohong Wang, Yongtao Yang, and Yongqiang Zhang. Feature-Preserved Point Cloud Simplification Based on Natural Quadric Shape Models. Applied Sciences, 9(10):2130, January 2019.
dc.relation.referencesYouwei Zhang, R. Rohling, and D.K. Pai. Direct surface extraction from 3D freehand ultrasound images. In IEEE Visualization, 2002. VIS 2002., pages 45–52, October 2002. DOI: 10.1109/VISUAL.2002.1183755.
dc.relation.referencesFaisal Zaman, Ya Ping Wong, and Boon Yian Ng. Density-Based Denoising of Point Cloud. In Haidi Ibrahim, Shahid Iqbal, Soo Siang Teoh, and Mohd Tafir Mustaffa, editors, 9th International Conference on Robotic, Vision, Signal Processing and Power Applications, Lecture Notes in Electrical Engineering, pages 287–295, Singapore, 2017. Springer.
dc.relation.referencesYufu Zang, Bisheng Yang, Fuxun Liang, and Xiongwu Xiao. Novel Adaptive Laser Scanning Method for Point Clouds of Free-Form Objects. Sensors (Basel, Switzerland), 18(7), July 2018.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPoint Clouds
dc.subject.proposalNubes de puntos
dc.subject.proposal3D scanning
dc.subject.proposalEscaneo 3D
dc.subject.proposalHoles detection
dc.subject.proposalSimplificación de puntos
dc.subject.proposalRepresentaciones Dispersas
dc.subject.proposalPoints Simplification
dc.subject.proposalSharp Features
dc.subject.proposalSparse Representations
dc.subject.proposalSparse Coding
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito