Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorZapata Jaramillo, Carlos Mario
dc.contributor.authorNoreña Cardona, Paola Andrea
dc.date.accessioned2020-08-27T22:59:27Z
dc.date.available2020-08-27T22:59:27Z
dc.date.issued2020-08-24
dc.identifier.citationNoreña, P.A. (2020). An Extension to Pre-conceptual Schemas for Refining Event Representation and Mathematical Notation. Tesis Doctoral, Universidad Nacional de Colombia, sede Medellín.
dc.identifier.citationNoreña, P.A. (2020). An Extension to Pre-conceptual Schemas for Refining Event Representation and Mathematical Notation. Ph.D. Thesis, Universidad Nacional de Colombia, Medellín campus.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78302
dc.description.abstractAn event is an occurrence within a particular software system or domain. Software and scientific models are representations of computing and natural systems. Such models have software and scientific components—domain knowledge elements. Scientists and business analysts use such models and their components for recognizing a domain, e.g., pre-conceptual schemas (PCS) used in software engineering. Scientific software domains (SSD) comprise fields in engineering and science, which are focused on developing and simulating scientific software systems for event or phenomenon research. Event-based software development has increased in scientific domains. Approaches to event-driven modeling are used from software/scientific modeling. Some advances have emerged in such approaches for integrating software and scientific components in science and engineering projects. However, scientists and business analysts lack a computational model for SSD in order to integrate both components in the same model. PCS notation includes software components based on structural and dynamic features, which allow for representing events and mathematical operations. Nonetheless, PCS lack scientific components for representing events in SSD. In this Ph.D. Thesis, we propose an extension to pre-conceptual schemas for refining event representation and mathematical notation. Such an extension comprises scientific components as graphical, linguistic, and mathematical structures for the sake of such refinement. We validate our proposal by using both an experimental process and a software application. Extension to PCS is included as a new work product for representing events in SSD. Therefore, the extended PCS are intended to be computing models for scientists and business analysts in scientific software development and simulation processes.
dc.description.abstractUn evento es una ocurrencia en un sistema de software o dominio particular. Los modelos científicos y de software son representaciones de sistemas informáticos o naturales. Esos modelos tienen componentes científicos y de software (elementos del conocimiento del dominio). Científicos y analistas de negocio usan estos modelos y sus componentes para reconocer un dominio. Un ejemplo de esos modelos son los esquemas preconceptuales (EP), que se usan en ingeniería de software. Los dominios de software científico comprenden áreas en ingeniería y ciencia que se enfocan en el desarrollo y simulación de sistemas de software científico para la investigación de eventos o fenómenos. El desarrollo de software dirigido por eventos se viene incrementando en dominios científicos. Enfoques de modelado basado en eventos se usan desde el modelado científico y el modelado de software. En estos enfoques surgen algunos avances para integrar componentes científicos y componentes de software en proyectos de ingeniería y ciencia. Sin embargo, científicos y analistas de negocio carecen de un modelo computacional para dominios de software científico que integre ambos componentes en el mismo modelo. La notación de los EP incluye componentes de software que se basan en características estructurales y dinámicas, los cuales permiten representar eventos y operaciones matemáticas. No obstante, los EP carecen de componentes científicos para representar eventos en dominios de software científico. En esta Tesis Doctoral se propone una extensión a los esquemas preconceptuales para el refinamiento en la representación de eventos y la notación matemática. Esta extensión integra componentes científicos (estructuras gráficas, lingüísticas y matemáticas) para lograr este refinamiento. También, se valida la propuesta mediante un proceso experimental y una aplicación de software. La extensión a los EP se incluye como un nuevo producto de trabajo para representar eventos en dominios de software científico. Por lo tanto, se pretende que los EP extendidos sean modelos de computación, para científicos y analistas de negocio en procesos de desarrollo y simulación de software científico.
dc.description.sponsorshipMinciencias
dc.format.extent115
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemas
dc.titleAn extension to pre-conceptual schemas for refining event representation and mathematical notation
dc.title.alternativeUna extensión a los esquemas preconceptuales para el refinamiento en la representación de eventos y la notación matemática
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellín
dc.contributor.researchgroupLenguajes Computacionales
dc.description.degreelevelDoctorado
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAmjad, A., Azam, F., Anwar, M. W., & Butt, W. H. (2017). Verification of Event-Driven Process Chain with Timed Automata and Time Petri Nets. In 9th IEEE-GCC Conference and Exhibition (GCCCE). IEEE. Manama, Bahrain, 1–6.
dc.relation.referencesArmas-Cervantes, A., Baldan, P., Dumas, M., & Garcia-Ba˜nuelos, L. (2016). Diagnosing Behavioral Differences between Business Process Models: An Approach based on Event Structures. Information Systems, 56:304–325.
dc.relation.referencesBalkesen, C., Dindar, N., Wetter, M., & Tatbul, N. (2013). RIP: Run-based Itra-query Parallelism for Scalable Complex Event Processing. In 7th ACM International Conference on Distributed Event-based Systems. ACM. Texas, US, 3–14.
dc.relation.referencesBaouya, A., Bennouar, D., Mohamed, O. A., & Ouchani, S. (2015). A Probabilistic and Timed Verification Approach of SysML State Machine Diagram. In 12th International Symposium on Programming and Systems (ISPS). IEEE. Algiers, Algeria, 1–9.
dc.relation.referencesBazhenova, E., Zerbato, F., Oliboni, B., & Weske, M. (2019). From BPMN process models to DMN decision models. Information Systems, 83:69–88.
dc.relation.referencesBazydlo, G., Adamski, M., & Stefanowicz, L. (2014). Translation UML diagrams into Verilog. In 7th International Conference on Human System Interactions (HSI). IEEE. Costa da Caparica, Portugal, 267–271.
dc.relation.referencesBeltrán-Saavedra, P. A. (2015). Precio del petróleo y el ajuste de las tasas de interés en las economías emergentes. Borradores de Economía, 901:1–37.
dc.relation.referencesBoubeta-Puig, J., D´ıaz, G., Valero, V., & Ortiz, G. (2019). Medit4CEP-CPN: An Approach for Complex Event Processing Modeling by Prioritized Colored Petri Nets. Information Systems, 81:267–289.
dc.relation.referencesBoubeta-Puig, J., Ortiz, G., & Medina-Bulo, I. (2015). Medit4CEP: A Model-Driven Solution for Real-time Decision Making in SOA 2.0. Knowledge-Based Systems, 89:97–112.
dc.relation.referencesBurcea, S., Cica, R., & Bojariu, R. (2016). Hail Climatology and Trends in Romania: 1961–2014. Monthly Weather Review, 144(11):4289–4299.
dc.relation.referencesCalle, J. M. (2016). Identificación de patrones de diseño para software científico a partir de esquemas preconceptuales. M.Sc. Thesis, Universidad Nacional de Colombia, Medellín Campus, Colombia.
dc.relation.referencesCampos-Rebelo, R., Costa, A., & Gomes, L. (2015). Event Life Time in Detection of Sequences of Events. In IEEE International Conference on Industrial Technology (ICIT). IEEE. Seville, Spain, 3144–3149.
dc.relation.referencesChaverra, J. J. (2011). Generación automática de prototipos funcionales a partir de esquemas preconceptuales. M.Sc. Thesis, Universidad Nacional de Colombia, Medellín Campus, Colombia.
dc.relation.referencesChen, W., Wang, J., Shi, D., & Shi, L. (2017). Event based State Estimation of Hidden Markov Models through a Gilbert–Elliott Channel. IEEE Transactions on Automatic Control, 62(7):3626–3633.
dc.relation.referencesChoi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F., & Sun, J. (2016). Doctor ai: Predicting Clinical Events via Recurrent neural networks. In Machine Learning for Healthcare Conference. Durham, US, 301–318.
dc.relation.referencesChonoles, M. J. (2017). “Behavior: State Machine Diagrams.” In OCUP 2 Certification Guide (313–342). ElSevier: Cambridge
dc.relation.referencesDa Silva, A. R. (2015). Model-Driven Engineering: A Survey Supported by the Unified Conceptual Model. Computer Languages, Systems & Structures, 43:139–155.
dc.relation.referencesDávid, I., Ráth, I., & Varró, D. (2018). Foundations for Streaming Model Transformations by Complex Event Processing. Software & Systems Modeling, 17(1):135–162.
dc.relation.referencesDayeh, M., Evans, N., Fuselier, S., Trevino, J., Ramaekers, J., Dwyer, J., Lucia, R., Rassoul, H., Kotovsky, D., Jordan, D., et al. (2015). First Images of Thunder: Acoustic Imaging of Triggered Lightning. Geophysical Research Letters, 42(14):6051–6057.
dc.relation.referencesDraghici, T., Negreanu, L., Bratu, O. G., Tincu, R., Socea, B., Iancu, M. A., Stanescu, A. M. A., & Diaconu, C. (2018). Liver Abnormalities in Patients with Heart Failure. Archives of the Balkan Medical Union, 53(1):76–81.
dc.relation.referencesEtzion, O., Fournier, F., Skarbovsky, I., & von Halle, B. (2016). A Model Driven Approach for Event Processing Applications. In 10th ACM International Conference on Distributed and Event-based Systems. ACM. Irvine, US, 81–92.
dc.relation.referencesEtzion, O., Niblett, P., & Luckham, D. (2011). Event Processing in Action. Stanford: Manning Publications Co
dc.relation.referencesFillmore, C. J. (1971). Some Problems for Case Grammar. Working Papers in Linguistics, 10:245–265.
dc.relation.referencesFillmore, C. J. (1977). The Case for Case Reopened in Syntax and Semantics. New York: Academic Press In.
dc.relation.referencesGao, F., Curry, E., & Bhiri, S. (2014). Complex Event Service Provision and Composition based on Event Pattern Matchmaking. In 8th ACM International Conference on Distributed Event-Based Systems. ACM. New York, US, 71–82.
dc.relation.referencesGarrudo, F. (1990). Enlace mediante casos entre inglés y español. Revista española de lingüística aplicada, 6:9–18.
dc.relation.referencesGilbert, J. K. (2004). Models and Modelling: Routes to more Authentic Science Education. International Journal of Science and Mathematics Education, 2(2):115–130.
dc.relation.referencesGiraldo, F. D., España, S., Giraldo, W. J., Pastor, O., & Krogstie, J. (2019). A Method to Evaluate Quality of Modelling Languages based on the Zachman Reference Taxonomy. Software Quality Journal, 27:1239–1269.
dc.relation.referencesGomaa, H. (2011). Software Modeling and Design: UML, Use Cases, Patterns, and Software Architectures. Cambridge: Cambridge University Press.
dc.relation.referencesGruber, J. S. (1965). Studies in Lexical Relations. Ph.D. Thesis, Massachusetts Institute of Technology, Boston, US.
dc.relation.referencesHaas, W. (1960). Linguistic Structures. Word, 16(2):251–276.
dc.relation.referencesHaisjackl, C., Soffer, P., Lim, S. Y., & Weber, B. (2018). How do humans inspect BPMN models: An Exploratory Study. Software & Systems Modeling, 17(2):655–673.
dc.relation.referencesHe, Y. (2016). Ontology-based Vaccine and Drug Adverse Event Representation and Theory-guided Systematic Causal Network Analysis toward Integrative Pharmacovigilance Research. Current Pharmacology Reports, 2(3):113–128.
dc.relation.referencesHeaton, D. & Carver, J. C. (2015). Claims about the Use of Software Engineering Practices in Science: A Systematic Literature Review. Information and Software Technology, 67:207–219.
dc.relation.referencesHeiko, A. (2012). Consensus Measurement in Delphi Studies: Review and Implications for Future Quality Assurance. Technological Forecasting and Social Change, 79(8):1525–1536.
dc.relation.referencesHerzberg, N., Meyer, A., & Weske, M. (2013). An Event Processing Platform for Business Process Management. In 17th IEEE International Enterprise Distributed Object Computing Conference. IEEE. Vancouver, Canada, 107–116.
dc.relation.referencesHoley, E. A., Feeley, J. L., Dixon, J., & Whittaker, V. J. (2007). An Exploration of the Use of Simple Statistics to Measure Consensus and Stability in Delphi Studies. BMC medical research methodology, 7(1):52.
dc.relation.referencesHowison, J., Deelman, E., McLennan, M. J., Ferreira da Silva, R., & Herbsleb, J. D. (2015). Understanding the Scientific Software Ecosystem and its Impact: Current and Future Measures. Research Evaluation, 24(4):454–470.
dc.relation.referencesJaramillo, C. M. & Esteban, P. V. (2006). Enseñanza y aprendizaje de las estructuras matemáticas a partir del modelo de van hiele. Revista Educación y pedagogía, 18:109–118.
dc.relation.referencesJohanson, A. & Hasselbring, W. (2018). Software Engineering for Computational Science: Past, Present, Future. Computing in Science & Engineering, 20(2):90–109.
dc.relation.referencesKanewala, U. & Bieman, J. M. (2014). Testing Scientific Software: A Systematic Literature Review. Information and software technology, 56(10):1219–1232.
dc.relation.referencesKelly, D. (2015). Scientific Software Development Viewed as Knowledge Acquisition: Towards Understanding the Development of Risk-averse Scientific Software. Journal of Systems and Software, 109:50–61.
dc.relation.referencesKoltsov, V. B., Sevryukova, E. A., Yakovenko, D. V., & Kondrutieva, O. V. (2018). Physical-Chemical Modelling of the Ingredients of Air in the System of Monitoring Modern Industrial City. In IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). IEEE. Moscow, Russia, 1902–1906.
dc.relation.referencesKuipers, J., Ueda, T., & Vermaseren, J. (2015). Code Optimization in Form. Computer Physics Communications, 189:1–19.
dc.relation.referencesKuznetsov, E. & Merzlikin, A. (2019). The Surface Wave on the Boundary between a Hyperbolic Magnetooptical Single-axis Metamaterial and an Isotropic Dielectric. Journal of Communications Technology and Electronics, 64(3):223–228.
dc.relation.referencesLee, S. & Hwang, I. (2015). Event-based State Estimation for Stochastic Hybrid Systems. IET Control Theory & Applications, 9(13):1973–1981.
dc.relation.referencesLi, Y. (2015). DRUMS: Domain-specific Requirements Modeling for Scientists. Ph.D. Thesis, Technische Universit¨at M¨unchen, M¨unchen, Germany
dc.relation.referencesLi, Y., Guzman, E., Tsiamoura, K., Schneider, F., & Bruegge, B. (2015). Automated Requirements Extraction for Scientific Software. Procedia Computer Science, 51:582–591.
dc.relation.referencesLiu, F. & Zhao, G. (2016). Monitoring of Software Project Progress base on Automata Theory. In 2nd Workshop on Advanced Research and Technology in Industry Applications (WARTIA-16). Atlantis Press. Dalian, China, 404–409
dc.relation.referencesLiu, W., Tan, Y., Ding, N., Zhang, Y., & Liu, Z. (2016). An Ontology Pattern for Emergency Event Modeling. In IEEE 14th International Conference on Dependable, Autonomic and Secure Computing (DASC/PiCom/DataCom/CyberSciTech). IEEE. Auckland, New Zeland, 151–156.
dc.relation.referencesLuckham, D. (2002). The Power of Events. An Introduction to Complex Event Processing in Distributed Enterprise Systems. Boston: Addison-Wesley.
dc.relation.referencesLuckham, D. (2011). Event Processing for Business: Organizing the Real-time Enterprise. New Jersey: John Wiley & Sons.
dc.relation.referencesLuo, J. & Zhou, M. (2016). Petri-Net Controller Synthesis for Partially Controllable and Observable Discrete Event Systems. IEEE Transactions on Automatic Control, 62(3):1301–1313.
dc.relation.referencesMeng, M., Ping, W., Chao-Hsien, C, & Ling, L. (2014). Efficient Multipattern Event Processing over High-speed Train Data Streams. IEEE Internet of Things Journal, 2(4):295–309.
dc.relation.referencesMerkens, J.-L., Reimann, L., Hinkel, J., & Vafeidis, A. T. (2016). Gridded Population Projections for the Coastal Zone under the Shared Socioeconomic Pathways. Global and Planetary Change, 145:57–66.
dc.relation.referencesMezerins, A. (2014). Experimental Studies of Analog Signal Digital Representing based on a High Performance Event Timer. In 14th Biennial Baltic Electronic Conference (BEC). IEEE. Tallinn, Estonia, 169–172.
dc.relation.referencesMolaei, S. M. & Keyvanpour, M. R. (2015). An Analytical Review for Event Prediction System on Time Series. In 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA). IEEE. Rasht, Iran, 1–6.
dc.relation.referencesMoreda, P. (2008). Los roles semánticos en la tecnología del lenguaje humano: anotación y aplicación. Ph.D. Thesis, Universidad de Alicante, Alicante, España.
dc.relation.referencesNanthaamornphong, A. & Carver, J. C. (2017). Test-Driven Development in Scientific Software: A Survey. Software Quality Journal, 25(2):343–372.
dc.relation.referencesNavas, J. (2017). Modelos matemáticos discretos en la empresa. España: Universidad de Jaén.
dc.relation.referencesNoreña, P. A. (2014). Un mecanismo de consistencia en los eventos disparador y de resultado para los artefactos de UNC-Method. M.Sc. Thesis, Universidad Nacional de Colombia, Medellín Campus, Colombia
dc.relation.referencesNoreña, P. A. (2018). An Extension to Pre-conceptual Schemas for Refining Event Representation and Mathematical Notation. In XXI Ibero-American Conference on Software: CIbSE 2018. Bogot´a, Colombia, (45)589–596.
dc.relation.referencesNoreña, P. A., Torres, D. M., & Zapata, C. M. (2017). “Interoperabilidad dinámica entre sistemas basados en internet de las cosas: una representación a partir de esquemas preconceptuales”. In Industria 4.0 Escenario e impacto (159–173). Medellín: Sello Editorial Universidad de Medellín.
dc.relation.referencesNoreña, P. A. & Zapata, C. M. (2018a). Una representación basada en esquemas preconceptuales de eventos determinísticos y aleatorios tipo señal desde dominios de software científico. Research in Computing Science, 147(2):207–220.
dc.relation.referencesNoreña, P. A. & Zapata, C. M. (2018b). A Game for Learning Event-driven Architecture: Pre-conceptual-schema-based Pedagogical Strategy. Developments in Business Simulation and Experiential Learning, 45:24–37.
dc.relation.referencesNoreña, P. A. & Zapata, C. M. (2018c). A Pre-conceptual-schema-based Representation of Time Events Coming from Scientific Software Domain. In 22nd World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2018. Orlando, US, 53–58.
dc.relation.referencesNoreña, P. A., Zapata, C. M., & Villamizar, A. E. (2018). “Representación de eventos a partir de estructuras lingúíısticas basadas en roles semánticos: una extensión al esquema preconceptual”. In Investigaci´on e Innovaci´on, v.2 (69–79). Medellín: Publicar T, Sello editorial Tecnológico de Antioquia.
dc.relation.referencesNoreña, P. A. & Zapata, C. M. (2019). Business Simulation by using Events from Pre-conceptual Schemas. Developments in Business Simulation and Experiential Learning, 46:258–263.
dc.relation.referencesNoreña, P. A., Zapata, C. M., & Villamizar, A. E. (2019). Representing Chemical Events by using Mathematical Notation from Pre-conceptual Schemas. IEEE Latin America Transactions, 17(01):46–53
dc.relation.referencesObi, K., Ramsey, M., Hinton, A., Stanich, P., Gray II, D. M., Krishna, S. G., El-Dika, S., & Hussan, H. (2018). Insights into Insulin Resistance, Lifestyle, and Anthropometric Measures of Patients with Prior Colorectal Cancer compared to Controls: A National Health and Nutrition Examination Survey (nhanes) Study. Current Problems in Cancer, 42(2):276–285.
dc.relation.referencesOMG. (2011). Superestructure 2.4.1. OMG, Object Management Group. http://www.omg.org/spec/UML/2.4.1.
dc.relation.referencesOMG. (2014a). Business Process Model and Notation 2.0. OMG, Object Management Group. https://www.omg.org/spec/BPMN/About-BPMN/.
dc.relation.referencesOMG. (2014b). Model Driven Architecture (MDA) Guide rev. 2.0. OMG, Object Management Group. https://www.omg.org/cgi-bin/doc?ormsc/14-06-01.
dc.relation.referencesOMG. (2015). Superstructure 2.5. OMG, Object Management Group. http://www.omg.org/spec/UML/2.5/.
dc.relation.referencesPaddock, M. & Chapin, J. (2016). Bleeding diatheses: Approach to the Patient who Bleeds or has Abnormal Coagulation. Primary Care: Clinics in Office Practice, 43(4):637–650.
dc.relation.referencesPatri, O. P., Sorathia, V. S., Panangadan, A. V., & Prasanna, V. (2014). The Process-oriented Event Model (PoEM): A Conceptual Model for Industrial Events. In 8th ACM International Conference on Distributed Event-Based Systems. ACM. Mumbai, India, 154–165.
dc.relation.referencesPayne, T. E. (1997). Describing Morphosyntax: A Guide for Field Linguists. Cambridge: Cambridge University Press.
dc.relation.referencesPozo, J. I. (2006). Teor´ıas cognitivas del aprendizaje. Madrid: Ediciones Morata.
dc.relation.referencesRavikumar, G., Khaparde, S. A., & Joshi, R. K. (2016). Integration of Process Model and CIM to represent Events and Chronology in Power System Processes. IEEE Systems Journal, 12(1):149–160.
dc.relation.referencesReinartz, C., Metzger, A., & Pohl, K. (2015). Model-based Verification of Event-driven Business Processes. In 9th ACM International Conference on Distributed Event-Based Systems. ACM. Oslo, Norway, 1–9.
dc.relation.referencesSahoo, A., Xu, H., & Jagannathan, S. (2015). Adaptive Neural network-based Event-Triggered Control of Single-input Single-output Nonlinear Discrete-time Systems. IEEE Transactions on Neural Networks and Learning Systems, 27(1):151–164.
dc.relation.referencesSarno, R., Wibowo, W. A., Solichah, A., et al. (2015). Time based Discovery of Parallel Business Processes. In International Conference on Computer, Control, Informatics and its Applications (IC3INA). IEEE. Bandung, Indonesia, 28–33.
dc.relation.referencesShekarpour, S., Alshargi, F., Thirunaravan, K., Shalin, V. L., & Sheth, A. (2019). CEVO: Comprehensive EVent Ontology Enhancing Cognitive Annotation on Relations. In IEEE 13th International Conference on Semantic Computing (ICSC). IEEE. Newport Beach, US, 385–391.
dc.relation.referencesSudars, K., Bilinskis, I., Boole, E., & Vedin, V. (2015). Signal Analog-to-event-to-digital Converting based on Periodic Sampling and Precise Event Timing. In 25th International Conference Radioelektronika. IEEE. Pardubice, Czech Republic, 133–136.
dc.relation.referencesTaiwe, G., Moto, F., Pale, S., Kandeda, A., Dawe, A., Kouemou, N., Ayissi, E., Ngoupaye, G., Njapdounke, J., Nkantchoua, G., et al. (2016). Extracts of Feretia Apodanthera del. demonstrated Anticonvulsant Activities against Seizures induced by Chemicals and Maximal electroshock. Epilepsy Research, 127:30–39.
dc.relation.referencesTarun, M., Kumar, V., Kumar, S., Jajoo, M. U., Rahman, S. U., & Sengupta, J. (2017). GPS and GSM based Rail Signaling and Tracking System. In 4th International Conference on Control, Decision and Information Technologies (CoDIT). IEEE. Barcelona, Spain, 0500–0504.
dc.relation.referencesTesniére, L. (1965). Eléments de Syntaxe Structurale . Paris: Klincksieck.
dc.relation.referencesTreur, J. (2016). Dynamic Modeling based on a Temporal–causal Network Modeling Approach. Biologically Inspired Cognitive Architectures, 16:131–168.
dc.relation.referencesVásquez, A. S. & Sandova, E. L. (2017). Una comparación cualitativa de la dinámica de sistemas, la simulación de eventos discretos y la simulación basada en agentes. Ingeniería Industrial, 35:27–52.
dc.relation.referencesVelásquez, S. (2019). Un modelo ejecutable para la simulación multi-física de procesos de recobro mejorado en yacimientos de petróleo basado en esquemas preconceptuales. M.Sc. Thesis, Universidad Nacional de Colombia, Medellín Campus, Colombia.
dc.relation.referencesVose, R., Easterling, D. R., Kunkel, K., & Wehner, M. (2017). Temperature changes in the United States. Climate Science Special Report: A Sustained Assessment Activity of the U.S. Global Change Research Program, 267–300.
dc.relation.referencesWang, H., Lu, S., Zhang, C., Wang, Q., & Xu, F. (2016). Timing-IdeaGraph: A directed Cognition Graph Approach for Decision Making based on Temporal Event Sequences. In IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE. Hsinchu, Taiwan, 322–326.
dc.relation.referencesWang, J., Chen, M., Shen, H., Park, J. H., & Wu, Z.-G. (2017). A Markov Jump Model Approach to Reliable Event-triggered retarded Dynamic output Feedback H∞ Control for Networked Systems. Nonlinear Analysis: Hybrid Systems, 26:137–150.
dc.relation.referencesWang, Y., Gao, H., & Chen, G. (2018). Predictive Complex Event Processing based on Evolving Bayesian Networks. Pattern Recognition Letters, 105:207–216.
dc.relation.referencesWhite, R. & McCausland, W. (2016). Volcano-tectonic Earthquakes: A New Tool for Estimating Intrusive volumes and Forecasting Eruptions. Journal of Volcanology and Geothermal Research, 309:139–155.
dc.relation.referencesWieringa, R. J. (2014). Design Science Methodology for Information Systems and Software Engineering. New York: Springer.
dc.relation.referencesWiese, I. S., Polato, I., & Pinto, G. (2019). Naming the Pain in Developing Scientific Software. IEEE Software. DOI: 10.1109/MS.2019.2899838
dc.relation.referencesWilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M., Guy, R. T., Haddock, S. H., Huff, K. D., Mitchell, I. M., Plumbley, M. D., et al. (2014). Best Practices for Scientific Computing. PLoS biology, 12(1):e1001745.
dc.relation.referencesWohlin, C., Runeson, P., H¨ost, M., Ohlsson, M. C., Regnell, B., & Wessl´en, A. (2012). Experimentation in Software Engineering. New York: Springer.
dc.relation.referencesWonham, W., Cai, K., & Rudie, K. (2018). Supervisory Control of Discrete-Event Systems: A Brief History. Annual Reviews in Control, 45:250–256.
dc.relation.referencesWu, T. H., Pang, G. K.-H., & Kwong, E. W.-Y. (2014). Predicting Systolic Blood Pressure using Machine Learning. In 7th International Conference on Information and Automation for Sustainability. IEEE. Colombo, Sri Lanka, 1–6.
dc.relation.referencesXia, H., Jiao, J., & Dong, J. (2019). Extend UML based Timeliness Modeling Approach for Complex System. In International Conference on Mathematics, Modeling, Simulation and Statistics Application (MMSSA 2018). Atlantis Press. Shanghai, China, 1–6.
dc.relation.referencesXia, W., Junpeng, M., et al. (2014). Research on Flexible Business Process of Bank Modeling based on EPC. In International Conference on Management of e-Commerce and e-Government. IEEE. Shanghai, China, 54–60.
dc.relation.referencesXue, D. & El-Farra, N. H. (2016). Output Feedback-based event-triggered Control of distributed Processes with Communication Constraints. In IEEE 55th Conference on Decision and Control (CDC). IEEE. Las Vegas, US, 4296–4301.
dc.relation.referencesXue, S., Wu, B., & Chen, J. (2013). LightEPC: A Formal Approach for Modeling personalized Lightweight Event-Driven Business Process. In IEEE International Conference on Services Computing. IEEE. Santa Clara, US, 1–8.
dc.relation.referencesZapata, C. M. (2007). Definición de un esquema preconceptual para la obtención automática de esquemas conceptuales de UML. Ph.D. Thesis, Universidad Nacional de Colombia, Medellín Campus, Colombia.
dc.relation.referencesZapata, C. M. (2012). The UNC-Method Revisited: Elements of the New Approach. Saarbrücken: Lambert Academic Publishing.
dc.relation.referencesZapata, C. M., Noreña, P. A., & Granados, N. E. (2013). Representación de eventos disparadores y de resultado en el grafo de interacción de eventos. Ingenierías USBMed, 4(2):23–32.
dc.relation.referencesZapata, C. M., Noreña, P. A., & Vargas, F. A. (2014). The Event Interaction Game: Understanding Events in the Software Development Context. Developments in Business Simulation and Experiential Learning, 41:256–262.
dc.relation.referencesZapata-Tamayo, J. S. (2019). Generación semiautomática de código PL/SQL a partir de representaciones de eventos basadas en esquemas preconceptuales. M.Sc. Thesis, Universidad Nacional de Colombia, Medellín Campus, Colombia.
dc.relation.referencesZapata-Tamayo, J. S. & Zapata-Jaramillo, C. M. (2018). Pre-conceptual schemas: Ten Years of Lessons Learned about Software Engineering Teaching. Developments in Business Simulation and Experiential Learning, 45:250–257.
dc.relation.referencesZhang, K. & Zhang, L. (2016). Observability of Boolean Control Networks: A Unified Approach based on the Theories of Finite Automata and Formal Languages. IEEE Transactions on Automatic Control, 61(9):2733–2738.
dc.relation.referencesZhang, Y., Liu, W., Ding, N., Wang, X., & Tan, Y. (2015). An Event Ontology Description Framework based on SKOS. In IEEE 12th International Conference on Ubiquitous Intelligence and Computing. IEEE. Bali, Indonesia, 1774–1779.
dc.relation.referencesZhao, X.-J., Yang, Y.-Z., Zheng, Y.-J., Wang, S.-C., Gu, H.-M., Pan, Y., Wang, S.-J., Xu, H.-J., & Kong, L.-D. (2017). Magnesium isoglycyrrhizinate blocks Fructose-induced hepatic NF-κb/NLRP3 Inflammasome Activation and Lipid metabolism disorder. European Journal of Pharmacology, 809:141–150.
dc.relation.referencesZhong, X. & He, H. (2016). An Event-triggered ADP Control Approach for Continuous-time System with Unknown Internal States. IEEE transactions on cybernetics, 47(3):683–694.
dc.relation.referencesZhu, L. (2018). Ontology Pattern of Trajectory Anonymity for Query events. In International Conference on Sensor Networks and Signal Processing (SNSP). IEEE. Xi‘an, China, 457–461.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalIngeniería de software
dc.subject.proposalSoftware Engineering
dc.subject.proposalPre-conceptual Schemas
dc.subject.proposalDominios de software científico
dc.subject.proposalEsquemas preconceptuales
dc.subject.proposalSoftware Scientific Domains
dc.subject.proposalRepresentación de eventos
dc.subject.proposalComputacional Science and Engineering projects
dc.subject.proposalSistemas de software científico
dc.subject.proposalEvent Representation
dc.subject.proposalMathematical notation
dc.subject.proposalNotación matemática
dc.subject.proposalSoftware Modeling
dc.subject.proposalModelado de software
dc.subject.proposalScientific Software Systems
dc.subject.proposalSimulación
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito