Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorOsorio Londoño, Gustavo Adolfo
dc.contributor.advisorMontes Castrillón, Nubia Liliana
dc.contributor.authorTamayo Monsalve, Manuel Alejandro
dc.date.accessioned2020-08-28T19:03:47Z
dc.date.available2020-08-28T19:03:47Z
dc.date.issued2020
dc.identifier.citationM. A. Tamayo Monsalve, "Diseño de un sistema de adquisición de imágenes multiespectrales basado en iluminación LED de potencia de ancho de banda estrecho", PhD thesis,Universidad Nacional de Colombia sede Manizales, 2020.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78316
dc.description.abstractMultispectral imaging systems using narrow bandwidth power LEDs have become a feasible solution for a wide range of applications. Compared to traditional RGB systems, they increase the feature space according to the number of wavelengths maintaining the range in price and acquisition time. On the other hand, compared to a hyperspectral system, the acquisition time is shorter, it is simpler to implement, but it sacrifices spectral resolution. This document presents the design and construction of a multispectral system based on LED illumination for color measurement from spectral information. Similarly, it seeks to fill the gap in the literature by presenting the detailed design of the light controller, the calibration process and the characterization as an instrument, as well as a correlation analysis against a high performance system used in fruit quality control. A study case is also presented on cherry coffee fruits, in order to determine their color characteristics and establish a possible application in quality control. The system captures multispectral images with 15 different wavelengths between 410 and 960 nm, and can capture up to 8 spectral images per second at 120fps. It has an LED illumination crown that calibrates the amount of light emitted through a digital modulation, and synchronizes the camera's and light's triggers to generate a strobe effect. Among the main findings in the characterization, the precision with measurement variation of less than 10% (σ^2< 0.1) and an accuracy with color distance Δ E less than 2% after a color correction process. Also a Pearson's correlation index of over 80% (ρ > 0.8) against to the hyperspectral system and complete separability of the 24 colorchecker used as a reference object. The results in coffee shows more discriminating information to separate the different fruits in 560, 620, 720 and 840nm. Additionally, we presents an analysis of the information provided by the near infrared band, in which a correlation is found between the loss of water in the fruit and the reflectance in the NIR band. Finally, we explore a color sorting with an efficiency higher than 93% in order to open the possibilities for a quality control system in coffee fruits with speed and real time restrictions.
dc.description.abstractLos sistemas de imágenes multiespectrales que utilizan LED de potencia de ancho de banda estrecho se han convertido en una solución factible para una amplia gama de aplicaciones. En comparación con los sistemas RGB tradicionales, aumentan el espacio de características según el número de longitudes de onda manteniendo el rango en precio y tiempo de adquisición. Por otra parte si se comparan con sistemas hiperespectrales, el tiempo de adquisición es menor, son más simples de implementar, pero sacrifican resolución espectral. En este documento, se presenta el diseño y la construcción de un sistema multiespectral basado en iluminación LED para medición de color a partir de la información espectral. De igual forma se busca llenar el vacío existente en la literatura al presentar el diseño detallado del controlador de luz, el proceso de calibración y la caracterización como un instrumento de medida, así como un análisis de correlación frente a un sistema de altas prestaciones utilizado en el control de calidad de frutas. También se presenta un caso de estudio en frutos de café en cereza, con el fin de determinar sus características de color y establecer una posible aplicación en control de calidad. El sistema captura imágenes multiespectrales con 15 longitudes de onda diferentes entre los 410 y los 960nm, y puede llegar a capturar hasta 8 imágenes espectrales por segundo. Cuenta con una corona de iluminación LED que calibra la cantidad de luz emitida en cada longitud de onda por medio de una modulación digital, y genera un efecto estroboscópico al sincronizar los disparos de la cámara y la luz. Dentro de los principales hallazgos en la caracterización se muestra la precisión con una variación en la medida inferior al 10% (σ^2< 0.1) y una exactitud con distancia de color ΔE inferior al 2% luego de un proceso de corrección de color. También se muestra un índice de correlación de Pearson por encima de 80% (ρ > 0.8) respecto al sistema hiperespectral y se presenta una completa separabilidad de los 24 colores del colorchecker usado como objeto de referencia. Los resultados en café destacan que las longitudes de onda 560, 620, 720 y 840 nm aportan mayor información discriminante respecto al color. Adicionalmente, se presenta un análisis de la información entregada por la banda del infrarrojo cercano, en el cual se encuentra una correlación entre la pérdida de agua en el fruto y la reflectancia en dicha banda. Por último se explora una clasificación por color con una eficiencia superior al 93% con el fin de abrir las posibilidades a un sistema de control de calidad en frutos de café con restricciones de velocidad y tiempo real.
dc.format.extent131
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc530 - Física::537 - Electricidad y electrónica
dc.titleDiseño de un sistema de adquisición de imágenes multiespectrales basado en iluminación LED de potencia de ancho de banda estrecho
dc.title.alternativeDesign of a multispectral image acquisition system based on narrow bandwidth power led
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalTesis presentada como requisito parcial para optar al título de: Doctor en Ingeniería - Línea Automática. -- Línea de Investigación: Procesamiento Digital de Imágenes, Diseño Electrónico.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática
dc.contributor.researchgroupPercepción y Control Inteligente (PCI)
dc.description.degreelevelDoctorado
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónica
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesS. P. Brumby, J. P. Theiler, J. J. Bloch, N. R. Harvey, S. J. Perkins, J. J. Szymanski, and A. C. Young, "Evolving land cover classification algorithms for multispectral and multitemporal imagery," in Imaging Spectrometry VII, vol. 4480, pp. 120-129, International Society for Optics and Photonics, 2002.
dc.relation.referencesL. Biehl and D. Landgrebe, "Multispec- tool for multispectral-hyperspectral image data analysis", Computers & Geosciences, vol. 28, no. 10, pp. 1153-1159, 2002.
dc.relation.referencesR. Rud, M. Shoshany, V. Alchanatis, and Y. Cohen, "Application of spectral features' ratios for improving classification in partially calibrated hyperspectral imagery: a case study of separating mediterranean vegetation species", Journal of Real-Time Image Processing, vol. 1, no. 2, pp. 143-152, 2006.
dc.relation.referencesS. Bostan, M. A. Ortak, C. Tuna, A. Akoguz, E. Sertel, and B. B. Ustundag, "Comparison of classification accuracy of co-located hyperspectral & multispectral images for agricultural purposes", in 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), pp. 1-4, IEEE, 2016.
dc.relation.referencesF. A. Kruse, L. L. Richardson, and V. G. Ambrosia, "Techniques developed for geologic analysis of hyperspectral data applied to near-shore hyperspectral ocean data", in Presented at the Fourth International Conference on Remote Sensing for Marine and Coastal Environments, vol. 17, p. 19, 1997.
dc.relation.referencesA. J. Tchekmedyian, M. Pellisé, and R. Sáenz, "Imágenes de banda estrecha o narrow band imaging (nbi): una nueva era en endoscopía digestiva", Revista Médica del Uruguay, vol. 24, no. 1, pp. 42-49, 2008.
dc.relation.referencesF. S. Assirati, C. L. Hashimoto, R. A. Dib, L. H. S. Fontes, and T. Navarro-Rodriguez, "High definition endoscopy and 'narrow band imagin' the diagnosis of gastroesophageal reflux disease", ABCD. Arquivos Brasileiros de Cirurgia Digestiva (São Paulo), vol. 27, no. 1, pp. 59-65, 2014.
dc.relation.referencesP. Lukes, M. Zabrodsky, J. Plzak, M. Chovanec, J. Betka, E. Foltynova, and J. Betka, "Narrow band imaging (nbi)-endoscopic method for detection of head and neck cancer", Endoscopy, no. 5, pp. 75-87, 2013.
dc.relation.referencesH. Erives and N. B. Targhetta, "Implementation of a 3-d hyperspectral instrument for skin imaging applications", IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 3, pp. 631-638, 2009.
dc.relation.referencesY.-J. Kim and G. Yoon, "Prediction of glucose in whole blood by near-infrared spectroscopy: influence of wavelength region, preprocessing, and hemoglobin concentration", Journal of biomedical optics, vol. 11, no. 4, p. 041128, 2006.
dc.relation.referencesT. Vitorino, A. Casini, C. Cucci, A. Gebejesje, J. Hiltunen, M. Hauta-Kasari, M. Picollo, and L. Stefani, "Accuracy in colour reproduction: using a colorchecker chart to assess the usefulness and comparability of data acquired with two hyper-spectral systems", in International Workshop on Computational Color Imaging, pp. 225-235, Springer, 2015.
dc.relation.referencesA. Cosentino, "Identification of pigments by multispectral imaging; a flowchart method", Heritage Science, vol. 2, no. 1, p. 8, 2014.
dc.relation.referencesD. Comelli, G. Valentini, A. Nevin, A. Farina, L. Toniolo, and R. Cubeddu, "A portable uv-fluorescence multispectral imaging system for the analysis of painted surfaces", Review of Scientific Instruments, vol. 79, no. 8, p. 086112, 2008.
dc.relation.referencesY. H. El-Sharkawy and S. Elbasuney, "Design and implementation of novel hyperspectral imaging for dental carious early detection using laser induced fluorescence", Photodiagnosis and photodynamic therapy, vol. 24, pp. 166-178, 2018.
dc.relation.referencesC. Odaira, S. Itoh, and K. Ishibashi, "Clinical evaluation of a dental color analysis system: the crystaleye spectrophotometer®", Journal of prosthodontic research, vol. 55, no. 4, pp. 199-205, 2011.
dc.relation.referencesM. F. Carlsohn, "Spectral image processing in real-time", Journal of Real-Time Image Processing, vol. 1, no. 1, pp. 25-32, 2006.
dc.relation.referencesR. Leitner, H. Mairer, and A. Kercek, "Real-time classification of polymers with nir spectral imaging and blob analysis", Real-Time Imaging, vol. 9, no. 4, pp. 245-251, 2003.
dc.relation.referencesP. Tatzer, M. Wolf, and T. Panner, "Industrial application for inline material sorting using hyperspectral imaging in the nir range", Real-Time Imaging, vol. 11, no. 2, pp. 99-107, 2005.
dc.relation.referencesJ. Blasco, N. Aleixos, S. Cubero, J. Gómez-Sanchís, and E. Moltó, "Automatic sorting of satsuma (citrus unshiu) segments using computer vision and morphological features", Computers and electronics in agriculture, vol. 66, no. 1, pp. 1-8, 2009.
dc.relation.referencesS. Cubero, M. P. Diago, J. Blasco, J. Tardaguila, B. Millan, and N. Aleixos, "A new method for pedicel/peduncle detection and size assessment of grapevine berries and other fruits by image analysis", Biosystems engineering, vol. 117, pp. 62-72, 2014.
dc.relation.referencesR. Lu, "Multispectral imaging for predicting firmness and soluble solids content of apple fruit", Postharvest Biology and Technology, vol. 31, no. 2, pp. 147-157, 2004.
dc.relation.referencesE. Brach, P. Poirier, R. Desjardins, and D. Lord, "Multispectral radiometer to measure crop canopy characteristics", Review of Scientific Instruments, vol. 54, no. 4, pp. 493- 500, 1983.
dc.relation.referencesL. Lleó, P. Barreiro, M. Ruiz-Altisent, and A. Herrero, "Multispectral images of peach related to firmness and maturity at harvest", Journal of Food Engineering, vol. 93, no. 2, pp. 229-235, 2009.
dc.relation.referencesN. Kobayashi and T. Okabe, "Separating reflection components in images under multispectral and multidirectional light sources", in 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 3210-3215, IEEE, 2016.
dc.relation.referencesJ. A. Herrera Ramírez, "Diseño e implementación de un sistema multiespectral en el rango ultravioleta, visible e infrarrojo: aplicación al estudio y conservación de obras de arte", Universitat Politécnica de Catalunya, 2014.
dc.relation.referencesB. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huo, H. Xiao, R. G. May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer", Optical engineering, vol. 42, pp. 3165-3171, 2003.
dc.relation.referencesA. Yan, W. Zhenye, Z. Tao, D. Keyan, and L. Xinhang, "Development status and aberration overview of micro spectrometer with czerny-turner structure", in 2016 IEEE Optoelectronics Global Conference (OGC), pp. 1-3, IEEE, 2016.
dc.relation.referencesH. Imani, S. Golmohammadi, A. Rostami, and K. Abbasian, "Resolution improvement in high-speed fiber-optic spectrometers using photonic crystal fibers", in International Conference On Photonics 2010, pp. 1-5, IEEE, 2010.
dc.relation.referencesM. Parmar, F. Imai, S. H. Park, and J. Farrell, "A database of high dynamic range visible and near-infrared multispectral images", in Digital photography iv, vol. 6817, p. 68170N, International Society for Optics and Photonics, 2008.
dc.relation.referencesN. Nakajima and A. Taguchi, "A novel color image processing scheme in hsi color space with negative image processing", in 2014 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), pp. 029-033, IEEE, 2014.
dc.relation.referencesM. Rai, "Thermal imaging system and its real time applications: a survey", Journal of Engineering Technology, vol. 62, 06 2018.
dc.relation.referencesA. K. Krishnan, P. McGarey, and S. S. J. F. Bell, "Nir-cam-development of a near infrared camera", in IEEE International Symposium on Robotic and Sensors Environments (ROSE), 2013.
dc.relation.referencesA. de la Casa, G. Ovando, L. Bressanini, and J. Martinez, "Empleo del ndvi de una cámara digital modificada para estimar la cobertura del cultivo de papa bajo distintas condiciones de fertilización nitrogenada", AgriScientia, vol. 33, pp. 75-88, 12 2016.
dc.relation.referencesG. ElMasry and D.-w. Sun, "Principles of hyperspectral imaging technology", in Hyperspectral imaging for food quality analysis and control, pp. 3-43, Elsevier, 2010.
dc.relation.referencesM. Parmar, S. Lansel, and B. A.Wandell, "Spatio-spectral reconstruction of the multispectral datacube using sparse recovery", in 2008 15th IEEE International Conference on Image Processing, pp. 473-476, IEEE, 2008.
dc.relation.referencesD. Lorente, N. Aleixos, J. Gómez-Sanchis, S. Cubero, O. L. García-Navarrete, and J. Blasco, "Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment", Food and Bioprocess Technology, vol. 5, no. 4, pp. 1121- 1142, 2012.
dc.relation.referencesJ. Beeckman, K. Neyts, and P. J. Vanbrabant, "Liquid-crystal photonic applications", Optical Engineering, vol. 50, no. 8, p. 081202, 2011.
dc.relation.referencesJ. Vila-Frances, J. Calpe-Maravilla, L. Gomez-Chova, and J. Amoros-Lopez, "Design of a configurable multispectral imaging system based on an aotf", IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 58, no. 1, pp. 259-262, 2011.
dc.relation.referencesR. Shrestha and J. Y. Hardeberg, "How are led illumination based multispectral imaging systems influenced by different factors?", in International Conference on Image and Signal Processing, pp. 61-71, Springer, 2014.
dc.relation.referencesD. Lorente, N. Aleixos, J. Gómez-Sanchis, S. Cubero, and J. Blasco, "Selection of optimal wavelength features for decay detection in citrus fruit using the roc curve and neural networks", Food and Bioprocess Technology, vol. 6, no. 2, pp. 530-541, 2013.
dc.relation.references"Sistema de visión de fácil programación serie cv-x. keyence mexico s.a. de c.v." <https://www.keyence.com.mx/products/vision/vision-sys/cv-x100/> . Accessed: 2020-08-19.
dc.relation.references"Multispectral cameras cms series visible to near ir ranges. silios technologies rue gaston imbert prolongée. france." <https://www.silios.com/cms-series>. Accessed: 2020- 08-19.
dc.relation.referencesY. Kanzawa, Y. Kimura, and T. Naito, "Human skin detection by visible and nearinfrared imaging", in IAPR Conference on Machine Vision Applications, vol. 12, pp. 14-22, Citeseer, 2011.
dc.relation.referencesP. Colantoni, R. Pillay, C. Lahanier, and D. Pitzalis, "Analysis of multispectral images of paintings", in 2006 14th European Signal Processing Conference, pp. 1-5, IEEE, 2006.
dc.relation.referencesD. Ghimire and J. Lee, "A lighting insensitive face detection method on color images", in 2012 Spring Congress on Engineering and Technology, pp. 1-4, IEEE, 2012.
dc.relation.referencesH.-n. Li, J. Feng, W.-p. Yang, L. Wang, H.-b. Xu, P.-f. Cao, and J.-j. Duan, "Multispectral imaging using led illuminations", in 2012 5th International Congress on Image and Signal Processing, pp. 538-542, IEEE, 2012.
dc.relation.referencesA. Paviotti and D. A. Forsyth, "A lightness recovery algorithm for the multispectral acquisition of frescoed environments", in 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 970-977, IEEE, 2009.
dc.relation.referencesF. Wu, S. Li, X. Zhang, and W. Ye, "A design method for leds arrays structure illumination", Journal of Display Technology, vol. 12, no. 10, pp. 1177-1184, 2016.
dc.relation.referencesS. Shirmohammadi and A. Ferrero, "Camera as the instrument: the rising trend of vision based measurement", IEEE Instrumentation & Measurement Magazine, vol. 17, no. 3, pp. 41-47, 2014.
dc.relation.referencesH. Yang, J. W. Bergmans, T. C. Schenk, J.-P. M. Linnartz, and R. Rietman, "Uniform illumination rendering using an array of leds: a signal processing perspective", IEEE transactions on signal processing, vol. 57, no. 3, pp. 1044-1057, 2008.
dc.relation.referencesI. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, "Designing light-emitting diode arrays for uniform near-field irradiance", Applied optics, vol. 45, no. 10, pp. 2265-2272, 2006.
dc.relation.referencesE. Samani, V. Gupta, and S. Raman, "Flash/no-flash image fusion using dictionary learning", in 2015 Fifth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), pp. 1-4, IEEE, 2015.
dc.relation.referencesA. Pourreza, H. Pourreza, and M. Hossein-Aghkhani, "An automatic foreign materials detection of barberries using red-free image processing", in Third International Workshop on Advanced Computational Intelligence, pp. 517-521, IEEE, 2010.
dc.relation.referencesM.-C. Chuang, J.-N. Hwang, K. Williams, and R. Towler, "Automatic fish segmentation via double local thresholding for trawl-based underwater camera systems", in 2011 18th IEEE International Conference on Image Processing, pp. 3145-3148, IEEE, 2011
dc.relation.referencesG. Polder, Spectral imaging for measuring biochemicals in plant material. PhD thesis, Delft University of Technology, Faculty of Applied Sciences, 2004.
dc.relation.referencesB. Bennedsen and D. Peterson, "Performance of a system for apple surface defect identification in near-infrared images", Biosystems engineering, vol. 90, no. 4, pp. 419- 431, 2005.
dc.relation.referencesO. Kleynen, V. Leemans, and M.-F. Destain, "Development of a multi-spectral vision system for the detection of defects on apples", Journal of food engineering, vol. 69, no. 1, pp. 41-49, 2005.
dc.relation.referencesY. Peng and R. Lu, "An lctf-based multispectral imaging system for estimation of apple fruit firmness: Part i. acquisition and characterization of scattering images", Transactions of the ASABE, vol. 49, no. 1, pp. 259-267, 2006.
dc.relation.referencesJ . B. Ivars, A. Gutierrez, S. Alegre, S. C. García, and J. Gómez-Sanchís, “Sistemas de visión artificial para la inspección automática de fruta procesada. aplicación a gajos de satsuma y arilos de granada ,”Levante Agrícola: Revista internacional de cítricos, vol. 391, pp. 198–203,2008.
dc.relation.referencesS. Leavesley, Y. Jiang, V. Patsekin, B. Rajwa, and J. P. Robinson, "An excitation wavelength-scanning spectral imaging system for preclinical imaging", Review of Scientific Instruments, vol. 79, no. 2, p. 023707, 2008.
dc.relation.referencesD. Zhang, Z. Guo, G. Lu, L. Zhang, and W. Zuo, "An online system of multispectral palmprint verification", IEEE transactions on instrumentation and measurement, vol. 59, no. 2, pp. 480-490, 2009.
dc.relation.referencesW. A. Christens-Barry, K. Boydston, F. G. France, K. T. Knox, R. L. Easton Jr, and M. B. Toth, "Camera system for multispectral imaging of documents", in Sensors, Cameras, and Systems for Industrial/Scientific Applications X, vol. 7249, p. 724908, International Society for Optics and Photonics, 2009.
dc.relation.referencesG. ElMasry, N.Wang, and C. Vigneault, "Detecting chilling injury in red delicious apple using hyperspectral imaging and neural networks", Postharvest biology and technology, vol. 52, no. 1, pp. 1-8, 2009.
dc.relation.referencesN. Everdell, I. Styles, A. Calcagni, J. Gibson, J. Hebden, and E. Claridge, "Multispectral imaging of the ocular fundus using light emitting diode illumination", Review of scientific instruments, vol. 81, no. 9, p. 093706, 2010.
dc.relation.referencesH. Kalkan, P. Beriat, Y. Yardimci, and T. Pearson, "Detection of contaminated hazelnuts and ground red chili pepper flakes by multispectral imaging", Computers and Electronics in Agriculture, vol. 77, no. 1, pp. 28-34, 2011.
dc.relation.referencesM. Taghizadeh, A. A. Gowen, and C. P. O'Donnell, "Comparison of hyperspectral imaging with conventional rgb imaging for quality evaluation of agaricus bisporus mushrooms", Biosystems engineering, vol. 108, no. 2, pp. 191-194, 2011.
dc.relation.referencesY. Gong, D. Zhang, P. Shi, and J. Yan, "High-speed multispectral iris capture system design", IEEE Transactions on instrumentation and measurement, vol. 61, no. 7, pp. 1966-1978, 2012.
dc.relation.referencesP. Usenik, M. Bürmen, A. Fidler, F. Pernus, and B. Likar, "Automated classification and visualization of healthy and diseased hard dental tissues by near-infrared hyperspectral imaging", Applied Spectroscopy, vol. 66, no. 9, pp. 1067-1074, 2012.
dc.relation.referencesK. Hirai, T. Tanimoto, K. Yamamoto, T. Horiuchi, and S. Tominaga, "An led-based spectral imaging system for surface reflectance and normal estimation", in 2013 International Conference on Signal-Image Technology & Internet-Based Systems, pp. 441- 447, IEEE, 2013.
dc.relation.referencesJ. Herrera-Ramírez, M. Vilaseca, and J. Pujol, "Portable multispectral imaging system based on light-emitting diodes for spectral recovery from 370 to 1630 nm", Applied optics, vol. 53, no. 14, pp. 3131-3141, 2014.
dc.relation.referencesM. Goel, E. Whitmire, A. Mariakakis, T. S. Saponas, N. Joshi, D. Morris, B. Guenter, M. Gavriliu, G. Borriello, and S. N. Patel, "Hypercam: hyperspectral imaging for ubiquitous computing applications", in Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 145-156, 2015.
dc.relation.referencesC. LeGendre, X. Yu, D. Liu, J. Busch, A. Jones, S. Pattanaik, and P. Debevec, "Practical multispectral lighting reproduction", ACM Transactions on Graphics (TOG), vol. 35, no. 4, pp. 1-11, 2016.
dc.relation.referencesC. LeGendre, X. Yu, and P. Debevec, "Optimal led selection for multispectral lighting reproduction", Electronic Imaging, vol. 2017, no. 8, pp. 25-32, 2017.
dc.relation.referencesT. Fu, J. Liu, and J. Tian, "Vis-nir multispectral synchronous imaging pyrometer for high-temperature measurements", Review of Scientific Instruments, vol. 88, no. 6, p. 064902, 2017.
dc.relation.referencesJ. van Roy, J. Keresztes, N.Wouters, B. De Ketelaere, and W. Saeys, "Measuring colour of vine tomatoes using hyperspectral imaging", Postharvest Biology and Technology, vol. 129, pp. 79-89, 2017.
dc.relation.referencesA. Patrick, S. Pelham, A. Culbreath, C. C. Holbrook, I. J. De Godoy, and C. Li, "High throughput phenotyping of tomato spot wilt disease in peanuts using unmanned aerial systems and multispectral imaging", IEEE Instrumentation Measurement Magazine, vol. 20, pp. 4-12, June 2017.
dc.relation.referencesB. Zhang, L. Liu, B. Gu, J. Zhou, J. Huang, and G. Tian, "From hyperspectral imaging to multispectral imaging: Portability and stability of his-mis algorithms for common defect detection", Postharvest Biology and Technology, vol. 137, pp. 95-105, 2018.
dc.relation.referencesA. Duliu, J. Vogel, C. D. Samoilescu, T. Lasser, and N. Navab, "Illumination compensation for high-resolution multispectral image mosaicing of heritage paintings", in 2015 Digital Heritage, vol. 1, pp. 191-198, IEEE, 2015.
dc.relation.referencesP. C.West, "High speed, real-time machine vision", Imagenation and Automated Vision Systems, Inc, 2001.
dc.relation.referencesS.-H. Yang, F.-M. Jheng, and Y. C. Cheng, "Two-dimensional adaptive image stabilisation", Electronics Letters, vol. 43, no. 8, pp. 446-448, 2007.
dc.relation.referencesK.-S. Lee, W. B. Cohen, R. E. Kennedy, T. K. Maiersperger, and S. T. Gower, "Hyperspectral versus multispectral data for estimating leaf area index in four different biomes", Remote Sensing of Environment, vol. 91, no. 3-4, pp. 508-520, 2004.
dc.relation.referencesS. K. Rout, M. Sahani, and M. N. Mohanty, "Modified color brightness preserving bihistogram equalization with variable enhancement degree for restoration of skin color", in 2015 International Conference on Information Technology (ICIT), pp. 88-93, IEEE, 2015.
dc.relation.referencesB. Abdou, D. Morin, F. Bonn, and A. Huete, "A review of vegetation indices", Remote Sensing Reviews, vol. 13, pp. 95-120, 01 1996.
dc.relation.referencesF. J. Bolton, A. S. Bernat, K. Bar-Am, D. Levitz, and S. Jacques, "Portable, lowcost multispectral imaging system: design, development, validation, and utilization", Journal of biomedical optics, vol. 23, no. 12, p. 121612, 2018.
dc.relation.referencesP. G. R. Inc, “Hardware Warranty WEEE Licensing FleaR©3 GigE Imaging Performance Specification,” tech.rep., Point Grey Research© Inc 12051 Riverside Way• Richmond, BC • Canada, 2013
dc.relation.referencesY. S. Cho, J. Kwon, and H.-Y. Kim, "Design and implementation of led dimming system with intelligent sensor module", Journal of information and communication convergence engineering, vol. 11, no. 4, pp. 247-252, 2013.
dc.relation.referencesJ. Fan, W. Yung, and M. Pecht, "Lifetime estimation of high-power white led using degradation-data-driven method", IEEE Transactions on Device and Materials Reliability - IEEE TRANS DEVICE MATER RELIA, vol. 12, pp. 470-477, 06 2012.
dc.relation.referencesR. T. Marcus, "chapter 2 - the measurement of color", in Color for Science, Art and Technology (K. Nassau, ed.), vol. 1 of AZimuth, pp. 31 - 96, North-Holland, 1998.
dc.relation.referencesD. R. Wyble and D. C. Rich, "Evaluation of methods for verifying the performance of color-measuring instruments. part ii: Inter-instrument reproducibility", Color Research & Application: Endorsed by Inter-Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur, vol. 32, no. 3, pp. 176-194, 2007.
dc.relation.referencesA. E2214-19, "Standard practice for specifying and verifying the performance of color-measuring instruments", astm international, west conshohocken, pa, 2019, www.astm.org.
dc.relation.referencesM. Down, "Measurement System Analysis", 4th ed. Southfield, Michigan: Automotive Industry Action Group, 2010.
dc.relation.referencesD. H. Foster and K. Amano, "Hyperspectral imaging in color vision research: tutorial", JOSA A, vol. 36, no. 4, pp. 606-627, 2019.
dc.relation.referencesD. H. Foster, K. Amano, S. M. Nascimento, and M. J. Foster, "Frequency of metamerism in natural scenes", Josa a, vol. 23, no. 10, pp. 2359-2372, 2006.
dc.relation.referencesD. H. Foster, K. Amano, and S. M. Nascimento, "Color constancy in natural scenes explained by global image statistics", Visual neuroscience, vol. 23, no. 3-4, pp. 341-349, 2006.
dc.relation.referencesB. E. Bayer, "Color imaging array", Mar. 5 1975. US Patent 3971065.
dc.relation.referencesJ. van Roy, J. Keresztes, N.Wouters, B. De Ketelaere, and W. Saeys, "Measuring colour of vine tomatoes using hyperspectral imaging", Postharvest Biology and Technology, vol. 129, pp. 79-89, 2017.
dc.relation.referencesR. Hunt and M. Pointer, "A colour-appearance transform for the cie 1931 standard colorimetric observer", Color Research & Application, vol. 10, no. 3, pp. 165-179, 1985.
dc.relation.referencesM. Afifi, "Semantic white balance: Semantic color constancy using convolutional neural network", arXiv preprint arXiv:1802.00153, 2018.
dc.relation.referencesH. D. Beale, H. B. Demuth, and M. Hagan, "Neural network design", Pws, Boston, 1996.
dc.relation.referencesH. Gavin, "The levenberg-marquardt algorithm for nonlinear least squares curve-fitting problems", 2019.
dc.relation.referencesN. J. Guliyev and V. E. Ismailov, "On the approximation by single hidden layer feedforward neural networks with fixed weights", Neural Networks, vol. 98, pp. 296-304, 2018.
dc.relation.referencesP. Goldstein, "Non-macadam color discrimination ellipses", in Novel Optical Systems Design and Optimization XV, vol. 8487, p. 84870A, International Society for Optics and Photonics, 2012.
dc.relation.referencesD. L. MacAdam, "Visual sensitivities to color differences in daylight", Josa, vol. 32, no. 5, pp. 247-274, 1942.
dc.relation.referencesY. Yusuf, J. T. Sri Sumantyo, and H. Kuze, "Spectral information analysis of image fusion data for remote sensing applications", Geocarto international, vol. 28, no. 4, pp. 291-310, 2013.
dc.relation.referencesS. Li, Z. Li, and J. Gong, "Multivariate statistical analysis of measures for assessing the quality of image fusion", International Journal of Image and Data Fusion, vol. 1, no. 1, pp. 47-66, 2010.
dc.relation.referencesA. C. Schuerger, G. A. Capelle, J. A. Di Benedetto, C. Mao, C. N. Thai, M. D. Evans, J. T. Richards, T. A. Blank, and E. C. Stryjewski, "Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in bahia grass (paspalum notatum flugge.)", Remote sensing of environment, vol. 84, no. 4, pp. 572-588, 2003.
dc.relation.referencesN. S. Annamdevula, B. Sweat, P. Favreau, A. S. Lindsey, D. F. Alvarez, T. C. Rich, and S. J. Leavesley, "An approach for characterizing and comparing hyperspectral microscopy systems", Sensors, vol. 13, no. 7, pp. 9267-9293, 2013.
dc.relation.referencesC. A. T. Navarrete, P. M. Narvaez, and L. E. A. Parada, "1ccd and 3ccd color cameras performance comparison applied to hyperspectral image reconstruction", IEEE Latin America Transactions, vol. 13, no. 8, pp. 2661-2667, 2015.
dc.relation.referencesM. N. Kumar, M. Seshasai, K. V. Prasad, V. Kamala, K. Ramana, R. Dwivedi, and P. Roy, "A new hybrid spectral similarity measure for discrimination of vigna species", arXiv preprint arXiv:1509.05767, 2015.
dc.relation.referencesK. X. Wan, I. Vidavsky, and M. L. Gross, "Comparing similar spectra: from similarity index to spectral contrast angle", Journal of the American Society for Mass Spectrometry, vol. 13, no. 1, pp. 85-88, 2002.
dc.relation.referencesJ. Gómez-Sanchis, D. Lorente, E. Soria-Olivas, N. Aleixos, S. Cubero, and J. Blasco, "Development of a hyperspectral computer vision system based on two liquid crystal tuneable filters for fruit inspection. application to detect citrus fruits decay", Food and bioprocess technology, vol. 7, no. 4, pp. 1047-1056, 2014.
dc.relation.referencesN. Sándor, T. Ondró, and J. Schanda, "Spectral interpolation errors", Color Research & Application: Endorsed by Inter-Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur, vol. 30, no. 5, pp. 348-353, 2005.
dc.relation.referencesK. Inoue, K. Hara, and K. Urahama, "Spectral reflectance estimation and color reproduction based on sparse neugebauer model", Advances in Science, Technology and Engineering Systems Journal, vol. 2, pp. 958-966, 06 2017.
dc.relation.referencesS. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Mullers, "Fisher discriminant analysis with kernels", in Neural networks for signal processing IX: Proceedings of the 1999 IEEE signal processing society workshop (cat. no. 98th8468), pp. 41-48, Ieee, 1999.
dc.relation.referencesP. Li, S. H. Lee, and H. Y. Hsu, "Study on citrus fruit image using fisher linear discriminant analysis", Proceedings - 2011 IEEE International Conference on Computer Science and Automation Engineering, CSAE 2011, vol. 4, pp. 175-180, 2011.
dc.relation.referencesF. Hollaus, M. Gau, and R. Sablatnig, "Enhancement of multispectral images of degraded documents by employing spatial information", in 2013 12th International Conference on Document Analysis and Recognition, pp. 145-149, IEEE, 2013.
dc.relation.referencesK. Perumal and R. Bhaskaran, "Supervised classification performance of multispectral images", arXiv preprint arXiv:1002.4046, 2010.
dc.relation.referencesS. Baronti, A. Casini, F. Lotti, and S. Porcinai, "Multispectral imaging system for the mapping of pigments in works of art by use of principal-component analysis", Applied optics, vol. 37, no. 8, pp. 1299-1309, 1998.
dc.relation.referencesC. E. Thomaz and G. A. Giraldi, "A new ranking method for principal components analysis and its application to face image analysis", Image and Vision Computing, vol. 28, no. 6, pp. 902-913, 2010.
dc.relation.referencesC.-C. Hung, H. Purnawan, and B.-C. Kuo, "Multispectral image classification using rough set theory and the comparison with parallelepiped classifier", in 2007 IEEE International Geoscience and Remote Sensing Symposium, pp. 2052-2055, IEEE, 2007.
dc.relation.referencesC. Bishop, "Pattern Recognition and Machine Learning". Springer, 2006.
dc.relation.referencesC. R. Rao, S. K. Mitra, et al., "Generalized inverse of a matrix and its applications", in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistics, The Regents of the University of California, 1972.
dc.relation.referencesS. Shalev-Shwartz and S. Ben-David, "Understanding Machine Learning". From Theory to Algorithms. Cambridge University Press, 2014.
dc.relation.referencesC.-I. Chang, "Spectral information divergence for hyperspectral image analysis", in IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No. 99CH36293), vol. 1, pp. 509-511, IEEE, 1999.
dc.relation.referencesD. G. Altman and J. M. Bland, "Measurement in medicine: the analysis of method comparison studies", Journal of the Royal Statistical Society: Series D (The Statistician) , vol. 32, no. 3, pp. 307-317, 1983.
dc.relation.referencesC. Oliveros-Tascón and J. Sanz-Uribe, "Ingeniería y café en colombia", Revista de Ingeniería, no. 33, pp. 99-114, 2011.
dc.relation.referencesC. Oliveros, J. Pabón, E. Montoya, C. Ramírez, and J. Sanz, "Separación de frutos de café verdes por medios mecánicos", Cenicafé, vol. 61, pp. 260-269, 01 2010.
dc.relation.referencesJ. R. Sanz-Uribe, P. J. Ramos-Giraldo, and C. E. Oliveros-Tascon, "Algorithm to identify maturation stages of coffee fruits", in Advances in Electrical and Electronics Engineering-IAENG Special Edition of the World Congress on Engineering and Computer Science 2008, pp. 167-174, IEEE, 2008.
dc.relation.references"Anhui. jiexun optoelectronic technology co. ltd. multifunction color sorter." <http: //www.hfjiexun.com>. Accessed: 2019-09-05.
dc.relation.references"Buhler. coffee sorting. separador classificador mtra." <https://www.buhlergroup. com/southamerica/pt/produtos/separador-classificador-mtra.htm> . Accessed: 2019-09-05.
dc.relation.references"China hefei taiho optoelectronic technology co. ltd. beans color sorter." <http://www. chinacolorsort.com/display2.asp?id=768>. Accessed: 2019-09-05.
dc.relation.references"Orange sorting machines (india) private limited. coffee sorting machines." <https: //www.orangesorter.net/>. Accessed: 2019-09-05.
dc.relation.references"Multiscan technologies. café." <http://www.multiscan.eu/ clasificacion-y-seleccion/cafe-es/>. Accessed: 2019-09-05.
dc.relation.references"Hcg tecnologia ltda. máquina separadora de café." <http://www.hcgtecnologia. com.br/produtos/separacao-de-graos-de-cafe> . Accessed: 2019-09-05.
dc.relation.referencesZ. Sandoval, F. Prieto, and J. Betancur, "Digital image processing for classification of coffee cherries", in 2010 IEEE Electronics, Robotics and Automotive Mechanics Conference, pp. 417-421, IEEE, 2010.
dc.relation.referencesM. N. Merzlyak, A. E. Solovchenko, and A. A. Gitelson, "Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit", Postharvest biology and technology, vol. 27, no. 2, pp. 197-211, 2003.
dc.relation.referencesD. Balasundaram, T. Burks, D. Bulanon, T. Schubert, and W. Lee, "Spectral reflectance characteristics of citrus canker and other peel conditions of grapefruit", Postharvest Biology and Technology, vol. 51, no. 2, pp. 220-226, 2009.
dc.relation.referencesM. Moyano, A. J. Meléndez-Martínez, J. Alba, and F. J. Heredia, "A comprehensive study on the colour of virgin olive oils and its relationship with their chlorophylls and carotenoids indexes (i): Ciexyz non-uniform colour space", Food Research International, vol. 41, no. 5, pp. 505-512, 2008.
dc.relation.referencesI. D. Aristizabal Torres, J. J. Carvajal Herrera, and C. E. Oliveros Tascon, "Physical and mechanical properties correlation of coffee fruit (coffea arabica) during its ripening, " Dyna, vol. 79, no. 172, pp. 148-155, 2012.
dc.relation.referencesZ. L. S. Niño and F. A. P. Ortiz, "Caracterización de café cereza empleando técnicas de visión artificial", Revista Facultad Nacional de Agronomía-Medellín, vol. 60, no. 2, pp. 4105-4127, 2007.
dc.relation.referencesN. L. Montes Castrillón et al., "Real-time classification of coffee fruits using FPGA". PhD thesis, Universidad Nacional de Colombia-Sede Manizales,2015.
dc.relation.referencesQ. Gu, A. Al Noman, T. Aoyama, T. Takaki, and I. Ishii, "A fast color tracking system with automatic exposure control", in 2013 IEEE International Conference on Information and Automation (ICIA), pp. 1302-1307, IEEE, 2013.
dc.relation.referencesJ. J. Carvajal Herrera, I. D. Aristizábal Torres, C. E. Oliveros Tascón, M. Montoya, and J. Wilson, "Coffee fruit (coffea arabica l.) colorimetry during its development and maturation", Revista Facultad Nacional de Agronomía Medellín, vol. 64, no. 2, pp. 6229-6240, 2011.
dc.relation.referencesP. Ramos, J. Sanz, and J. Estrada, "Sistema opto electrónico para la identificación de frutos de café por estados de maduración", Cenicafé, vol. 62, no. 1, pp. 87-99, 2011.
dc.relation.referencesA. Bustillo, "El manejo de cafetales y su relación con el control de la broca del café", Hypothenemus hampei. 01 2002.
dc.relation.referencesP. Benavides and H. Arévalo, "Manejo integrado: una estrategia para el control de la broca del café en colombia", Cenicafé, vol. 53, no. 1, pp. 39-48, 2002.
dc.relation.referencesA. Pardey, "Una revisión sobre la broca del café", Hypothenemus hampei, 2006.
dc.relation.referencesJ. G. Clevers, L. Kooistra, and M. E. Schaepman, "Using spectral information from the nir water absorption features for the retrieval of canopy water content", International Journal of Applied Earth Observation and Geoinformation, vol. 10, no. 3, pp. 388-397, 2008.
dc.relation.referencesA. A. Gitelson, Y. J. Kaufman, and M. N. Merzlyak, "Use of a green channel in remote sensing of global vegetation from eos-modis", Remote sensing of Environment, vol. 58, no. 3, pp. 289-298, 1996.
dc.relation.referencesY. Uwadaira, Y. Sekiyama, and A. Ikehata, "An examination of the principle of nondestructive fresh firmness measurement of peach fruit by using vis-nir spectroscopy", Heliyon, vol. 4, p. e00531, 02 2018.
dc.relation.referencesL. Huang, L. Meng, N. Zhu, and D.Wu, "A primary study on forecasting the days before decay of peach fruit using near-infrared spectroscopy and electronic nose techniques", Postharvest Biology and Technology, vol. 133, pp. 104-112, 2017.
dc.relation.referencesJ. Rogowska, "Overview and fundamentals of medical image segmentation", Handbook of medical imaging, processing and analysis, pp. 69-85, 2000.
dc.relation.referencesG. ElMasry, N. Wang, A. ElSayed, and M. Ngadi, "Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry", Journal of Food Engineering, vol. 81, no. 1, pp. 98-107, 2007.
dc.relation.referencesA. A. Gitelson and M. N. Merzlyak, "Remote sensing of chlorophyll concentration in higher plant leaves", Advances in Space Research, vol. 22, no. 5, pp. 689-692, 1998.
dc.relation.referencesJ. J. Díaz García-Cervigón, "Estudio de índices de vegetación a partir de imágenes aéreas tomadas desde uas/rpas y aplicaciones de estos a la agricultura de precisión", Universidad Complutense de Madrid, Madrid, España. Recuperado de http://eprints. ucm. es/31423/1/TFM_Juan_Diaz_Cervignon. pdf, 2015.
dc.relation.referencesH. A. Vrooman, C. A. Cocosco, F. van der Lijn, R. Stokking, M. A. Ikram, M. W. Vernooij, M. M. Breteler, and W. J. Niessen, "Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification", Neuroimage, vol. 37, no. 1, pp. 71-81, 2007.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalSistema de imágenes multiespectrales
dc.subject.proposalMultispectral images system
dc.subject.proposalElectronic design
dc.subject.proposalDiseño electrónico
dc.subject.proposalPower LEDs
dc.subject.proposalLEDs de potencia
dc.subject.proposalColor perception
dc.subject.proposalPercepción de color
dc.subject.proposalCoffee fruits
dc.subject.proposalFrutos de café
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito