Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorMoreno Guaqueta, Sonia
dc.contributor.authorCañón Gómez, Jhonn
dc.date.accessioned2020-08-26T22:34:41Z
dc.date.available2020-08-26T22:34:41Z
dc.date.issued2020-01-31
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78241
dc.description.abstractLos compuestos orgánicos volátiles (COVs) constituyen uno de los más importantes contaminantes del aire puesto que actúan como agentes precursores del smog fotoquímico, la lluvia ácida y otros compuestos nocivos. La oxidación catalítica se destaca como método de eliminación de COVs gracias a su alta eficiencia y bajos requerimientos energéticos. Dentro de esta estrategia, son muy importantes los catalizadores a base de cobalto y manganeso debido a sus excelentes propiedades redox y a la movilidad de oxígeno dentro de las estructuras. En este trabajo, se sintetizaron catalizadores tipo CoMnMgAl-Ox a través de una autocombustión asistida por microondas y variando la relación molar Co/Mn entre 0 y 1. Los catalizadores fueron caracterizados (DRX, isotermas de adsorción-desorción de N2, HR-TEM y XPS) y evaluados en la oxidación catalítica de tolueno en fase gaseosa diluida y a presión atmosférica. Todos los catalizadores preparados en este trabajo presentaron mayores actividades que sus equivalentes preparados por autocombustión tradicional, demostrando que el uso de microondas en la síntesis, independientemente de la potencia de irradiación, potencia la actividad catalítica de los materiales en la oxidación. Adicionalmente, se encontró que la relación molar Co/Mn = 0.6, es la que da lugar al catalizador más activo, presentando conversiones comparables a las de los catalizadores de metales nobles, lo cual evidencia el efecto cooperativo entre estos metales.
dc.description.abstractVolatile organic compounds (VOCs) are one of the most critical air pollutants since they act as precursor agents for photochemical smog, acid rain, and other harmful compounds. Catalytic oxidation stands out as a method of VOC elimination thanks to its high efficiency and low energy requirements. Within this strategy, the catalysts based on cobalt and manganese stand out due to their excellent redox properties and the mobility of oxygen within the structures. In this work, CoMnMgAl-Ox type catalysts were synthesized through a microwave-assisted self-combustion and varying the Co / Mn molar ratio between 0 and 1. The catalysts were characterized (DRX, N2 adsorption-desorption isotherms, HR-TEM and XPS) and evaluated in the catalytic oxidation of toluene in the diluted gas phase and at atmospheric pressure. All the catalysts prepared in this research presented higher activities than their equivalents prepared by a traditional self-combustion, thus demonstrating that the use of microwaves in the synthesis (regardless of the irradiation power) enhances the catalytic activity in the oxidation. Additionally, it was found that the Co / Mn = 0.6 molar ratio gives rise to the most active catalyst, which has conversions comparable to those of noble metal catalysts.
dc.format.extent83
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.subject.ddc660 - Ingeniería química
dc.subject.ddc541 - Química física
dc.titleÓxidos mixtos CoOx-MnOx sintetizados por autocombustión/MW para la oxidación de tolueno en presencia de agua
dc.title.alternativeCoOx-MnOx mixed oxides prepared by self-combustión/MW for toluene total oxidation in the presence of water
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectProyecto Hermes 41779 de la Universidad Nacional de Colombia – Sede Bogotá y Proyecto Colciencias código 1115-745-58773.
dc.description.additionalLínea Investigación: Catálisis Heterogénea
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.contributor.researchgroupEstado Sólido y Catálisis Ambiental
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Química
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] C. Jia, S. Batterman, and C. Godwin, "VOCs in industrial, urban and suburban neighborhoods, Part 1: Indoor and outdoor concentrations, variation, and risk drivers," Atmospheric Environment, vol. 42, pp. 2083-2100, 2008/03/01/ 2008.
dc.relation.references[2] J. Thomas, "Handbook Of Heterogeneous Catalysis. 2., completely revised and enlarged Edition. Vol. 1–8. Edited by G. Ertl, H. Knözinger, F. Schüth, and J. Weitkamp," Angewandte Chemie International Edition, vol. 48, 04/27 2009.
dc.relation.references[3] H. L. Chen, H. M. Lee, S. H. Chen, M. B. Chang, S. J. Yu, and S. N. Li, "Removal of Volatile Organic Compounds by Single-Stage and Two-Stage Plasma Catalysis Systems: A Review of the Performance Enhancement Mechanisms, Current Status, and Suitable Applications," Environmental Science & Technology, vol. 43, pp. 2216-2227, 2009/04/01 2009.
dc.relation.references[4] U. Pöschl and M. Shiraiwa, "Multiphase Chemistry at the Atmosphere–Biosphere Interface Influencing Climate and Public Health in the Anthropocene," Chemical Reviews, vol. 115, pp. 4440-4475, 2015/05/27 2015.
dc.relation.references[5] S. Zhang, J. You, C. Kennes, Z. Cheng, J. Ye, D. Chen, et al., "Current advances of VOCs degradation by bioelectrochemical systems: A review," Chemical Engineering Journal, vol. 334, pp. 2625-2637, 2018/02/15/ 2018.
dc.relation.references[6] M. S. Kamal, S. A. Razzak, and M. M. Hossain, "Catalytic oxidation of volatile organic compounds (VOCs) – A review," Atmospheric Environment, vol. 140, pp. 117-134, 2016/09/01/ 2016.
dc.relation.references[7] Á. M. d. V. d. A. Universidad Pontificia Bolivariana, "Proyecto Red de Monitoreo de la Calidad del Aire en el Valle de Aburrá, Convenio Marco de Asociación No. 543 de 2008," 2010.
dc.relation.references[8] V. y. D. T.-M. Ministerio de Ambiente, Ministerio de Minas y Energía, Ministerio de Transporte, Ministerio de Protección Social, "Lineamientos para la formulación de la politica de prevención y control de la contaminación del aire," D. N. d. P. Consejo Nacional de Política Económica y Social (CONPES), República de Colombia, Ed., ed, 2005.
dc.relation.references[9] M. H. Castaño, R. Molina, and S. Moreno, "Mn–Co–Al–Mg mixed oxides by auto-combustion method and their use as catalysts in the total oxidation of toluene," Journal of Molecular Catalysis A: Chemical, vol. 370, pp. 167-174, 2013/04/01/ 2013.
dc.relation.references[10] J. Prado-Gonjal and E. Morán, "Síntesis asistida por microondas de sólidos inorgánicos," Anales de la Real Sociedad Española de Química, vol. 107, pp. 129-136, 04/01 2011.
dc.relation.references[11] J. Mo, Y. Zhang, and Q. Xu, "Effect of water vapor on the by-products and decomposition rate of ppb-level toluene by photocatalytic oxidation," Applied Catalysis B: Environmental, vol. 132-133, pp. 212-218, 2013/03/27/ 2013.
dc.relation.references[12] R. Kikuchi, S. Maeda, K. Sasaki, S. Wennerström, and K. Eguchi, "Low-temperature methane oxidation over oxide-supported Pd catalysts: inhibitory effect of water vapor," Applied Catalysis A: General, vol. 232, pp. 23-28, 2002/06/10/ 2002.
dc.relation.references[13] H. Pan, M. Xu, Z. Li, S. Huang, and C. He, "Catalytic combustion of styrene over copper based catalyst: Inhibitory effect of water vapor," Chemosphere, vol. 76, pp. 721-6, 06/01 2009.
dc.relation.references[14] X. Li, L. Wang, Q. Xia, Z. Liu, and Z. Li, "Catalytic oxidation of toluene over copper and manganese based catalysts: Effect of water vapor," Catalysis Communications, vol. 14, pp. 15-19, 2011/10/25/ 2011.
dc.relation.references[15] M. Esmaeilirad, M. Zabihi, J. Shayegan, and F. Khorasheh, "Oxidation of Toluene in Humid Air by Metal Oxides Supported on γ-Alumina," Journal of Hazardous Materials, vol. 333, 03/01 2017.
dc.relation.references[16] W. A. Giraldo Aristizabal and M. V. Toro Gómez, "Estimación de la emisión de contaminantes por motocicletas en el valle de aburrá," Dyna, vol. 75, pp. 241-250, 2008.
dc.relation.references[17] U. S. E. P. Agency. (2017, 28/10/2017). Technical Overview of Volatile Organic Compounds. Available: https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds#3
dc.relation.references[18] C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, and Z. Hao, "Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources," Chemical Reviews, vol. 119, pp. 4471-4568, 2019/04/10 2019.
dc.relation.references[19] H.-T. Liao, C. C. K. Chou, J. C. Chow, J. G. Watson, P. K. Hopke, and C.-F. Wu, "Source and risk apportionment of selected VOCs and PM2.5 species using partially constrained receptor models with multiple time resolution data," Environmental Pollution, vol. 205, pp. 121-130, 2015/10/01/ 2015.
dc.relation.references[20] S. Sillman, "11.11 - Tropospheric Ozone and Photochemical Smog," in Treatise on Geochemistry (Second Edition), H. D. Holland and K. K. Turekian, Eds., ed Oxford: Elsevier, 2014, pp. 415-437.
dc.relation.references[21] R. Carmona-Cabezas, J. Gómez-Gómez, E. Gutiérrez de Ravé, and F. J. Jiménez-Hornero, "Checking complex networks indicators in search of singular episodes of the photochemical smog," Chemosphere, vol. 241, p. 125085, 2020/02/01/ 2020.
dc.relation.references[22] J. Widhalm, R. Jaini, J. Morgan, and N. Dudareva, "Rethinking how volatiles are released from plant cells," Trends in plant science, vol. 20, 07/16 2015.
dc.relation.references[23] N. Dudareva, F. Negre, D. A. Nagegowda, and I. Orlova, "Plant Volatiles: Recent Advances and Future Perspectives," Critical Reviews in Plant Sciences, vol. 25, pp. 417-440, 2006/10/01 2006.
dc.relation.references[24] Z. Klimont, D. G. Streets, S. Gupta, J. Cofala, F. Lixin, and Y. Ichikawa, "Anthropogenic emissions of non-methane volatile organic compounds in China," Atmospheric Environment, vol. 36, pp. 1309-1322, 2002/03/01/ 2002.
dc.relation.references[25] J. Theloke and R. Friedrich, "Compilation of a database on the composition of anthropogenic VOC emissions for atmospheric modeling in Europe," Atmospheric Environment, vol. 41, pp. 4148-4160, 2007/06/01/ 2007.
dc.relation.references[26] M. Zang, C. Zhao, Y. Wang, and S. Chen, "A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts," Journal of Saudi Chemical Society, vol. 23, pp. 645-654, 2019/09/01/ 2019.
dc.relation.references[27] Y. Dumanoglu, M. Kara, H. Altiok, M. Odabasi, T. Elbir, and A. Bayram, "Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region," Atmospheric Environment, vol. 98, pp. 168-178, 2014/12/01/ 2014.
dc.relation.references[28] U. S. E. P. A. (EPA). (2016, 30/10/2019). The original list of hazardous air pollutants. Available: https://www3.epa.gov/ttn/atw/188polls.html
dc.relation.references[29] Y. Liu, M. Shao, L. Fu, S. Lu, L. Zeng, and D. Tang, "Source profiles of volatile organic compounds (VOCs) measured in China: Part I," Atmospheric Environment, vol. 42, pp. 6247-6260, 2008/08/01/ 2008.
dc.relation.references[30] B. Yuan, M. Shao, S. Lu, and B. Wang, "Source profiles of volatile organic compounds associated with solvent use in Beijing, China," Atmospheric Environment, vol. 44, pp. 1919-1926, 2010/05/01/ 2010.
dc.relation.references[31] M. Anić, N. Radić, B. Grbić, V. Dondur, L. Damjanović, D. Stoychev, et al., "Catalytic activity of Pt catalysts promoted by MnOx for n-hexane oxidation," Applied Catalysis B: Environmental, vol. 107, pp. 327-332, 2011/09/21/ 2011.
dc.relation.references[32] V. Y. Bychkov, Y. P. Tyulenin, A. Y. Gorenberg, S. Sokolov, and V. N. Korchak, "Evolution of Pd catalyst structure and activity during catalytic oxidation of methane and ethane," Applied Catalysis A: General, vol. 485, pp. 1-9, 2014/09/05/ 2014.
dc.relation.references[33] J. Okal and M. Zawadzki, "Catalytic combustion of butane on Ru/γ-Al2O3 catalysts," Applied Catalysis B: Environmental, vol. 89, pp. 22-32, 2009/07/03/ 2009.
dc.relation.references[34] H. A. Almukhlifi and R. C. Burns, "The complete oxidation of isobutane over CeO2 and Au/CeO2, and the composite catalysts MOx/CeO2 and Au/MOx/CeO2 (Mn+=Mn, Fe, Co and Ni): the effects of gold nanoparticles obtained from n-hexanethiolate-stabilized gold nanoparticles," Journal of Molecular Catalysis A: Chemical, vol. 415, pp. 131-143, 2016/05/01/ 2016.
dc.relation.references[35] B. Solsona, T. Garcia, S. Agouram, G. J. Hutchings, and S. H. Taylor, "The effect of gold addition on the catalytic performance of copper manganese oxide catalysts for the total oxidation of propane," Applied Catalysis B: Environmental, vol. 101, pp. 388-396, 2011/01/14/ 2011.
dc.relation.references[36] M. Narayanappa, V. D. B. C. Dasireddy, and H. B. Friedrich, "Catalytic oxidation of n-octane over cobalt substituted ceria (Ce0.90Co0.10O2−δ) catalysts," Applied Catalysis A: General, vol. 447-448, pp. 135-143, 2012/12/07/ 2012.
dc.relation.references[37] Y. Xie, Y. Guo, Y. Guo, L. Wang, W. Zhan, Y. Wang, et al., "A highly effective Ni-modified MnOx catalyst for total oxidation of propane: the promotional role of nickel oxide," RSC Advances, vol. 6, pp. 50228-50237, 2016.
dc.relation.references[38] P. Concepción, P. Botella, and J. M. L. Nieto, "Catalytic and FT-IR study on the reaction pathway for oxidation of propane and propylene on V- or Mo–V-based catalysts," Applied Catalysis A: General, vol. 278, pp. 45-56, 2004/12/28/ 2004.
dc.relation.references[39] B. Solsona, T. García, R. Sanchis, M. D. Soriano, M. Moreno, E. Rodríguez-Castellón, et al., "Total oxidation of VOCs on mesoporous iron oxide catalysts: Soft chemistry route versus hard template method," Chemical Engineering Journal, vol. 290, pp. 273-281, 2016/04/15/ 2016.
dc.relation.references[40] D. A. Aguilera, A. Perez, R. Molina, and S. Moreno, "Cu–Mn and Co–Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs," Applied Catalysis B: Environmental, vol. 104, pp. 144-150, 2011/04/27/ 2011.
dc.relation.references[41] M. Guiotto, M. Pacella, G. Perin, A. Iovino, N. Michelon, M. M. Natile, et al., "Washcoating vs. direct synthesis of LaCoO3 on monoliths for environmental applications," Applied Catalysis A: General, vol. 499, pp. 146-157, 2015/06/25/ 2015.
dc.relation.references[42] B. Faure and P. Alphonse, "Co–Mn-oxide spinel catalysts for CO and propane oxidation at mild temperature," Applied Catalysis B: Environmental, vol. 180, pp. 715-725, 2016/01/01/ 2016.
dc.relation.references[43] Z. Jiang, L. Kong, Z. Chu, L. J. France, T. Xiao, and P. P. Edwards, "Catalytic combustion of propane over mixed oxides derived from CuxMg3−xAl hydrotalcites," Fuel, vol. 96, pp. 257-263, 2012/06/01/ 2012.
dc.relation.references[44] M. H. Castaño, R. Molina, and S. Moreno, "Cooperative effect of the Co–Mn mixed oxides for the catalytic oxidation of VOCs: Influence of the synthesis method," Applied Catalysis A: General, vol. 492, pp. 48-59, 2015/02/25/ 2015.
dc.relation.references[45] F. Alonso, I. P. Beletskaya, and M. Yus, "Metal-Mediated Reductive Hydrodehalogenation of Organic Halides," Chemical Reviews, vol. 102, pp. 4009-4092, 2002/11/01 2002.
dc.relation.references[46] A. Aranzabal, B. Pereda-Ayo, M. P. González-Marcos, J. González-Marcos, R. Lopez-Fonseca, and J. González-Velasco, "State of the art in catalytic oxidation of chlorinated volatile organic compounds," Chemical Papers, vol. 68, 09/01 2014.
dc.relation.references[47] J. W. Li, K. L. Pan, S. J. Yu, S. Y. Yan, and M. B. Chang, "Removal of formaldehyde over MnxCe1−xO2 catalysts: Thermal catalytic oxidation versus ozone catalytic oxidation," Journal of Environmental Sciences, vol. 26, pp. 2546-2553, 2014/12/01/ 2014.
dc.relation.references[48] S. Scirè and L. F. Liotta, "Supported gold catalysts for the total oxidation of volatile organic compounds," Applied Catalysis B: Environmental, vol. 125, pp. 222-246, 2012/08/21/ 2012.
dc.relation.references[49] V. P. Santos, M. F. R. Pereira, J. J. M. Órfão, and J. L. Figueiredo, "Mixture effects during the oxidation of toluene, ethyl acetate and ethanol over a cryptomelane catalyst," Journal of Hazardous Materials, vol. 185, pp. 1236-1240, 2011/01/30/ 2011.
dc.relation.references[50] Z. Zhu and R. J. Wu, "The degradation of formaldehyde using a Pt@TiO2 nanoparticles in presence of visible light irradiation at room temperature," Journal of the Taiwan Institute of Chemical Engineers, vol. 50, 01/05 2015.
dc.relation.references[51] Z. Özçelik, G. S. P. Soylu, and İ. Boz, "Catalytic combustion of toluene over Mn, Fe and Co-exchanged clinoptilolite support," Chemical Engineering Journal, vol. 155, pp. 94-100, 2009/12/01/ 2009.
dc.relation.references[52] S. C. Kim, "The catalytic oxidation of aromatic hydrocarbons over supported metal oxide," Journal of Hazardous Materials, vol. 91, pp. 285-299, 2002/04/26/ 2002.
dc.relation.references[53] X. Liang, X. Chen, J. Zhang, T. Shi, X. Sun, L. Fan, et al., "Reactivity-based industrial volatile organic compounds emission inventory and its implications for ozone control strategies in China," Atmospheric Environment, vol. 162, pp. 115-126, 2017/08/01/ 2017.
dc.relation.references[54] C. Liaud, N. T. Nguyen, R. Nasreddine, and S. Le Calvé, "Experimental performances study of a transportable GC-PID and two thermo-desorption based methods coupled to FID and MS detection to assess BTEX exposure at sub-ppb level in air," Talanta, vol. 127, pp. 33-42, 2014/09/01/ 2014.
dc.relation.references[55] C. Lee, Y.-G. Shul, and H. Einaga, "Silver and manganese oxide catalysts supported on mesoporous ZrO2 nanofiber mats for catalytic removal of benzene and diesel soot," Catalysis Today, vol. 281, pp. 460-466, 2017/03/01/ 2017.
dc.relation.references[56] J. Li, W. Tang, G. Liu, W. Li, Y. Deng, J. Yang, et al., "Reduced graphene oxide modified platinum catalysts for the oxidation of volatile organic compounds," Catalysis Today, vol. 278, pp. 203-208, 2016/12/01/ 2016.
dc.relation.references[57] S. Zuo, Y. Du, F. Liu, D. Han, and C. Qi, "Influence of ceria promoter on shell-powder-supported Pd catalyst for the complete oxidation of benzene," Applied Catalysis A: General, vol. 451, pp. 65-70, 2013/01/31/ 2013.
dc.relation.references[58] Y. Chen, B. Li, Q. Niu, L. Li, J. Kan, S. Zhu, et al., "Combined promoting effects of low-Pd-containing and Cu-doped LaCoO3 perovskite supported on cordierite for the catalytic combustion of benzene," Environmental Science and Pollution Research, vol. 23, 04/20 2016.
dc.relation.references[59] J. Zeng, X. Liu, J. Wang, H. Lv, and T. Zhu, "Catalytic oxidation of benzene over MnOx/TiO2 catalysts and the mechanism study," Journal of Molecular Catalysis A: Chemical, vol. 408, pp. 221-227, 2015/11/01/ 2015.
dc.relation.references[60] B. Li, Q. Huang, X. K. Yan, X. L. Xu, Y. Qiu, B. Yang, et al., "Low-temperature catalytic combustion of benzene over Ni–Mn/CeO2/cordierite catalysts," Journal of Industrial and Engineering Chemistry, vol. 20, pp. 2359-2363, 2014/07/25/ 2014.
dc.relation.references[61] Y. Luo, K. Wang, Y. Xu, X. Wang, Q. Qian, and Q. Chen, "Role of Cu species in electrospun CuO-CeO2 nanofibers for total benzene oxidation," New J. Chem., vol. 39, 11/13 2014.
dc.relation.references[62] Y. Ke and S.-Y. Lai, "Comparison of the catalytic benzene oxidation activity of mesoporous ceria prepared via hard-template and soft-template," Microporous and Mesoporous Materials, vol. 198, pp. 256-262, 2014/11/01/ 2014.
dc.relation.references[63] A. G. M. da Silva, H. V. Fajardo, R. Balzer, L. F. D. Probst, N. T. Prado, P. H. C. Camargo, et al., "Efficient ceria–silica catalysts for BTX oxidation: Probing the catalytic performance and oxygen storage," Chemical Engineering Journal, vol. 286, pp. 369-376, 2016/02/15/ 2016.
dc.relation.references[64] A. Aranda, B. Puertolas, B. Solsona, S. Agouram, R. Murillo, A. Mastral, et al., "Total Oxidation of Naphthalene Using Mesoporous CeO2 Catalysts Synthesized by Nanocasting from Two Dimensional SBA-15 and Three Dimensional KIT-6 and MCM-48 Silica Templates," Catalysis Letters, vol. 134, 01/01 2009.
dc.relation.references[65] Z. Zhao, H. Dai, J. Deng, Y. Du, Y. Liu, and L. Zhang, "Three-dimensionally ordered macroporous La0.6Sr0.4FeO3−δ: High-efficiency catalysts for the oxidative removal of toluene," Microporous and Mesoporous Materials, vol. 163, pp. 131-139, 2012/11/15/ 2012.
dc.relation.references[66] A. Giroir-Fendler, M. Alves-Fortunato, M. Richard, C. Wang, J. A. Díaz, S. Gil, et al., "Synthesis of oxide supported LaMnO3 perovskites to enhance yields in toluene combustion," Applied Catalysis B: Environmental, vol. 180, pp. 29-37, 2016/01/01/ 2016.
dc.relation.references[67] D. Li, Y. Fan, Y. Ding, X. Wei, and Y. Xiao, "Preparation of cobalt-copper-aluminum spinel mixed oxides from layered double hydroxides for total oxidation of benzene," Catalysis Communications, vol. 88, pp. 60-63, 2017/01/05/ 2017.
dc.relation.references[68] S. Mo, S. Li, J. Li, S. peng, J. Chen, and Y. Chen, "Promotional effects of Ce on the activity of MnAl oxide catalysts derived from hydrotalcites for low temperature benzene oxidation," Catalysis Communications, vol. 87, pp. 102-105, 2016/12/05/ 2016.
dc.relation.references[69] C. Gennequin, S. Kouassi, L. Tidahy, R. Cousin, J.-F. Lamonier, G. Garcon, et al., "Co–Mg–Al oxides issued of hydrotalcite precursors for total oxidation of volatile organic compounds. Identification and toxicological impact of the by-products," Comptes Rendus Chimie, vol. 13, pp. 494-501, 2010/05/01/ 2010.
dc.relation.references[70] S. Mo, S. Li, J. Li, Y. Deng, S. Peng, J. Chen, et al., "Rich surface Co(III) ions enhanced Co nanocatalyst benzene /toluene oxidation performance derived from CoIICoIII layered double hydroxide," Nanoscale, vol. 8, 08/17 2016.
dc.relation.references[71] J. Ran, H. Qiu, S. Sun, and L. Tian, "Short-term effects of ambient benzene and TEX (toluene, ethylbenzene, and xylene combined) on cardiorespiratory mortality in Hong Kong," Environment International, vol. 117, pp. 91-98, 2018/08/01/ 2018.
dc.relation.references[72] O. S. A. H. A. (OSHA). (2017, 31/10/2019). Occupational Exposure Limits - Toluene. Available: https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.1000TABLEZ2
dc.relation.references[73] J. Li, M. Li, J. Zhang, D. Ye, X. Zhu, and Q. Liao, "A microbial fuel cell capable of converting gaseous toluene to electricity," Biochemical Engineering Journal, vol. 75, pp. 39-46, 2013/06/15/ 2013.
dc.relation.references[74] K.-H. Kim, J. E. Szulejko, N. Raza, V. Kumar, K. Vikrant, D. C. W. Tsang, et al., "Identifying the best materials for the removal of airborne toluene based on performance metrics - A critical review," Journal of Cleaner Production, vol. 241, p. 118408, 2019/12/20/ 2019.
dc.relation.references[75] S. Saqer, D. Kondarides, and X. Verykios, "Catalytic Activity of Supported Platinum and Metal Oxide Catalysts for Toluene Oxidation," Topics in Catalysis, vol. 52, pp. 517-527, 05/01 2009.
dc.relation.references[76] H. L. Tidahy, S. Siffert, F. Wyrwalski, J. F. Lamonier, and A. Aboukaïs, "Catalytic activity of copper and palladium based catalysts for toluene total oxidation," Catalysis Today, vol. 119, pp. 317-320, 2007/01/15/ 2007.
dc.relation.references[77] K. Ji, H. Dai, J. Deng, X. Li, Y. Wang, B. Gao, et al., "A comparative study of bulk and 3DOM-structured Co3O4, Eu0.6Sr0.4FeO3, and Co3O4/Eu0.6Sr0.4FeO3: Preparation, characterization, and catalytic activities for toluene combustion," Applied Catalysis A: General, vol. 447-448, pp. 41-48, 2012/12/07/ 2012.
dc.relation.references[78] G. Li, C. Zhang, Z. Wang, H. Huang, H. Peng, and X. Li, "Fabrication of mesoporous Co3O4 oxides by acid treatment and their catalytic performances for toluene oxidation," Applied Catalysis A: General, vol. 550, pp. 67-76, 2018/01/25/ 2018.
dc.relation.references[79] D. Baojuan, L. Shumin, L. Deliang, Z. Ruozhu, L. Jingge, H. Qinglan, et al., "Catalytic oxidation of ethyl acetate and toluene over Cu–Ce–Zr supported ZSM-5/TiO2 catalysts," RSC Advances, vol. 6, pp. 53852-53859, 2016.
dc.relation.references[80] I. H. Kim, E. J. Park, C. H. Park, S. W. Han, H. O. Seo, and Y. D. Kim, "Activity of catalysts consisting of Fe2O3 nanoparticles decorating entire internal structure of mesoporous Al2O3 bead for toluene total oxidation," Catalysis Today, vol. 295, pp. 56-64, 2017/10/15/ 2017.
dc.relation.references[81] R. Sanchis, J. A. Cecilia, M. D. Soriano, M. I. Vázquez, A. Dejoz, J. M. López Nieto, et al., "Porous clays heterostructures as supports of iron oxide for environmental catalysis," Chemical Engineering Journal, vol. 334, pp. 1159-1168, 2018/02/15/ 2018.
dc.relation.references[82] R. Sanchis, D. Alonso-Domínguez, A. Dejoz, M. P. Pico, I. Álvarez-Serrano, T. García, et al., "Eco-Friendly Cavity-Containing Iron Oxides Prepared by Mild Routes as Very Efficient Catalysts for the Total Oxidation of VOCs," Materials (Basel, Switzerland), vol. 11, p. 1387, 2018.
dc.relation.references[83] X. Li, H. Dai, J. Deng, Y. Liu, S. Xie, Z. Zhao, et al., "Au/3DOM LaCoO3: High-performance catalysts for the oxidation of carbon monoxide and toluene," Chemical Engineering Journal, vol. 228, pp. 965–975, 07/01 2013.
dc.relation.references[84] "Chapter IV: General Trends in the Mechanisms of Heterogeneous Catalytic Reactions Involving Molecular Oxygen," in Studies in Surface Science and Catalysis. vol. 15, G. I. Golodets, Ed., ed: Elsevier, 1983, pp. 104-125.
dc.relation.references[85] L. Wang, C. Zhang, H. Huang, X. Li, W. Zhang, M. Lu, et al., "Catalytic oxidation of toluene over active MnOxcatalyst prepared via an alkali-promoted redox precipitation method," Reaction Kinetics, Mechanisms and Catalysis, vol. 118, pp. 605-619, 2016/08/01 2016.
dc.relation.references[86] J. Li, L. Li, W. Cheng, F. Wu, X. Lu, and Z. Li, "Controlled synthesis of diverse manganese oxide-based catalysts for complete oxidation of toluene and carbon monoxide," Chemical Engineering Journal, vol. 244, pp. 59-67, 2014/05/15/ 2014.
dc.relation.references[87] J. Li, L. Li, F. Wu, L. Zhang, and X. Liu, "Dispersion–precipitation synthesis of nanorod Mn3O4 with high reducibility and the catalytic complete oxidation of air pollutants," Catalysis Communications, vol. 31, pp. 52-56, 2013/01/10/ 2013.
dc.relation.references[88] G. Cheng, L. Yu, B. Lan, M. Sun, T. Lin, Z. Fu, et al., "Controlled synthesis of α-MnO2 nanowires and their catalytic performance for toluene combustion," Materials Research Bulletin, vol. 75, pp. 17-24, 2016/03/01/ 2016.
dc.relation.references[89] W. Si, Y. Wang, Y. Peng, X. Li, K. Li, and J. Li, "A high-efficiency γ-MnO2-like catalyst in toluene combustion," Chemical Communications, vol. 51, pp. 14977-14980, 2015.
dc.relation.references[90] Y. Liao, M. Fu, L. Chen, J. Wu, B. Huang, and D. Ye, "Catalytic oxidation of toluene over nanorod-structured Mn–Ce mixed oxides," Catalysis Today, vol. 216, pp. 220-228, 2013/11/01/ 2013.
dc.relation.references[91] D. Yu, Y. Liu, and Z. Wu, "Low-temperature catalytic oxidation of toluene over mesoporous MnOx–CeO2/TiO2 prepared by sol–gel method," Catalysis Communications, vol. 11, pp. 788-791, 2010/03/31/ 2010.
dc.relation.references[92] Y. Liu, H. Dai, J. Deng, L. Zhang, Z. Zhao, X. Li, et al., "Controlled Generation of Uniform Spherical LaMnO3, LaCoO3, Mn2O3, and Co3O4 Nanoparticles and Their High Catalytic Performance for Carbon Monoxide and Toluene Oxidation," Inorganic Chemistry, vol. 52, pp. 8665-8676, 2013/08/05 2013.
dc.relation.references[93] M. Alifanti, M. Florea, G. Filotti, V. Kuncser, V. Cortes-Corberan, and V. I. Parvulescu, "In situ structural changes during toluene complete oxidation on supported EuCoO3 monitored with 151Eu Mössbauer spectroscopy," Catalysis Today, vol. 117, pp. 329-336, 2006/09/30/ 2006.
dc.relation.references[94] X. Weng, W. L. Wang, Q. Meng, and Z. Wu, "An ultrafast approach for the syntheses of defective nanosized lanthanide perovskites for catalytic toluene oxidation," Catalysis Science & Technology, vol. 8, pp. 4364-4372, 2018.
dc.relation.references[95] S. Rousseau, S. Loridant, P. Delichere, A. Boreave, J. P. Deloume, and P. Vernoux, "La(1−x)SrxCo1−yFeyO3 perovskites prepared by sol–gel method: Characterization and relationships with catalytic properties for total oxidation of toluene," Applied Catalysis B: Environmental, vol. 88, pp. 438-447, 2009/05/20/ 2009.
dc.relation.references[96] S. Jiang and S. Song, "Enhancing the performance of Co3O4/CNTs for the catalytic combustion of toluene by tuning the surface structures of CNTs," Applied Catalysis B: Environmental, vol. 140-141, pp. 1-8, 2013/08/01/ 2013.
dc.relation.references[97] L.-Y. Lin and H. Bai, "Salt-induced formation of hollow and mesoporous CoOx/SiO2 spheres and their catalytic behavior in toluene oxidation," RSC Advances, vol. 6, pp. 24304-24313, 2016.
dc.relation.references[98] Q. H. Xia, K. Hidajat, and S. Kawi, "Adsorption and catalytic combustion of aromatics on platinum-supported MCM-41 materials," Catalysis Today, vol. 68, pp. 255-262, 2001/07/01/ 2001.
dc.relation.references[99] Y. Jiang, S. Xie, H. Yang, J. Deng, Y. Liu, and H. Dai, "Mn3O4-Au/3DOM La0.6Sr0.4CoO3: High-performance catalysts for toluene oxidation," Catalysis Today, vol. 281, pp. 437-446, 2017/03/01/ 2017.
dc.relation.references[100] "Decreto-Ley 2811 de 18 de Diciembre de 1974," P. d. l. R. d. Colombia, Ed., ed. República de Colombia, 1974.
dc.relation.references[101] "Resolución No. 2254 del 01 de noviembre de 2017," M. d. A. y. D. Sostenible, Ed., ed. República de Colombia, 2017.
dc.relation.references[102] S. Behar, N.-A. Gómez-Mendoza, M.-Á. Gómez-García, D. Świerczyński, F. Quignard, and N. Tanchoux, "Study and modelling of kinetics of the oxidation of VOC catalyzed by nanosized Cu–Mn spinels prepared via an alginate route," Applied Catalysis A: General, vol. 504, pp. 203-210, 2015/09/05/ 2015.
dc.relation.references[103] K. L. Pan, G. T. Pan, S. Chong, and M. B. Chang, "Removal of VOCs from gas streams with double perovskite-type catalysts," Journal of Environmental Sciences, vol. 69, pp. 205-216, 2018/07/01/ 2018.
dc.relation.references[104] J. M. Gatica, J. Castiglioni, C. de los Santos, M. P. Yeste, G. Cifredo, M. Torres, et al., "Use of pillared clays in the preparation of washcoated clay honeycomb monoliths as support of manganese catalysts for the total oxidation of VOCs," Catalysis Today, vol. 296, pp. 84-94, 2017/11/01/ 2017.
dc.relation.references[105] D. Widmann and R. J. Behm, "Dynamic surface composition in a Mars-van Krevelen type reaction: CO oxidation on Au/TiO2," Journal of Catalysis, vol. 357, pp. 263-273, 2018/01/01/ 2018.
dc.relation.references[106] K. Everaert and J. Baeyens, "Catalytic combustion of volatile organic compounds," Journal of Hazardous Materials, vol. 109, pp. 113-139, 2004/06/18/ 2004.
dc.relation.references[107] E. V. Boikov, M. V. Vishnetskaya, A. N. Emel’yanov, I. S. Tomskii, and N. V. Shcherbakov, "The selective catalytic oxidation of toluene," Russian Journal of Physical Chemistry A, Focus on Chemistry, vol. 82, pp. 2233-2237, 2008/12/01 2008.
dc.relation.references[108] S. L. T. Andersson, "Reaction networks in the catalytic vapor-phase oxidation of toluene and xylenes," Journal of Catalysis, vol. 98, pp. 138-149, 1986/03/01/ 1986.
dc.relation.references[109] J. Kujawa, S. Cerneaux, and W. Kujawski, "Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes," Journal of Membrane Science, vol. 474, pp. 11-19, 2015/01/15/ 2015.
dc.relation.references[110] E. C. Moretti, "Reduce VOC and HAP emissions," Chemical Engineering Progress, vol. 98, pp. 30-40, 06/01 2002.
dc.relation.references[111] S. A. C. Carabineiro, X. Chen, O. Martynyuk, N. Bogdanchikova, M. Avalos-Borja, A. Pestryakov, et al., "Gold supported on metal oxides for volatile organic compounds total oxidation," Catalysis Today, vol. 244, pp. 103-114, 2015/04/15/ 2015.
dc.relation.references[112] X. Chen, S. A. C. Carabineiro, P. B. Tavares, J. J. M. Órfão, M. F. R. Pereira, and J. L. Figueiredo, "Catalytic oxidation of ethyl acetate over La-Co and La-Cu oxides," Journal of Environmental Chemical Engineering, vol. 2, pp. 344-355, 2014/03/01/ 2014.
dc.relation.references[113] M. Konsolakis, S. A. C. Carabineiro, P. B. Tavares, and J. L. Figueiredo, "Redox properties and VOC oxidation activity of Cu catalysts supported on Ce1−xSmxOδ mixed oxides," Journal of Hazardous Materials, vol. 261, pp. 512-521, 2013/10/15/ 2013.
dc.relation.references[114] P.-O. Larsson and A. Andersson, "Complete Oxidation of CO, Ethanol, and Ethyl Acetate over Copper Oxide Supported on Titania and Ceria Modified Titania," Journal of Catalysis, vol. 179, pp. 72-89, 1998/10/01/ 1998.
dc.relation.references[115] S. S. T. Bastos, J. J. M. Órfão, M. M. A. Freitas, M. F. R. Pereira, and J. L. Figueiredo, "Manganese oxide catalysts synthesized by exotemplating for the total oxidation of ethanol," Applied Catalysis B: Environmental, vol. 93, pp. 30-37, 2009/11/25/ 2009.
dc.relation.references[116] L. F. Liotta, "Catalytic oxidation of volatile organic compounds on supported noble metals," Applied Catalysis B: Environmental, vol. 100, pp. 403-412, 2010/10/20/ 2010.
dc.relation.references[117] N. Radic, B. Grbic, and A. Terlecki-Baricevic, "Kinetics of deep oxidation of n-hexane and toluene over Pt/Al2O3 catalysts: Platinum crystallite size effect," Applied Catalysis B: Environmental, vol. 50, pp. 153-159, 2004/07/08/ 2004.
dc.relation.references[118] D. Delimaris and T. Ioannides, "VOC oxidation over MnOx–CeO2 catalysts prepared by a combustion method," Applied Catalysis B: Environmental, vol. 84, pp. 303-312, 2008/10/25/ 2008.
dc.relation.references[119] J. I. Gutiérrez-Ortiz, B. de Rivas, R. López-Fonseca, and J. R. González-Velasco, "Catalytic purification of waste gases containing VOC mixtures with Ce/Zr solid solutions," Applied Catalysis B: Environmental, vol. 65, pp. 191-200, 2006/06/06/ 2006.
dc.relation.references[120] T. Garcia, B. Solsona, and S. H. Taylor, "The Oxidative Destruction of Hydrocarbon Volatile Organic Compounds Using Palladium–Vanadia–Titania Catalysts," Catalysis Letters, vol. 97, pp. 99-103, 2004/08/01 2004.
dc.relation.references[121] P. M. Heynderickx, J. W. Thybaut, H. Poelman, D. Poelman, and G. B. Marin, "The total oxidation of propane over supported Cu and Ce oxides: A comparison of single and binary metal oxides," Journal of Catalysis, vol. 272, pp. 109-120, 2010/05/25/ 2010.
dc.relation.references[122] W. B. Li, J. X. Wang, and H. Gong, "Catalytic combustion of VOCs on non-noble metal catalysts," Catalysis Today, vol. 148, pp. 81-87, 2009/10/30/ 2009.
dc.relation.references[123] T. Mitsui, K. Tsutsui, T. Matsui, R. Kikuchi, and K. Eguchi, "Catalytic abatement of acetaldehyde over oxide-supported precious metal catalysts," Applied Catalysis B: Environmental, vol. 78, pp. 158-165, 2008/01/17/ 2008.
dc.relation.references[124] F. Wyrwalski, J. F. Lamonier, M. J. Perez-Zurita, S. Siffert, and A. Aboukaïs, "Influence of the Ethylenediamine Addition on the Activity, Dispersion and Reducibility of Cobalt Oxide Catalysts Supported over ZrO2 for Complete VOC Oxidation," Catalysis Letters, vol. 108, pp. 87-95, 2006/04/01 2006.
dc.relation.references[125] S. H. Taylor, C. S. Heneghan, G. J. Hutchings, and I. D. Hudson, "The activity and mechanism of uranium oxide catalysts for the oxidative destruction of volatile organic compounds," Catalysis Today, vol. 59, pp. 249-259, 2000/06/25/ 2000.
dc.relation.references[126] W. Tang, X. Wu, S. Li, W. Li, and Y. Chen, "Porous Mn–Co mixed oxide nanorod as a novel catalyst with enhanced catalytic activity for removal of VOCs," Catalysis Communications, vol. 56, pp. 134–138, 11/01 2014.
dc.relation.references[127] M. Răciulete, G. Layrac, F. Papa, C. Negrilă, D. Tichit, and I.-C. Marcu, "Influence of Mn content on the catalytic properties of Cu-(Mn)-Zn-Mg-Al mixed oxides derived from LDH precursors in the total oxidation of methane," Catalysis Today, vol. 306, pp. 276-286, 2018/05/15/ 2018.
dc.relation.references[128] S. C. Kim and W. G. Shim, "Catalytic combustion of VOCs over a series of manganese oxide catalysts," Applied Catalysis B: Environmental, vol. 98, pp. 180-185, 2010/08/01/ 2010.
dc.relation.references[129] A. V. Salker and R. K. Kunkalekar, "Palladium doped manganese dioxide catalysts for low temperature carbon monoxide oxidation," Catalysis Communications, vol. 10, pp. 1776-1780, 2009/07/25/ 2009.
dc.relation.references[130] Q. Liu, L.-C. Wang, M. Chen, Y. Cao, H.-Y. He, and K.-N. Fan, "Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane," Journal of Catalysis, vol. 263, pp. 104-113, 2009/04/01/ 2009.
dc.relation.references[131] M. Konsolakis, S. A. C. Carabineiro, G. E. Marnellos, M. F. Asad, O. S. G. P. Soares, M. F. R. Pereira, et al., "Effect of cobalt loading on the solid state properties and ethyl acetate oxidation performance of cobalt-cerium mixed oxides," Journal of Colloid and Interface Science, vol. 496, pp. 141-149, 2017/06/15/ 2017.
dc.relation.references[132] M. Tsvetkov, J. Zaharieva, G. Issa, Z. Cherkezova-Zheleva, M. Nedyalkov, D. Paneva, et al., "Cobalt ferrite modified with Hf(IV) as a catalyst for oxidation of ethyl acetate," Catalysis Today, 2019/06/03/ 2019.
dc.relation.references[133] W. Tang, X. Wu, S. Li, W. Li, and Y. Chen, "Porous Mn–Co mixed oxide nanorod as a novel catalyst with enhanced catalytic activity for removal of VOCs," Catalysis Communications, vol. 56, pp. 134-138, 2014/11/05/ 2014.
dc.relation.references[134] A. Pérez, R. Molina, and S. Moreno, "Enhanced VOC oxidation over Ce/CoMgAl mixed oxides using a reconstruction method with EDTA precursors," Applied Catalysis A: General, vol. 477, pp. 109-116, 2014/05/05/ 2014.
dc.relation.references[135] H. M. S. Al-Aani, E. Iro, P. Chirra, I. Fechete, M. Badea, C. Negrilă, et al., "CuxCeMgAlO mixed oxide catalysts derived from multicationic LDH precursors for methane total oxidation," Applied Catalysis A: General, vol. 586, p. 117215, 2019/09/25/ 2019.
dc.relation.references[136] K. V. Manukyan, "Solution Combustion Synthesis of Catalysts," in Concise Encyclopedia of Self-Propagating High-Temperature Synthesis, I. P. Borovinskaya, A. A. Gromov, E. A. Levashov, Y. M. Maksimov, A. S. Mukasyan, and A. S. Rogachev, Eds., ed Amsterdam: Elsevier, 2017, pp. 347-348.
dc.relation.references[137] Y. Boyjoo, H. Sun, J. Liu, V. K. Pareek, and S. Wang, "A review on photocatalysis for air treatment: From catalyst development to reactor design," Chemical Engineering Journal, vol. 310, pp. 537-559, 2017/02/15/ 2017.
dc.relation.references[138] F. Zhang, Y. Zhang, L. Yuan, K. A. M. Gasem, J. Chen, F. Chiang, et al., "Synthesis of Cu/Zn/Al/Mg catalysts on methanol production by different precipitation methods," Molecular Catalysis, vol. 441, pp. 190-198, 2017/11/01/ 2017.
dc.relation.references[139] A. Afshar Taromi and S. Kaliaguine, "Hydrodeoxygenation of triglycerides over reduced mesostructured Ni/γ-alumina catalysts prepared via one-pot sol-gel route for green diesel production," Applied Catalysis A: General, vol. 558, pp. 140-149, 2018/05/25/ 2018.
dc.relation.references[140] A. V. Nakhate and G. D. Yadav, "Cu2O nanoparticles supported hydrothermal carbon microspheres as catalyst for propargylamine synthesis," Molecular Catalysis, vol. 451, pp. 209-219, 2018/05/01/ 2018.
dc.relation.references[141] K. Urasaki, S. Kado, A. Kiryu, K.-i. Imagawa, K. Tomishige, R. Horn, et al., "Synthesis gas production by catalytic partial oxidation of natural gas using ceramic foam catalyst," Catalysis Today, vol. 299, pp. 219-228, 2018/01/01/ 2018.
dc.relation.references[142] Z. Wang, Q. Zhang, X. Lu, S. Chen, and C. Liu, "Ru-Zn catalysts for selective hydrogenation of benzene using coprecipitation in low alkalinity," Chinese Journal of Catalysis, vol. 36, pp. 400-407, 2015/03/01/ 2015.
dc.relation.references[143] O. H. Laguna, M. A. Centeno, M. Boutonnet, and J. A. Odriozola, "Au-supported on Fe-doped ceria solids prepared in water-in-oil microemulsions: Catalysts for CO oxidation," Catalysis Today, vol. 278, pp. 140-149, 2016/12/01/ 2016.
dc.relation.references[144] M. Schubert, L. Schubert, A. Thomé, L. Kiewidt, C. Rosebrock, J. Thöming, et al., "Coatings of active and heat-resistant cobalt-aluminium xerogel catalysts," Journal of Colloid and Interface Science, vol. 477, pp. 64-73, 2016/09/01/ 2016.
dc.relation.references[145] J. C. Toniolo, A. S. Takimi, and C. P. Bergmann, "Nanostructured cobalt oxides (Co3O4 and CoO) and metallic Co powders synthesized by the solution combustion method," Materials Research Bulletin, vol. 45, pp. 672-676, 2010/06/01/ 2010.
dc.relation.references[146] K. H. Wu, Y. C. Chang, and G. P. Wang, "Preparation of NiZn ferrite/SiO2 nanocomposite powders by sol–gel auto-combustion method," Journal of Magnetism and Magnetic Materials, vol. 269, pp. 150-155, 2004/02/01/ 2004.
dc.relation.references[147] K. V. Manukyan, A. Cross, S. Roslyakov, S. Rouvimov, A. S. Rogachev, E. E. Wolf, et al., "Solution Combustion Synthesis of Nano-Crystalline Metallic Materials: Mechanistic Studies," The Journal of Physical Chemistry C, vol. 117, pp. 24417-24427, 2013/11/21 2013.
dc.relation.references[148] M. H. Castaño, R. Molina, and S. Moreno, "Catalytic oxidation of VOCs on MnMgAlOx mixed oxides obtained by auto-combustion," Journal of Molecular Catalysis A: Chemical, vol. 398, pp. 358-367, 2015/03/01/ 2015.
dc.relation.references[149] A. Mukasyan and P. Dinka, "Novel approaches to solution-combustion synthesis of nanomaterials," International Journal of Self-Propagating High-Temperature Synthesis, vol. 16, pp. 23-35, 03/01 2007.
dc.relation.references[150] K. Patil, M. S. Hegde, T. Rattan, and S. T. Aruna, "Chemistry of nanocrystalline oxide materials: combustion synthesis, properties and applications," 01/01 2008.
dc.relation.references[151] A. Civera, M. Pavese, G. Saracco, and V. Specchia, "Combustion synthesis of perovskite-type catalysts for natural gas combustion," Catalysis Today, vol. 83, pp. 199-211, 2003/08/15/ 2003.
dc.relation.references[152] M. H. Castaño, R. Molina, and S. Moreno, "Effect of Mg and Al on manganese oxides as catalysts for VOC oxidation," Molecular Catalysis, vol. 443, pp. 117-124, 2017/12/01/ 2017.
dc.relation.references[153] S. Z. Qiao, J. Liu, and G. Q. Max Lu, "Chapter 21 - Synthetic Chemistry of Nanomaterials," in Modern Inorganic Synthetic Chemistry (Second Edition), R. Xu and Y. Xu, Eds., ed Amsterdam: Elsevier, 2017, pp. 613-640.
dc.relation.references[154] J. C. Fariñas, R. Moreno, A. Pérez, M. A. García, M. García-Hernández, M. D. Salvador, et al., "Microwave-assisted solution synthesis, microwave sintering and magnetic properties of cobalt ferrite," Journal of the European Ceramic Society, vol. 38, pp. 2360-2368, 2018/05/01/ 2018.
dc.relation.references[155] A. Mirzaei and G. Neri, "Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review," Sensors and Actuators B: Chemical, vol. 237, pp. 749-775, 2016/12/01/ 2016.
dc.relation.references[156] S. A. Klein, "An Explanation for Observed Compression Ratios in Internal Combustion Engines," Journal of Engineering for Gas Turbines and Power, vol. 113, pp. 511-513, 1991.
dc.relation.references[157] M. B. Alonso, "La emisión de aerosoles de partículas y gases en motores de diésel," Seguridad y Salud en el Trabajo, vol. 73, pp. 14-26, 2013.
dc.relation.references[158] S. M. Saqer, D. I. Kondarides, and X. E. Verykios, "Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3," Applied Catalysis B: Environmental, vol. 103, pp. 275-286, 2011/04/05/ 2011.
dc.relation.references[159] S. Zhang, X.-S. Li, B. Chen, X. Zhu, C. Shi, and A.-M. Zhu, "CO Oxidation Activity at Room Temperature over Au/CeO2 Catalysts: Disclosure of Induction Period and Humidity Effect," ACS Catalysis, vol. 4, pp. 3481-3489, 2014/10/03 2014.
dc.relation.references[160] N. An, Q. Yu, G. Liu, S. Li, M. Jia, and W. Zhang, "Complete oxidation of formaldehyde at ambient temperature over supported Pt/Fe2O3 catalysts prepared by colloid-deposition method," Journal of Hazardous Materials, vol. 186, pp. 1392-1397, 2011/02/28/ 2011.
dc.relation.references[161] H. Flaschka, "Complexation in analytical chemistry (Ringbom, Anders)," Journal of Chemical Education, vol. 41, p. A474, 1964/06/01 1964.
dc.relation.references[162] S. Li, H. Wang, W. Li, X. Wu, W. Tang, and Y. Chen, "Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor," Applied Catalysis B: Environmental, vol. 166-167, pp. 260-269, 2015/05/01/ 2015.
dc.relation.references[163] J. Zhu and S. L. T. Andersson, "Effect of water on the catalytic oxidation of toluene over vanadium oxide catalysts," Applied Catalysis, vol. 53, pp. 251-262, 1989/09/01/ 1989.
dc.relation.references[164] S. Xie, J. Deng, Y. Liu, Z. Zhang, H. Yang, Y. Jiang, et al., "Excellent catalytic performance, thermal stability, and water resistance of 3DOM Mn2O3-supported Au–Pd alloy nanoparticles for the complete oxidation of toluene," Applied Catalysis A: General, vol. 507, pp. 82-90, 2015/10/25/ 2015.
dc.relation.references[165] B.-b. Chen, X.-b. Zhu, M. Crocker, Y. Wang, and C. Shi, "FeOx-supported gold catalysts for catalytic removal of formaldehyde at room temperature," Applied Catalysis B: Environmental, vol. 154-155, pp. 73-81, 2014/07/01/ 2014.
dc.relation.references[166] E. J. Park, H. O. Seo, and Y. D. Kim, "Influence of humidity on the removal of volatile organic compounds using solid surfaces," Catalysis Today, vol. 295, pp. 3-13, 2017/10/15/ 2017.
dc.relation.references[167] S. Li, M. Jia, J. Gao, P. Wu, M. Yang, S. Huang, et al., "Infrared Studies of the Promoting Role of Water on the Reactivity of Pt/FeOx Catalyst in Low-Temperature Oxidation of Carbon Monoxide," The Journal of Physical Chemistry C, vol. 119, pp. 2483-2490, 2015/02/05 2015.
dc.relation.references[168] H. Huang, X. Ye, H. Huang, L. Zhang, and D. Y. C. Leung, "Mechanistic study on formaldehyde removal over Pd/TiO2 catalysts: Oxygen transfer and role of water vapor," Chemical Engineering Journal, vol. 230, pp. 73-79, 2013/08/15/ 2013.
dc.relation.references[169] Z. Abdelouahab-Reddam, R. E. Mail, F. Coloma, and A. Sepúlveda-Escribano, "Platinum supported on highly-dispersed ceria on activated carbon for the total oxidation of VOCs," Applied Catalysis A: General, vol. 494, pp. 87-94, 2015/03/25/ 2015.
dc.relation.references[170] S. Xie, H. Dai, J. Deng, H. Yang, W. Han, H. Arandiyan, et al., "Preparation and high catalytic performance of Au/3DOM Mn2O3 for the oxidation of carbon monoxide and toluene," Journal of Hazardous Materials, vol. 279, pp. 392–401, 08/01 2014.
dc.relation.references[171] E. J. Park, J. H. Lee, K.-D. Kim, D. H. Kim, M.-G. Jeong, and Y. D. Kim, "Toluene oxidation catalyzed by NiO/SiO2 and NiO/TiO2/SiO2: Towards development of humidity-resistant catalysts," Catalysis Today, vol. 260, pp. 100-106, 2016/02/01/ 2016.
dc.relation.references[172] J. Chi-Sheng Wu and T.-Y. Chang, "VOC deep oxidation over Pt catalysts using hydrophobic supports," Catalysis Today, vol. 44, pp. 111-118, 1998/09/30/ 1998.
dc.relation.references[173] F. Deganello and A. K. Tyagi, "Solution combustion synthesis, energy and environment: Best parameters for better materials," Progress in Crystal Growth and Characterization of Materials, vol. 64, pp. 23-61, 2018/06/01/ 2018.
dc.relation.references[174] H. H. Nersisyan, J. H. Lee, J.-R. Ding, K.-S. Kim, K. V. Manukyan, and A. S. Mukasyan, "Combustion synthesis of zero-, one-, two- and three-dimensional nanostructures: Current trends and future perspectives," Progress in Energy and Combustion Science, vol. 63, pp. 79-118, 2017/11/01/ 2017.
dc.relation.references[175] S. Specchia, G. Ercolino, S. Karimi, C. Italiano, and A. Vita, "Solution combustion synthesis for preparation of structured catalysts: A mini-review on process intensification for energy applications and pollution control," International Journal of Self-Propagating High-Temperature Synthesis, vol. 26, pp. 166-186, 2017/07/01 2017.
dc.relation.references[176] S. T. Aruna and A. S. Mukasyan, "Combustion synthesis and nanomaterials," Current Opinion in Solid State and Materials Science, vol. 12, pp. 44-50, 2008/06/01/ 2008.
dc.relation.references[177] A. Khort, K. Podbolotov, R. Serrano-García, and Y. K. Gun’ko, "One-step solution combustion synthesis of pure Ni nanopowders with enhanced coercivity: The fuel effect," Journal of Solid State Chemistry, vol. 253, pp. 270-276, 2017/09/01/ 2017.
dc.relation.references[178] T. Pine, X. Lu, D. Mumm, G. Samuelsen, and J. Brouwer, "Emission of Pollutants from Glycine–Nitrate Combustion Synthesis Processes," Journal of the American Ceramic Society, vol. 90, pp. 3735-3740, 10/19 2007.
dc.relation.references[179] K. Podbolotov, A. Khort, A. Tarasov, G. Trusov, S. Roslyakov, and A. Mukasyan, "Solution Combustion Synthesis of Copper Nanopowders: The Fuel Effect," Combustion Science and Technology, p. null, 06/08 2017.
dc.relation.references[180] S. Specchia, C. Galletti, and V. Specchia, "Solution Combustion Synthesis as intriguing technique to quickly produce performing catalysts for specific applications," in Studies in Surface Science and Catalysis. vol. 175, E. M. Gaigneaux, M. Devillers, S. Hermans, P. A. Jacobs, J. A. Martens, and P. Ruiz, Eds., ed: Elsevier, 2010, pp. 59-67.
dc.relation.references[181] S. Hadke, M. T. Kalimila, S. Rathkanthiwar, S. Gour, R. Sonkusare, and A. Ballal, "Role of fuel and fuel-to-oxidizer ratio in combustion synthesis of nano-crystalline nickel oxide powders," Ceramics International, vol. 41, pp. 14949-14957, 2015/12/01/ 2015.
dc.relation.references[182] G. Mitran, S. Chen, and D.-K. Seo, "Role of oxygen vacancies and Mn4+/Mn3+ ratio in oxidation and dry reforming over cobalt-manganese spinel oxides," Molecular Catalysis, p. 110704, 2019/11/09/ 2019.
dc.relation.references[183] Z. Chen, S. Wang, W. Liu, X. Gao, D. Gao, M. Wang, et al., "Morphology-dependent performance of Co3O4 via facile and controllable synthesis for methane combustion," Applied Catalysis A: General, vol. 525, pp. 94-102, 2016/09/05/ 2016.
dc.relation.references[184] R. Itteboina and T. K. Sau, "Sol-gel synthesis and characterizations of morphology-controlled Co3O4 particles," Materials Today: Proceedings, vol. 9, pp. 458-467, 2019/01/01/ 2019.
dc.relation.references[185] S. Carbonin, F. Martignago, G. Menegazzo, and A. Dal Negro, "X-ray single-crystal study of spinels: in situ heating," Physics and Chemistry of Minerals, vol. 29, pp. 503-514, 2002/09/01 2002.
dc.relation.references[186] F. Bosi, U. Hålenius, G. B. Andreozzi, H. Skogby, and S. Lucchesi, "Structural refinement and crystal chemistry of Mn-doped spinel: A case for tetrahedrally coordinated Mn3+ in an oxygen-based structure," American Mineralogist, vol. 92, pp. 27-33, 2007.
dc.relation.references[187] G. I. Golodets, "Chapter XXI: The Oxidation of Aromatic Hydrocarbons," in Studies in Surface Science and Catalysis. vol. 15, G. I. Golodets, Ed., ed: Elsevier, 1983, pp. 650-742.
dc.relation.references[188] J.-J. Li, S.-C. Cai, E.-Q. Yu, B. Weng, X. Chen, J. Chen, et al., "Efficient infrared light promoted degradation of volatile organic compounds over photo-thermal responsive Pt-rGO-TiO2 composites," Applied Catalysis B: Environmental, vol. 233, pp. 260-271, 2018/10/05/ 2018.
dc.relation.references[189] E. Yu, J. Li, J. Chen, J. Chen, Z. Hong, and H. Jia, "Enhanced photothermal catalytic degradation of toluene by loading Pt nanoparticles on manganese oxide: photoactivation of lattice oxygen," Journal of Hazardous Materials, p. 121800, 2019/11/30/ 2019.
dc.relation.references[190] S. S. Jamali, D. Singh, H. Tavakkoli, F. Kaveh, and T. Tabari, "Microwave-assisted synthesis of nanostructured perovskite-type oxide with efficient photocatalytic activity against organic reactants in gaseous and aqueous phases," Materials Science in Semiconductor Processing, vol. 64, pp. 47-54, 2017/06/15/ 2017.
dc.relation.references[191] W. Walerczyk and M. Zawadzki, "Structural and catalytic properties of Pt/ZnAl2O4 as catalyst for VOC total oxidation," Catalysis Today, vol. 176, pp. 159-162, 2011/11/01/ 2011.
dc.relation.references[192] A. Kaddouri and S. Ifrah, "Microwave-assisted synthesis of La1−xBxMnO3.15 (B=Sr, Ag; x=0 or 0.2) via manganese oxides susceptors and their activity in methane combustion," Catalysis Communications, vol. 7, pp. 109-113, 2006/02/01/ 2006.
dc.relation.references[193] N. Miniajluk, J. Trawczyński, and M. Zawadzki, "Properties and catalytic performance for propane combustion of LaMnO3 prepared under microwave-assisted glycothermal conditions: Effect of solvent diols," Applied Catalysis A: General, vol. 531, pp. 119-128, 2017/02/05/ 2017.
dc.relation.references[194] X. Fei, S. Cao, W. Ouyang, Y. Wen, H. Wang, and Z. Wu, "A convenient synthesis of core-shell Co3O4@ZSM-5 catalysts for the total oxidation of dichloromethane (CH2Cl2)," Chemical Engineering Journal, p. 123411, 2019/11/07/ 2019.
dc.relation.references[195] Y. Liao, L. He, M. Zhao, and D. Ye, "Ultrasonic-assisted hydrothermal synthesis of ceria nanorods and their catalytic properties for toluene oxidation," Journal of Environmental Chemical Engineering, vol. 5, pp. 5054-5060, 2017/10/01/ 2017.
dc.relation.references[196] C. A. Serhal, I. Mallard, C. Poupin, M. Labaki, S. Siffert, and R. Cousin, "Ultraquick synthesis of hydrotalcite-like compounds as efficient catalysts for the oxidation of volatile organic compounds," Comptes Rendus Chimie, vol. 21, pp. 993-1000, 2018/11/01/ 2018.
dc.relation.references[197] C. A. Serhal, I. Mallard, C. Poupin, M. Labaki, S. Siffert, and R. Cousin, "Effect of Microwave Irradiation Parameters on Co/Fe Hydrotalcite Nanocatalysts for the Total Oxidation of VOCs," European Journal of Inorganic Chemistry, vol. 2019, pp. 3218-3227, 2019.
dc.relation.references[198] J.-R. Li, F.-K. Wang, C. He, C. Huang, and H. Xiao, "Catalytic total oxidation of toluene over carbon-supported CuCo oxide catalysts derived from Cu-based metal organic framework," Powder Technology, vol. 363, pp. 95-106, 2020/03/01/ 2020.
dc.relation.references[199] Y. Luo, D. Lin, Y. Zheng, X. Feng, Q. Chen, K. Zhang, et al., "MnO2 nanoparticles encapsuled in spheres of Ce-Mn solid solution: Efficient catalyst and good water tolerance for low-temperature toluene oxidation," Applied Surface Science, vol. 504, p. 144481, 2020/02/28/ 2020.
dc.relation.references[200] C. Zhang, H. Huang, G. Li, L. Wang, L. Song, and X. Li, "Zeolitic acidity as a promoter for the catalytic oxidation of toluene over MnOx/HZSM-5 catalysts," Catalysis Today, vol. 327, pp. 374-381, 2019/05/01/ 2019.
dc.relation.references[201] C. Zhang, C. Wang, H. Huang, K. Zeng, Z. Wang, H.-p. Jia, et al., "Insights into the size and structural effects of zeolitic supports on gaseous toluene oxidation over MnOx/HZSM-5 catalysts," Applied Surface Science, vol. 486, pp. 108-120, 2019/08/30/ 2019.
dc.relation.references[202] J. He, D. Chen, N. Li, Q. Xu, H. Li, J. He, et al., "Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene," Applied Catalysis B: Environmental, vol. 265, p. 118560, 2020/05/15/ 2020.
dc.relation.references[203] W. Pei, Y. Liu, J. Deng, K. Zhang, Z. Hou, X. Zhao, et al., "Partially embedding Pt nanoparticles in the skeleton of 3DOM Mn2O3: An effective strategy for enhancing catalytic stability in toluene combustion," Applied Catalysis B: Environmental, vol. 256, p. 117814, 2019/11/05/ 2019.
dc.relation.references[204] X. Yang, X. Ma, X. Yu, and M. Ge, "Exploration of strong metal-support interaction in zirconia supported catalysts for toluene oxidation," Applied Catalysis B: Environmental, vol. 263, p. 118355, 2020/04/01/ 2020.
dc.relation.references[205] T. Gan, X. Chu, H. Qi, W. Zhang, Y. Zou, W. Yan, et al., "Pt/Al2O3 with ultralow Pt-loading catalyze toluene oxidation: Promotional synergistic effect of Pt nanoparticles and Al2O3 support," Applied Catalysis B: Environmental, vol. 257, p. 117943, 2019/11/15/ 2019.
dc.relation.references[206] H. Yang, J. Deng, Y. Liu, S. Xie, P. Xu, and H. Dai, "Pt/Co3O4/3DOM Al2O3: Highly effective catalysts for toluene combustion," Chinese Journal of Catalysis, vol. 37, pp. 934-946, 2016/06/01/ 2016.
dc.relation.references[207] H. Yang, J. Deng, Y. Liu, S. Xie, Z. Wu, and H. Dai, "Preparation and catalytic performance of Ag, Au, Pd or Pt nanoparticles supported on 3DOM CeO2–Al2O3 for toluene oxidation," Journal of Molecular Catalysis A: Chemical, vol. 414, pp. 9-18, 2016/04/01/ 2016.
dc.relation.references[208] R. Peng, S. Li, X. Sun, Q. Ren, L. Chen, M. Fu, et al., "Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts," Applied Catalysis B: Environmental, vol. 220, pp. 462-470, 2018/01/01/ 2018.
dc.relation.references[209] X. Weng, B. Shi, A. Liu, J. Sun, Y. Xiong, H. Wan, et al., "Highly dispersed Pd/modified-Al2O3 catalyst on complete oxidation of toluene: Role of basic sites and mechanism insight," Applied Surface Science, vol. 497, p. 143747, 2019/12/15/ 2019.
dc.relation.references[210] S. Huang, C. Zhang, and H. He, "Effect of pretreatment on Pd/Al2O3 catalyst for catalytic oxidation of o-xylene at low temperature," Journal of Environmental Sciences, vol. 25, pp. 1206-1212, 2013/06/01/ 2013.
dc.relation.references[211] X. Zhang, J. Zhao, Z. Song, W. Liu, H. Zhao, M. Zhao, et al., "The catalytic oxidation performance of toluene over the Ce-Mn-Ox catalysts: Effect of synthetic routes," Journal of Colloid and Interface Science, vol. 562, pp. 170-181, 2020/03/07/ 2020.
dc.relation.references[212] N. A. Merino, B. P. Barbero, P. Eloy, and L. E. Cadús, "La1−xCaxCoO3 perovskite-type oxides: Identification of the surface oxygen species by XPS," Applied Surface Science, vol. 253, pp. 1489-1493, 2006/11/30/ 2006.
dc.relation.references[213] J. Zhang, D. Tan, Q. Meng, X. Weng, and Z. Wu, "Structural modification of LaCoO3 perovskite for oxidation reactions: The synergistic effect of Ca2+ and Mg2+ co-substitution on phase formation and catalytic performance," Applied Catalysis B: Environmental, vol. 172-173, pp. 18-26, 2015/08/01/ 2015.
dc.relation.references[214] X. Yang, X. Yu, M. Lin, M. Ge, Y. Zhao, and F. Wang, "Interface effect of mixed phase Pt/ZrO2 catalysts for HCHO oxidation at ambient temperature," Journal of Materials Chemistry A, vol. 5, pp. 13799-13806, 2017.
dc.relation.references[215] C. Zhang, C. Wang, W. Zhan, Y. Guo, Y. Guo, G. Lu, et al., "Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts," Applied Catalysis B: Environmental, vol. 129, pp. 509-516, 2013/01/17/ 2013.
dc.relation.references[216] X. Zhang, M. Zhao, Z. Song, H. Zhao, W. Liu, J. Zhao, et al., "The effect of different metal oxides on the catalytic activity of a Co3O4 catalyst for toluene combustion: importance of the structure–property relationship and surface active species," New Journal of Chemistry, vol. 43, pp. 10868-10877, 2019.
dc.relation.references[217] J. Deng, L. Zhang, H. Dai, H. He, and C. T. Au, "Strontium-Doped Lanthanum Cobaltite and Manganite: Highly Active Catalysts for Toluene Complete Oxidation," Industrial & Engineering Chemistry Research, vol. 47, pp. 8175-8183, 2008/11/05 2008.
dc.relation.references[218] J. Zhong, Y. Zeng, D. Chen, S. Mo, M. Zhang, M. Fu, et al., "Toluene oxidation over Co3+-rich spinel Co3O4: Evaluation of chemical and by-product species identified by in situ DRIFTS combined with PTR-TOF-MS," Journal of Hazardous Materials, vol. 386, p. 121957, 2020/03/15/ 2020.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalself-combustion
dc.subject.proposalautocombustión
dc.subject.proposalcompuestos orgánicos volátiles
dc.subject.proposalvolatile organic compounds
dc.subject.proposalmicrowaves
dc.subject.proposalmicroondas
dc.subject.proposalmixed oxides
dc.subject.proposalóxidos mixtos
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito