Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorVargas Jimenez, Carlos Alberto
dc.contributor.authorSanabria López, David Steven
dc.date.accessioned2020-08-27T17:11:15Z
dc.date.available2020-08-27T17:11:15Z
dc.date.issued2020-07-13
dc.identifier.citationSanabria D., (2020) Predicción de roca generadora en ambientes de aguas profundas – offshore Colombia (Cuenca Guajira).
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78273
dc.description.abstractThe spatial and temporal distribution of source rock in the Guajira Basin, and in general in the Colombian Caribbean offshore, is still unknown, which creates uncertainty in the petroleum system and in general in the exploratory activity. This paper seeks to identify potential levels of source rock from electrical and nuclear logs, seismic methods, stratigraphic correlations, and specialized software in an area of the basin. The objective is to identify potential intervals capable of hydrocarbon generation and to apply prediction strategies of this element of the petroleum system in frontier areas with limited information.
dc.description.abstractLa distribución espacial y temporal de la roca generadora de hidrocarburos en la Cuenca Guajira y en general en el offshore del Caribe colombiano aun es desconocida, lo que genera incertidumbre en el sistema petrolífero y en general en la actividad exploratoria. En el presente trabajo se busca identificar posibles niveles de roca generadora de hidrocarburos a partir de registros eléctricos y nucleares, métodos sísmicos, correlación estratigráfica y software especializado en un área de la cuenca. Lo anterior con el fin de identificar posibles intervalos con propiedades generadoras y aplicar estrategias de predicción de este elemento del sistema petrolífero en áreas frontera con información limitada.
dc.format.extent108
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.titlePredicción de roca generadora en ambientes de aguas profundas – offshore Colombia (Cuenca Guajira)
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Hidrocarburos
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geología
dc.contributor.corporatenameEcopetrol SA
dc.description.degreelevelMaestría
dc.relation.referencesAdams, J.A.S. and Weaver, C.E. (1958) Thorium-to-Uranium Ratios as Indicators of Sedimentary Processes; Example of Concept of Geochemical Facies. American. Association of Petroleum Geologist Bulletin, 42, 387-430.
dc.relation.referencesAllen, P. A. & Allen, J. R. (2005). Basin Analysis: Principles & applications, Oxford, 401 Blackwell Publishing, 549 pp.
dc.relation.referencesBarrero D., et al (2007). Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a new Proposal, ANH.
dc.relation.referencesBeers, R. F., (1945) Radioactivity and organic content of some Paleozoic shales: AAPG Bulletin, v. 29, p. 1-22.
dc.relation.referencesBergamaschi, B. A., Tsamakis, E., Keil, R. G., Eglinton, T. I., Montluçon, D. B., & Hedges, J. I. (1997). The effect of grain size and surface area onorganic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments.Geochimica et Cosmochimica Acta, 61(6), 1247–1260. https://doi.org/10.1016/S0016-7037(96)00394-8
dc.relation.referencesCase, J. W.D. Macdonald. And P. J. Fox, (1990). Caribbean crustal provinces; seismic and gravity evidence, in The Geology of America, vol, H: The Caribbean region, edited by G. Dengo and J. E. Case, pp. 15-36 geologycal society of America, boulder, CO.
dc.relation.referencesCastagna, J. P., Batzle, M. L., and Eastwood, R.L. (1985). Relationship between compressional wave and shear-wave velocities in clastic Rocks, Geophysics 50, 571-581
dc.relation.referencesCastillo, V, Benkovics, L, Demuro, D, Franco A, (2017). Perla Field: The largest discovery ever in Latin America, in R.K.Merrill and CA Stembach, eds., Giant fields of the decade 2000-2010 AAPG Memoir 113, p141-152.
dc.relation.referencesCerón, J. (2008). Crustal structure of the Colombian Caribbean Basin and margins, PhD dissertation, 165 pp., University of South Carolina, Columbia, South Carolina.
dc.relation.referencesDegens, E.T., W. Michaelis, A. Paluska (1981). Principles of petroleum source bed formation, in Energy - Present and Future Operations, John Wiley and Sons, New York.
dc.relation.referencesDembicki, H. and Pirkle, F., (1985). Regional source rock mapping using a source potential rating index, AAPG, v. 69, pp 567-581.
dc.relation.referencesEtayo-Serna, F. et al. (1983). Mapa de Terrenos geológicos de Colombia. Ins, Nal.Inv. Geol-Min. Publ. Geol. Esp, Nº 14, 235 p. Bogotá.
dc.relation.referencesFertl, W.H., H.H. Reike (1979). Gamma ray spectral evaluation techniques help identify fractured shale resevoirs and source rock characteristics, SPE 8454.
dc.relation.referencesGardner, G.H.F., Gardner, L.W., and Gregory, A.R., (1974). Formation velocity and density – The diagnostic basics for stratigraphic traps: Geophysics, 39, 770-780.
dc.relation.referencesHaq, B.U., Hardenbol, J., and Vail, P.R., (1987). The chronology of fluctuating sea level since the Triassic: Science, v. 235, p. 1156–1167, https:// doi.org/10.1126/science.235.4793.1156.
dc.relation.referencesHill, Jon (2015). Haq sea level curve. figshare. Dataset. https://doi.org/10.6084/m9.figshare.1005016.v2
dc.relation.referencesHunt, J.M. (1996). Petroleum Geochemistry and Geology. 2nd Edition, W.H. Freeman, New York.
dc.relation.referencesImmenhauser, A., (2009). Estimating palaeo-water depth from the physical rock record. Earth-Sci.Rev. 96, 107–139.
dc.relation.referencesIngeominas, (2009). Cartografía e Historia Geológica de La Alta Guajira.
dc.relation.referencesKatz B., & Williams K., (2003). Biogenic gas potential offshore Guajira Peninsula, Colombia.
dc.relation.referencesJacobi, D., M. Gladkikh, B. Lecompte,G. Hursan, F. Mendez, J. Longo, S. Ong, M. Bratovich, G. Patton, and P. Shoemaker, 2008, Integrated petrophysical evaluation of shale gas reservoirs: Canadian International Petroleum Conference/SPE Gas Technology Symposium Joint Conference, Calgary, Alberta, Canada, June 16–19, 2008, SPE-114925-MS, 23 p., doi:10.2118/114925-MS.
dc.relation.referencesKeil, R.G., Tsamakis, E., Bor, Fuh., Giddings, C., Hedges, J.C.J.I., 1994. Mineralogical and textural controls on the organic composition of coastal marine sediments: hydrodynamic separation using SPLITT fractionation. Geochim. Cosmochim. Acta 58, 879–893.
dc.relation.referencesKinghorn, R.R.F., M. Rahman, (1983). Specific gravity as a kerogen type and maturation indicator with special reference to amorphous kerogens, J. Petro Geol., 6, 2, 179-1 94.
dc.relation.referencesKuster, G.T., and M.N. Toksoz, (1974). Velocity and attenuation of seismic waves in two-phase media: part I. theoretical formulations, Geophysics, 39, 587-61 8, 1974.
dc.relation.referencesLafargue E., Espitalie J, Marquis F, Pillot D (1998). Rock-Eval 6 applications in hydrocarbon exploration, production and soil contamination studies. Inst Fr Pet 53:421-437.
dc.relation.referencesLatimer RB. (2011). Inversion and Interpretation of Impedance Data. In: Brown AR. Interpretation of Three-Dimensional Seismic Data. Society of Exploration Geophysicists and American Association of Petroleum Geologists, Tulsa, Oklahoma, USA. p. 309–350. doi: 10.1190/1.9781560802884.ch9.
dc.relation.referencesLebreton, F., J. Dellenbach, (1981). Criteres d'analyses des roches-meres argileuses par diagraphies, Societe pour I'Advancement d'interpretation des Diagraphies, Inf. Letters, Paris, May 1981.
dc.relation.referencesLeventhal, J.S., (1982). Limitations of rock-eval pyrolysis assay to characterize kerogen, AAPG Bull., 64, 593-598, 1982.
dc.relation.referencesLopez E., (2016). Características y Evolución Tectónica del Caribe Colombiano. Informe interno de Ecopetrol.
dc.relation.referencesLøseth, H., Wensaas, L., Gading, M., Duffaut, K., Springer, M., (2011). Can hydrocarbon source rocks be identified on seismic data?. Geology 39, 1167-1170.
dc.relation.referencesMackenzie, A.S., (1984). Applications of biological markers in petroleum geochemistry, in Brooks, J., and Welte, D., eds., Advances in petroleum geochemistry: New York, Academic Press, v. 1, p. 115-214.
dc.relation.referencesMagoon, L.B., and W.G. Dow, editors, (1994). The Petroleum System – From Source to Trap: AAPG Memoir 60, 655 p.
dc.relation.referencesMann, U., Zweigel, J., (2008). Moddeling source-rock distribution and quality variations: The organic facies modelling approach. International Association of Sedimentologists Special Publication 40, 139-274.
dc.relation.referencesMann et al., (2013). Evaluation of Source Rock Distribution and Quality of the Cenomanian-Coniacian La Luna Fm. in the Middle Magdalena Valley, Colombia, by Applying Organic Facies Modelling (OF-Mod).
dc.relation.referencesMendelson, J., (1985). Petroleum Source Rock Logging, Massachusetts Institute of Technology. Earth Resources Laboratory.
dc.relation.referencesMerrill, R.K., editor, (1991). Source and Migration Processes and Evaluation Techniques: AAPG Treatise of Petroleum Geology, Handbook of Petroleum Geology 213 p.
dc.relation.referencesMora, C., Giraldo, B: N., y Goncalves, Félix. (2002). Muestreo y Estudio Geoquímico de Pozos y Columnas para Caracterización Geoquímica de Unidades del Terciario y Cretáceo. Piedecuesta, Santander. p. 1, 4, 7, 12-17.
dc.relation.referencesMora C. & Goncalves F. (2005). Geoquímica del Petróleo Aplicada a la Exploración de Hidrocarburos en Colombia. Curso Interno Gems SA.
dc.relation.referencesNordlund, U. (1999). “FUZZIM: forward stratigraphic modeling made simple.” Computers & Geosciences, 25(4), 449-456.
dc.relation.referencesOiltracers-Weatherford Laboratories Service, 2011.
dc.relation.referencesPassey, Q., Creaney, S., Kulla, J., Moretti, F. and Stroud, J., (1990). A practical model for Organic richness from porosity and resitivity logs. American Association of Petroleum Geologists, V 74 N 12, 1777-1794.
dc.relation.referencesPearson DL (1984). Pollen/spores colour “standard”, version 2. Phillips Petroleum, private distribution.
dc.relation.referencesPeters, K. E., 1986, Guidelines for evaluating petroleum source rock using programmed pyrolysis: AAPG Bulletin, v. 70, p. 329.
dc.relation.referencesPeters, K.E., and Cassa, M.R., (1994). Applied source rock geochemistry, in Magoon, L.B., and Dow, W.G., eds., The petroleum system—From source to trap: Tulsa, Okla., American Association of Petroleum Geologists Memoir 60, p. 93-117.
dc.relation.referencesPindell, J. L. and Erikson, J. P., (1994). The Mesozoic passive margin of Northern South America. In Salfity, J. A. (ed.), 1994, Cretaceous tectonics in the Andes, Vieweg Publishing, Earth Evolution Sciences, International Monograph Series, 1-60.
dc.relation.referencesRamirez C., V. O., 2007, Stratigraphic framework and petroleum systems modeling, Guajira Basin northern Colombia, University of Alabama at Tuscaloosa Tuscaloosa, 185.
dc.relation.referencesRenz, O., 1960. Geología de la parte sureste de la Península de La Guajira (República de Colombia). Bol. Geol., Publ. Esp., Venezuela, 1(3): 317-349.
dc.relation.referencesRollins, J. F., (1965). Stratigraphy and structure of the Guajira Peninsula, northwestern Venezuela and northeastern Colombia. Univ. Nebraska Studies, New Ser., 30, 99p.
dc.relation.referencesSchmoker, J.W., (1979). Determination of organic content of Appalachian Devonian shales from formation density logs, AAPG Bull., 63, 1504-1537.
dc.relation.referencesSchlumberger, 1984, Log interpretation charts: Schlumberguer ltd., publ. SMP-7006.
dc.relation.referencesSmith, J.W., (1969). Theoretical relationship between density and oil yield for oil shales, USBM Report of Investigations 7248, 1969.
dc.relation.referencesSondergeld C.H., Ambrose, R.J., Rai, C.S. and Moncrieff, J. (2010). Micro-structural studies of gas shales: Paper SPE-131771-MS presented at the SPE Unconventional Gas Conference, Pittsburgh, Pennsylvania, USA, 23-25 February 2010.
dc.relation.referencesStaplin, F.L., (1969). Sedimentary organic matter, organic metamorphism and oil and gas occurrences. Bull. Canad. Petrol. Geol., 17(1): 47-66.
dc.relation.referencesStein, R. (1991). Accumulation of Organic Carbon in Marine Sediments: Lecture Notes in Earth Sciences 34, Springer, Heidelberg, 217pp.
dc.relation.referencesSupernaw, I.R., McCoy, AD, and Link A.J., (1978). Method for in situ evaluation of the source rock potential of each formation. U.S. PATENT 4.071.744 Jan 31.
dc.relation.referencesSwanson, V.E., (1960). Oil yield and uranium content of black shales, USGS Prof. Paper n. 356.
dc.relation.referencesSwanson, V. E. (1961). Geology and geochemistry of uranium in marine black shales---a review: U.S. Geol. Surv. Prof. Pap. 356-C, 67-112.
dc.relation.referencesTaylor, g. H., Teichmüller, M., Davis, A., Diessel, C. F. K., Littke, R. & Robert, P. (1998). Organic Petrology. A New Handbook incorporating some revised parts of Stach's Textbook of Coal Petrology. xvi + 704 pp. Berlin.
dc.relation.referencesTissot, B.P., D.H. Welte, (1984). Petroleum Formation and Occurrences, Springer Verlag, Berlin.
dc.relation.referencesToksoz, M.N., C.H. (1978). Cheng, Modeling of seismic velocities in porous rocks and its application to seismic exploration, Arab. Jour. Sci. Eng., Special Issue.
dc.relation.referencesVan Kravelen, O. W. 1961. Coal. Elsevier, Amsterdam.
dc.relation.referencesWeber, M. B. I., Cardona, A., Paniagua, F., Cordani, U., Sepúlveda, L., and Wilson, R., (2009). The Cabo de la Vela Mafic–Ultramafic Complex, Northeastern Colombian Caribbean region: a record of Multistage evolution of a late Cretaceous intra-oceanic arc. In. James, K. H., Lorente, M. A. & Pindell, J. L. (eds) The Origin and Evolution of the Caribbean Plate. Geological Society, London, Special Publications, 328, 547–566.
dc.relation.referencesWeimer, P. and Slatt, R.M. (2004) Petroleum systems of deepwater settings. Distinguished Instructor Short Course, Distinguished Instructor Series, 7, Soc. Explor. Geophysicists, Tulsa, Oklahoma.
dc.relation.referencesZhao et al., (2016). A new method for estimating total organic carbon content from well logs. AAPG.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalSource rock prediction
dc.subject.proposalPredicción roca generadora
dc.subject.proposalGeoquímica
dc.subject.proposalGeochemistry
dc.subject.proposalSistema petrolífero
dc.subject.proposalPetroleum System
dc.subject.proposalNumerical modeling
dc.subject.proposalModelamiento
dc.subject.proposalOffshore Guajira
dc.subject.proposalOffshore Guajira
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito