Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorSierra Vargas, Fabio Emiro
dc.contributor.advisorForero Núñez, Carlos Andrés
dc.contributor.authorHernández Solórzano, Laura Carolina
dc.date.accessioned2020-08-27T21:04:16Z
dc.date.available2020-08-27T21:04:16Z
dc.date.issued2020-04-29
dc.identifier.citationHernández Solórzano, L. C. (2020). Análisis de la incidencia del cambio de parámetros de fabricación en las propiedades mecánicas, físicas, químicas y de combustión de pellets de biomasa fabricados a partir de mezclas de aserrín de pino y carbón. Universidad nacional de Colombia.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78291
dc.description.abstractEl presente trabajo muestra el estudio de la influencia del cambio de parámetros de operación durante la fabricación de combustibles densificados elaborados a partir de mezclas duales de carbón y biomasa, así como su influencia sobre las propiedades físicas y químicas de los combustibles obtenidos. Para la elaboración de los combustibles densificados es empleada una Peletizadora comercial de biomasa, con un diámetro de extrusión de 6mm. Los resultados permiten evidenciar relaciones entre el cambio en la proporción de las materias primas empleadas y su influencia en las propiedades mecánicas y físicas de los pellets producidos, a medida que crece la proporción de biomasa en los pellets, propiedades como la dureza, reactividad y factor de compresión aumentan
dc.description.abstractThe present work synthetizes the study results on the operating parameters change incidence on physical and chemical properties of biomass pellets made from pine sawdust and coal blends. It is shown how sawdust particle size and sawdust-coal percentage in pellets’ composition affect their density, hardness, mechanical resistance and reactivity. For the production of densified fuels, two equipment were employed: a 6 mm extrusion diameter commercial biomass pelletizer and an uniaxial hydraulic press. The results show different relationships between the chemical composition and the physical characteristics of the material affecting the quality characteristics of the obtained biofuels. From this study, it is possible to identify that changes in the parameters have a direct influence on the final properties of the pellets modifying their reactivity, density and hardness
dc.format.extent93
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energía
dc.titleAnálisis de la incidencia del cambio de parámetros de fabricación en las propiedades mecánicas, físicas, químicas y de combustión de pellets de biomasa fabricados a partir de mezclas de aserrín de pino y carbón
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.project“Análisis energético de un sistema de aprovechamiento de residuos de biomasa y carbón para la producción de biocombustibles densificados, generación de gas de síntesis mediante procesos de descomposición termoquímica y su uso en motores de combustión interna
dc.description.additionalLínea de Investigación: Energías renovables y biocombustibles sólidos
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.contributor.researchgroupMecanismos de Desarrollo Limpio y Gestión Energetica
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesIRENA, Renewables 2017: Global Status Report, vol. 72, no. October 2016. 2017
dc.relation.referencesJ. Gurney and B. P. Company, “BP Statistical Review of World Energy,” 2019
dc.relation.referencesP. Pradhan, S. M. Mahajani, and A. Arora, “Production and utilization of fuel pellets from biomass: A review,” Fuel Process. Technol., vol. 181, pp. 215–232, Dec. 2018, doi: 10.1016/J.FUPROC.2018.09.021
dc.relation.referencesS. V Vassilev, C. G. Vassileva, and V. S. Vassilev, “Advantages and disadvantages of composition and properties of biomass in comparison with coal : An overview,” FUEL, vol. 158, pp. 330–350, 2015, doi: 10.1016/j.fuel.2015.05.050
dc.relation.referencesÁ. Chávez Porras and A. Rodríguez González, “Aprovechamiento de residuos orgánicos agrícolas y forestales en Iberoamérica,” Acad. y Virtualidad, vol. 9, no. 2, pp. 90–107, 2016, doi: 10.18359/ravi.2004
dc.relation.referencesJaya Shankar Tumuluru, Christopher T Wright, Richard D Boardman, Neal A Yancey, and Shahab Sokhansanj, “A review on biomass classification and composition, co-firing issues and pretreatment methods,” no. May 2014, 2013, doi: 10.13031/2013.37191
dc.relation.referencesJ. Li, M. C. Paul, P. L. Younger, I. Watson, M. Hossain, and S. Welch, “Combustion Modelling of Pulverized Biomass Particles at High Temperatures,” Energy Procedia, vol. 66, pp. 273–276, Jan. 2015, doi: 10.1016/J.EGYPRO.2015.02.055
dc.relation.referencesH. Lechner, “Pellets - Becoming a Global Commodity ? Pellet supply and demand , policies and,” Pyöry, 2009
dc.relation.referencesF. Guo and Z. Zhong, “Experimental studies on combustion of composite biomass pellets in fluidized bed,” Sci. Total Environ., vol. 599–600, pp. 926–933, Dec. 2017, doi: 10.1016/J.SCITOTENV.2017.05.026.
dc.relation.referencesC. A. Forero Nuñez, Densification mechanisms during solid biofuels production made of sawdust, coal and cocoa husks by pressing. 2014.
dc.relation.referencesJ. Mina-Boac, M. E. Casada, and R. G. Maghirang, “Feed pellet and corn durability and breakage during repeated elevator handling,” Appl. Eng. Agric., 2008.
dc.relation.referencesC. Kirsten, V. Lenz, H. W. Schröder, and J. U. Repke, “Hay pellets - The influence of particle size reduction on their physical-mechanical quality and energy demand during production,” Fuel Process. Technol., vol. 148, pp. 163–174, 2016, doi: 10.1016/j.fuproc.2016.02.013.
dc.relation.referencesS. H. Larsson and R. Samuelsson, “Prediction of ISO 17831-1:2015 mechanical biofuel pellet durability from single pellet characterization,” Fuel Process. Technol., vol. 163, pp. 8–15, Aug. 2017, doi: 10.1016/J.FUPROC.2017.04.004
dc.relation.referencesA. Demirbas, “Combustion characteristics of different biomass fuels,” Prog. Energy Combust. Sci., vol. 30, no. 2, pp. 219–230, Jan. 2004, doi: 10.1016/J.PECS.2003.10.004
dc.relation.referencesA. Gravelsins, I. Muizniece, A. Blumberga, and D. Blumberga, “Economic sustainability of pellet production in Latvia,” Energy Procedia, vol. 142, pp. 531–537, Dec. 2017, doi: 10.1016/J.EGYPRO.2017.12.083
dc.relation.referencesX. Wang et al., “Influence of coal co-firing on the particulate matter formation during pulverized biomass combustion,” J. Energy Inst., vol. 92, no. 3, pp. 450–458, Jun. 2019, doi: 10.1016/J.JOEI.2018.05.003
dc.relation.referencesC. Chen, S. Qin, F. Chen, Z. Lu, and Z. Cheng, “Co-combustion characteristics study of bagasse , coal and their blends by thermogravimetric analysis,” J. Energy Inst., vol. 92, no. 2, pp. 364–369, 2019, doi: 10.1016/j.joei.2017.12.008
dc.relation.referencesC. D. LA REPÚBLICA, “ley 1215,” Por la cual se Adopt. medidas en Mater. generación energía eléctrica, pp. 6–8, 2015
dc.relation.referencesI. E. M. Bros, D. E. L. A. Com, D. E. Regulaci, and D. E. Energ, “Comisión de Regulación de Energía y Gas PROCEDIMIENTO DE PRUEBA Y AUDITORÍA A PROCESOS DE COGENERACIÓN DOCUMENTO CREG-076,” pp. 1–3, 2010
dc.relation.referencesCongreso de la republica, ley 1715, vol. 85. 2014
dc.relation.referencesPROFOR, “Situación actual y potencial de fomento de plantaciones forestales con fines comerciales en Colombia,” Bogotá, 2017
dc.relation.referencesD. Mallick, P. Mahanta, and V. Suryakant, “Co-gasification of coal and biomass blends : Chemistry and engineering,” Fuel, vol. 204, pp. 106–128, 2017, doi: 10.1016/j.fuel.2017.05.006.
dc.relation.referencesR. García, M. V Gil, F. Rubiera, and C. Pevida, “Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets,” Fuel, vol. 251, no. March, pp. 739–753, 2019, doi: 10.1016/j.fuel.2019.03.141.
dc.relation.referencesN. Kaliyan and R. V. Morey, “Bioresource Technology Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass,” Bioresour. Technol., vol. 101, no. 3, pp. 1082–1090, 2010, doi: 10.1016/j.biortech.2009.08.064.
dc.relation.referencesL. Carolina, H. Solórzano, C. Andrés, F. Núñez, and F. E. Sierra-vargas, “Pellet Market and Analysis of New Research Trends,” vol. 12, no. 23, pp. 81–92, 2017
dc.relation.referencesM. Barbanera, E. Lascaro, V. Stanzione, A. Esposito, R. Altieri, and M. Bufacchi, “Characterization of pellets from mixing olive pomace and olive tree pruning,” Renew. Energy, vol. 88, pp. 185–191, 2016, doi: 10.1016/j.renene.2015.11.037
dc.relation.referencesS. D. Doring, Power from Pellets: Technology and Applications, First. Berlin: Springer, 2013.
dc.relation.referencesL. Cuervo, J. L. Folch, and R. E. Quiroz, “Lignocelulosa Como Fuente de Azúcares Para la Producción de Etanol .,” BioTecnologia, vol. 13, no. 3, pp. 11–25, 2001.
dc.relation.referencesA. Garcia-Maraver, D. Salvachúa, M. J. Martínez, L. F. Diaz, and M. Zamorano, “Analysis of the relation between the cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees,” Waste Manag., vol. 33, no. 11, pp. 2245–2249, Nov. 2013, doi: 10.1016/J.WASMAN.2013.07.010.
dc.relation.referencesC. Gokcol, B. Dursun, B. Alboyaci, and E. Sunan, “Importance of biomass energy as alternative to other sources in Turkey,” Energy Policy, vol. 37, no. 2, pp. 424–431, 2009, doi: 10.1016/j.enpol.2008.09.057
dc.relation.referencesG. Zhang, Y. Sun, and Y. Xu, “Review of briquette binders and briquetting mechanism,” Renew. Sustain. Energy Rev., vol. 82, no. July 2017, pp. 477–487, 2018, doi: 10.1016/j.rser.2017.09.072.
dc.relation.referencesJ. F. González, B. Ledesma, A. Alkassir, and J. González, “Study of the influence of the composition of several biomass pellets on the drying process,” Biomass and Bioenergy, vol. 35, no. 10, pp. 4399–4406, 2011, doi: 10.1016/j.biombioe.2011.08.019
dc.relation.referencesC. A. Forero-Nuñez, J. Jochum, and F. E. S. Vargas, “Effect of particle size and addition of cocoa pod husk on the properties of sawdust and coal pellets,” Ing. e Investig., vol. 35, no. 1, pp. 17–23, 2015, doi: 10.15446/ing.investig.v35n1.46157.
dc.relation.referencesN. Y. Harun and M. T. Afzal, “Effect of Particle Size on Mechanical Properties of Pellets Made from Biomass Blends,” Procedia Eng., vol. 148, pp. 93–99, 2016, doi: 10.1016/j.proeng.2016.06.445
dc.relation.referencesC. Tenorio, R. Moya, M. T. Filho, and J. Valaert, “Application of the X-ray densitometry in the evaluation of the quality and mechanical properties of biomass pellets,” Fuel Process. Technol., vol. 132, pp. 62–73, 2015, doi: 10.1016/j.fuproc.2014.12.040.
dc.relation.referencesN. Kaliyan and R. V. Morey, “Densification characteristics of corn cobs,” Fuel Process. Technol., vol. 91, no. 5, pp. 559–565, May 2010, doi: 10.1016/J.FUPROC.2010.01.001.
dc.relation.referencesX. Dai, S. Theppitak, and K. Yoshikawa, “Pelletization of carbonized wood using organic binders with biomass gasification residue as additive,” Energy Procedia, vol. 158, pp. 509–515, 2019, doi: 10.1016/j.egypro.2019.01.144.
dc.relation.referencesZ. Zuo et al., “Mechanical and reduction characteristics of cold-pressed copper slag pellets composited within biomass and lignite,” Renew. Energy, vol. 125, pp. 206–224, 2018, doi: 10.1016/j.renene.2018.02.057
dc.relation.references“Molinos y plantas para la fabricación de pellets de madera y biomasa.” [Online]. Available: http://www.plantaspeletizadoras.com/molino-de-pellets.html. [Accessed: 18-May-2020].
dc.relation.referencesConf. Proc., vol. 2077, no. February, pp. 1–8, 2019, doi: 10.1063/1.5091899
dc.relation.references“Matriz Peletizadoras - Ferraz.” [Online]. Available: https://www.ferrazmaquinas.com.br/es/equipamento/matriz-peletizadoras. [Accessed: 19-May-2020]
dc.relation.referencesE. Alakangas and P. Paju, “Wood pellets in Finland - technology, economy, and market OPET Report 5,” Tech. Res. Cent. Finl., p. 85, 2002
dc.relation.referencesC. Rhén, R. Gref, M. Sjöström, and I. Wästerlund, “Effects of raw material moisture content, densification pressure and temperature on some properties of Norway spruce pellets,” Fuel Process. Technol., vol. 87, no. 1, pp. 11–16, 2005, doi: 10.1016/j.fuproc.2005.03.003
dc.relation.referencesB. Ye, R. Zhang, J. Cao, K. Lei, and D. Liu, “The study of co-combustion characteristics of coal and microalgae by single particle combustion and TGA methods,” J. Energy Inst., Jul. 2019, doi: 10.1016/J.JOEI.2019.07.001
dc.relation.referencesS. Frodeson, G. Henriksson, and J. Berghel, “Effects of moisture content during densification of biomass pellets, focusing on polysaccharide substances,” Biomass and Bioenergy, 2019, doi: 10.1016/j.biombioe.2019.01.048
dc.relation.referencesASTM, “ASTM E873 - 82: Standard test method for bulk density of densified particulate biomass fuels,” vol. 82, no. Reapproved, pp. 17–18, 2019, doi: 10.1520/E0873-82R19.3.2
dc.relation.referencesB. Kwiecińska, S. Pusz, and B. J. Valentine, “Application of electron microscopy TEM and SEM for analysis of coals, organic-rich shales and carbonaceous matter,” Int. J. Coal Geol., vol. 211, no. May, p. 103203, 2019, doi: 10.1016/j.coal.2019.05.010.
dc.relation.referencesE. V. Anoop, V. Ajayghosh, J. M. Nijil, and C. M. Jijeesh, “Evaluation of pulp wood quality of selected tropical pines raised in the high ranges of Idukki district, Kerala,” J. Trop. Agric., vol. 52, no. 1, pp. 59–66, 2014
dc.relation.referencesG. R. Hodge and W. C. Woodbridge, “Global near infrared models to predict lignin and cellulose content of pine wood,” J. Near Infrared Spectrosc., vol. 18, no. 6, pp. 367–380, 2010, doi: 10.1255/jnirs.902
dc.relation.referencesC. Ospina et al., El Pino pátula- Guías silviculturales. 2011
dc.relation.referencesL. A. Quintero, J. Herrera, and L. Corzo, “Relación entre la resistencia a la compresión y la porosidad del concreto evaluada a partir de parámetros ultrasónicos,” Rev. ION, Bucaramanga, vol. 24, no. 1, pp. 69–76, 2011.
dc.relation.referencesL. Mar, “S ´ ıntesis de carb ´ on activado peletizado a partir de carb ´ on mineral del Cerrej ´ on,” 2014.
dc.relation.referencesR. García, M. V. Gil, F. Rubiera, and C. Pevida, “Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets,” Fuel, vol. 251, no. April, pp. 739–753, 2019, doi: 10.1016/j.fuel.2019.03.141
dc.relation.referencesRajabi Hamedani, A. Colantoni, F. Gallucci, M. Salerno, C. Silvestri, and M. Villarini, “Comparative energy and environmental analysis of agro-pellet production from orchard woody biomass,” Biomass and Bioenergy, vol. 129, no. January, p. 105334, 2019, doi: 10.1016/j.biombioe.2019.105334.
dc.relation.referencesT. Wilson, “Factors affecting wood pellets durability,” Pennsylvania State University, 2010.
dc.relation.referencesE. P. C. (EPC), c/o A.-E. B. Association, R. E. House, 63-65 Rue D’Arlon, and B. 1040 Brussels, “European Pellet Council Manual para la certificación de pellets de madera para usos térmicos,” 2013
dc.relation.referencesN. Kaliyan and R. Vance Morey, “Factors affecting strength and durability of densified biomass products,” Biomass and Bioenergy, vol. 33, no. 3, pp. 337–359, 2009, doi: 10.1016/j.biombioe.2008.08.005
dc.relation.referencesO. O. Fasina and S. Sokhansanj, “Effect of fines on storage and handling properties of alfalfa pellets,” Can. Agric. Eng., vol. 38, no. 1, pp. 25–29, 1996
dc.relation.referencesASTM, “Standard Test Method of Drop Shatter Test for Coal 1,” Astm, vol. 05, no. Reapproved 2002, pp. 4–7, 2015, doi: 10.1520/D0440-07R12.2.
dc.relation.referencesR. 21, “Renewables 2019. Global Status Repor,” 2019. [Online]. Available: http://ren21.net/gsr-2019/?gclid=EAIaIQobChMI7PeIn-zx4gIVhWSGCh2E6w1KEAAYASAAEgKZ4fD_BwE.
dc.relation.referencesEA, “Global Energy & CO2 Status Report: Emissions,” Iea.org, pp. 1–7, 2019
dc.relation.referencesA. Gani, K. Morishita, K. Nishikawa, and I. Naruse, “Characteristics of co-combustion of low-rank coal with biomass,” Energy and Fuels, vol. 19, no. 4, pp. 1652–1659, 2005, doi: 10.1021/ef049728h
dc.relation.referencesT. Nussbaumer, “Combustion and Co-combustion of Biomass: Fundamentals, Technologies, and Primary Measures for Emission Reduction,” Energy and Fuels, vol. 17, no. 6, pp. 1510–1521, 2003, doi: 10.1021/ef030031q.
dc.relation.referencesH. Lu, W. Robert, G. Peirce, B. Ripa, and L. L. Baxter, “Comprehensive Study of Biomass Particle Combustion,” no. 4, pp. 2826–2839, 2008.
dc.relation.referencesM. Sami, K. Annamalai, and M. Wooldridge, “Co-firing of coal and biomass fuel blends,” vol. 27, pp. 171–214, 2001.
dc.relation.referencesC. Vadenbo, D. Tonini, V. Burg, T. F. Astrup, O. Thees, and S. Hellweg, “Environmental optimization of biomass use for energy under alternative future energy scenarios for Switzerland,” Biomass and Bioenergy, vol. 119, pp. 462–472, Dec. 2018, doi: 10.1016/J.BIOMBIOE.2018.10.001
dc.relation.referencesL. Jiang et al., “A comparative study of biomass pellet and biomass-sludge mixed pellet : Energy input and pellet properties,” Energy Convers. Manag., vol. 126, pp. 509–515, 2016, doi: 10.1016/j.enconman.2016.08.035.
dc.relation.referencesS. Hu, X. Ma, Y. Lin, Z. Yu, and S. Fang, “Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste,” Energy Convers. Manag., vol. 99, pp. 112–118, 2015, doi: 10.1016/j.enconman.2015.04.026.
dc.relation.referencesG. Simões, “Single particle ignition of pulverized solid biomass fuels : experiments and modeling,” no. May, pp. 1–63, 2016.
dc.relation.referencessjaak van loo and jaap Koppejan, Biomass combustion and cofiring. London: Earthscan, 2008.
dc.relation.referencesS. G. Sahu, N. Chakraborty, and P. Sarkar, “Coal-biomass co-combustion: An overview,” Renew. Sustain. Energy Rev., vol. 39, pp. 575–586, 2014, doi: 10.1016/j.rser.2014.07.106
dc.relation.referencesO. Senneca, F. Scala, R. Chirone, and P. Salatino, “Relevance of structure , fragmentation and reactivity of coal to combustion and oxy-combustion,” Fuel, 2016, doi: 10.1016/j.fuel.2016.11.034
dc.relation.referencesD. K. Park, S. D. Kim, S. H. Lee, and J. G. Lee, “Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor,” Bioresour. Technol., vol. 101, no. 15, pp. 6151–6156, 2010, doi: 10.1016/j.biortech.2010.02.087.
dc.relation.referencesJ. Ballester, J. Barroso, L. M. Cerecedo, and R. Ichaso, “Comparative study of semi-industrial-scale flames of pulverized coals and biomass,” vol. 141, no. x, pp. 204–215, 2005, doi: 10.1016/j.combustflame.2005.01.005.
dc.relation.referencesZ. Zeng, T. Zhang, S. Zheng, W. Wu, and Y. Zhou, “Ignition and combustion characteristics of coal particles under high-temperature and low-oxygen environments mimicking MILD oxy-coal combustion conditions,” Fuel, vol. 253, pp. 1104–1113, Oct. 2019, doi: 10.1016/J.FUEL.2019.05.101.
dc.relation.referencesC. R. Shaddix and A. Molina, “Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion,” Proc. Combust. Inst., vol. 32 II, no. 2, pp. 2091–2098, 2009, doi: 10.1016/j.proci.2008.06.157.
dc.relation.referencesG. Simões, D. Magalhães, M. Rabaçal, and M. Costa, “Effect of gas temperature and oxygen concentration on single particle ignition behavior of biomass fuels,” vol. 000, pp. 1–8, 2016, doi: 10.1016/j.proci.2016.06.102.
dc.relation.referencesY. A. Levendis, K. Joshi, R. Khatami, and A. F. Sarofim, “Combustion behavior in air of single particles from three different coal ranks and from sugarcane bagasse,” Combust. Flame, vol. 158, no. 3, pp. 452–465, 2011, doi: 10.1016/j.combustflame.2010.09.007.
dc.relation.referencesR. Khatami, C. Stivers, and Y. A. Levendis, “Ignition characteristics of single coal particles from three different ranks in O 2/N 2 and O 2/CO 2 atmospheres,” Combust. Flame, vol. 159, no. 12, pp. 3554–3568, 2012, doi: 10.1016/j.combustflame.2012.06.019.
dc.relation.referencesJ. Ahn and H. Ju, “Combustion process of a Korean wood pellet at a low temperature,” Renew. Energy, vol. 145, pp. 391–398, 2020, doi: 10.1016/j.renene.2019.05.031.
dc.relation.referencesO. Senneca, F. Scala, R. Chirone, and P. Salatino, “Relevance of structure , fragmentation and reactivity of coal to combustion and oxy-combustion,” Fuel, 2016, doi: 10.1016/j.fuel.2016.11.034.
dc.relation.referencesJ. Cai et al., “Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk,” Renew. Sustain. Energy Rev., vol. 82, pp. 2705–2715, Feb. 2018, doi: 10.1016/J.RSER.2017.09.113.
dc.relation.referencesS. Hu, X. Ma, Y. Lin, Z. Yu, and S. Fang, “Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste,” Energy Convers. Manag., 2015, doi: 10.1016/j.enconman.2015.04.026.
dc.relation.referencesN. A. Soto, W. R. Machado, and D. L. López, “Determinación de los parámetros cinéticos en la pirólisis del pino ciprés,” Quim. Nova, vol. 33, no. 7, pp. 1500–1505, 2010, doi: 10.1590/S0100-40422010000700014.
dc.relation.referencesJ. W. Cumming, “Reactivity assessment of coals via a weighted mean activation energy,” Fuel, vol. 63, no. 10, pp. 1436–1440, 1984, doi: 10.1016/0016-2361(84)90353-3.
dc.relation.referencesH. L. Gallego-ocampo, “Reactivity of the co-combustion of coal-sludge,” pp. 91–102, 2015.
dc.relation.referencesJ. Györe and M. Ecet, “Calculation method based on DTG curve for evaluation of activation energy,” J. Therm. Anal., vol. 5, no. 2–3, pp. 299–305, 1973, doi: 10.1007/BF01950377.
dc.relation.referencesA. Magdziarz and M. Wilk, “Thermal characteristics of the combustion process of biomass and sewage sludge,” J. Therm. Anal. Calorim., vol. 114, no. 2, pp. 519–529, 2013, doi: 10.1007/s10973-012-2933-y.
dc.relation.referencesA.-A. S. T. Methods, “Standard Classification of Coals by Rank-D388-19,” 2002.
dc.relation.referencesJ. J. A. Flores and J. G. R. Quiñones, “Study of kinetics in thermogravimetric processes of lignocellulosic materials,” Maderas Cienc. y Tecnol., vol. 20, no. 2, pp. 221–238, 2018, doi: 10.4067/S0718-221X2018005002601.
dc.relation.referencesR. Tartarelli, M. Giorgini, P. Ghetti, and R. Belli, “DTG combustion behaviour of charcoals,” Fuel, vol. 66, no. 12, pp. 1737–1738, 1987, doi: 10.1016/0016-2361(87)90373-5
dc.relation.referencesE. Kastanaki and D. Vamvuka, “A comparative reactivity and kinetic study on the combustion of coal–biomass char blends,” Fuel, vol. 85, no. 9, pp. 1186–1193, Jun. 2006, doi: 10.1016/J.FUEL.2005.11.004.
dc.relation.referencesS. Taş and Y. Yürüm, “Co-firing of biomass with coals,” J. Therm. Anal. Calorim., vol. 107, no. 1, pp. 293–298, 2012, doi: 10.1007/s10973-010-1281-z
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalBiomasa
dc.subject.proposalBiomass
dc.subject.proposalPellets
dc.subject.proposalpellets
dc.subject.proposalCarbón
dc.subject.proposalcoal
dc.subject.proposalcombustion
dc.subject.proposalCombustión
dc.subject.proposalEnergía
dc.subject.proposalEnergy
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito