Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorArzola-De La Peña, Nelson
dc.contributor.authorÁvila-Granados, Diego Leonardo
dc.date.accessioned2020-08-29T06:14:16Z
dc.date.available2020-08-29T06:14:16Z
dc.date.issued2020-06-30
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78334
dc.description.abstractComo fomento al diseño y la fabricación de aeronaves tripuladas en Colombia, la Fuerza Aérea Colombiana encarga a la Corporación de la Industria Aeronáutica Colombiana CIAC S.A., el diseño y posterior fabricación de una aeronave tipo planeador denominada Urubú S-17, la cual es una aeronave que no cuenta con motor y se mantienen volando por medio de las corrientes ascendentes y descendentes de aire que se generan por la diferencia entre temperaturas en las masas de aire. Parte de la estructura del planeador se encuentra fabricada en acero tubular AISI 4130, los miembros que componen dicha estructura son unidos mediante el proceso de soldadura GTAW; para garantizar que las uniones soldadas son idóneas para soportar las cargas que se generan en el fuselaje de la aeronave durante su operación, se define cual es la maniobra más extrema para la cual el planeador fue diseñado y se fabrican 10 probetas que son réplicas de las 10 uniones soldadas más críticas encontradas en la estructura previamente mencionada. Las uniones fabricadas se califican mediante ensayos no destructivos y sus propiedades mecánicas se determinan mediante pruebas destructivas para posteriormente comparar estos resultados con un análisis estructural realizado en un software de análisis por elementos finitos y extraer conclusiones con respecto a la idoneidad de los procedimientos bajo los cuales se fabricaron las 10 probetas de las uniones críticas.
dc.description.abstractAs an attempt to encourage the processes of design and manufacturing of manned aircraft in Colombia, the Colombian Air Force trust to CIAC S.A. a project focused on designing and manufacturing a glider type aircraft named Urubú S-17. Gliders are airplanes that do not have an engine installed and remain airborne by using the ascendant and descendant airstreams created due to the difference of temperatures between air masses. A portion of the glider’s structure is manufactured in AISI 4130 tubular steel; the members of the mentioned structure are joined together by means of welding specifically using the GTAW process. In order to grant that welded joints are suitable for withstanding the loads imposed on the aircraft fuselage structure during its operation, the more critical maneuver of the glider is defined and 10 samples (replicas of the more complex welded joints of the fuselage) are manufactured; such samples are qualified by means of non-destructive testing and their mechanical properties are estimated through mechanical tests. The results obtained from the non-destructive testing and the mechanical tests are compared with a structural analysis carried out in a finite element analysis software, after this comparison conclusions are drawn regarding the suitability of the procedures employed for manufacturing the 10 samples that replicate the more complex joints belonging to the fuselage of the glider Urubú S-17.
dc.format.extent163
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc670 - Manufactura
dc.subject.ddc672 - Hierro, acero, otras aleaciones ferrosas
dc.subject.ddc671 - Proceso de metalurgia y productos metálicos primarios
dc.subject.ddc629 - Otras ramas de la ingeniería
dc.titleDiseño y fabricación de uniones soldadas en perfilería estructural tubular en acero aeronáutico 4130
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Soldadura
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesInternational Air Transport Association (1 de enero de 2018). 2017 marked by strong passenger demand, record load factor. IATA. Recuperado de http://www.iata.org/pressroom/pr/Pages/2018-02-01-01.aspx.
dc.relation.referencesLambert Mark (2010). Jane´s all the world´s aircraft 1993-94. Couldson UK. Jane´s Data Division.
dc.relation.referencesAmerican Welding Society (2000). AWS B1.110:1999 Guide for the nondestructive examinations of welds. Danvers MA, Estados Unidos. American Welding Society.
dc.relation.referencesAmerican Welding Society (2017). AWS D17.1/D17.1M:2017 Specification for fusion welding for aerospace applications. Danvers MA, Estados Unidos. American Welding Society.
dc.relation.referencesFederal Aviation Administration (2013). FAA-H-8083-13A Glider Flying Handbook. Oklahoma City OK, Estados Unidos. U.S. Department of transportation.
dc.relation.referencesFederal Aviation Administration (2008). FAA-H-8083-30 Aviation Maintenance Technician Handbook. Oklahoma City OK, Estados Unidos. U.S. Department of transportation.
dc.relation.referencesSchweizer Paul (1998). Sailplanes by Schweizer A History. Shrewsbury, Inglaterra. Airlife Ltd.
dc.relation.referencesDave Russo (2005). Construction of tubular steel fuselages. Tabernash CO, Estados Unidos. Aircraft technical book company.
dc.relation.referencesNiu Michael (1988). Airframe Structural Design. Burbank CA, Estados Unidos. Conmilit Press Ltd.
dc.relation.referencesCorporación de la Industria Aeronáutica Colombiana (2018). Reporte Técnico de Cargas Aeronave S-17. Bogotá, Colombia. CIAC S.A.
dc.relation.referencesÁvila Diego (2018). Expandiendo Conocimientos en diseño y Fabricación de Aeronaves. Comisión País Educativo (Ed.1), Página 46.
dc.relation.referencesCorporación de la Industria Aeronáutica Colombiana (2018). Reporte Técnico de Cargas Aeronave S-17. Bogotá, Colombia. CIAC S.A.
dc.relation.referencesGudmundsson Snorri (2014). General Aviation Aircraft Design. Oxford, UK. Elsevier.
dc.relation.referencesPranav Thakur (2016). A Review of GTAW Process Parameters on Weld. International Journal for Research in Applied Science & Engineering Technology, 4 (1), 136-140.
dc.relation.referencesAmerican Welding Society (2005). AWS 5.28/D17.1M:2005 Specification for low-alloy steel electrodes and rods for gas shielded arc welding. Danvers MA, Estados Unidos. American Welding Society.
dc.relation.referencesValka (26 de marzo de 2019). Northrop XP-56 “Black Bullet”. Valka. Recuperado de https://www.valka.cz/Northrop-XP-56-Black-Bullet-t9654.
dc.relation.referencesDepartment of Defense United States of America (1998). MIL-HDBK-5H Metallic materials and elements for aerospace vehicle structures. Wright-Patterson AFB OH, Estados Unidos. Department of Defense United States of America.
dc.relation.referencesFederal Aviation Administration (1998). AC 43.13-1B Acceptable methods techniques and practices – Aircraft inspection and repair. Oklahoma City OK, Estados Unidos. U.S. Department of transportation.
dc.relation.referencesAmerican Welding Society (2012). AWS 3.0:2012 Standard welding terms and definitions. Danvers MA, Estados Unidos. American Welding Society.
dc.relation.referencesReyes, Juan Hernando. “Uniones de Soldadura”. Universidad Nacional de Colombia. Bogotá, Colombia. 23 de marzo 2016.
dc.relation.referencesServicio Nacional de Adiestramiento en Trabajo Industrial SENATI (2014). Control de Calidad en Uniones Soldadas Estructurales. Lima, Perú. SENATI.
dc.relation.referencesReyes, Juan Hernando. “Líquidos Penetrantes”. Universidad Nacional de Colombia. Bogotá, Colombia. 20 de abril 2016.
dc.relation.referencesMagnaflux (8 de mayo de 2019). Kit para inspección por tintas penetrantes. Magnaflux. Recuperado de https://www.magnaflux.com/Magnaflux/Products/Liquid-Penetrant-Inspection/Consumables.htm
dc.relation.referencesInternational Atomic Energy Agency (2011). Training guidelines for Non Destructive Testing Techniques. Viena, Austria. IAEA.
dc.relation.referencesJohn D. Anderson Jr. (2005). Introduction to flight. New York NY, Estados Unidos. McGraw Hill.
dc.relation.referencesCorporación de la Industria Aeronáutica Colombiana (2018). Reporte Técnico de Peso y Balance Aeronave S-17. Bogotá, Colombia. CIAC S.A.
dc.relation.referencesFederal Aviation Administration (2016). FAA-H-8083-25B Pilot´s Handbook of Aeronautical Knowledge. Oklahoma City OK, Estados Unidos. U.S. Department of transportation.
dc.relation.referencesCorporación de la Industria Aeronáutica Colombiana (2018). Dimensionamiento del Tren de Aterrizaje Aeronave S-17. Bogotá, Colombia. CIAC S.A.
dc.relation.referencesAmerican Welding Society (2001). AWS Welding Handbook. Miami FL, Estados Unidos. American Welding Society.
dc.relation.referencesFederal Aviation Administration (2014).Preheating, Interpass and Post Welding Treatment Requirements for Welding Low Alloy Steels. Oklahoma City OK, Estados Unidos. U.S. Department of transportation.
dc.relation.referencesThe Seattle Times (9 de enero de 2018). Boeing tops Airbus in 2017 with new Production record. The Seattle Times. Recuperado de https://www.seattletimes.com/business/boeing-aerospace/boeing-tops-airbus-in-2017-with-new-jet-production-record/.
dc.relation.referencesGuowen Chen., Hongyun Luo., Haoyu Yang., Zhiyuan Han., Zhenying Lin., Zheng Zhang., Yuqin Su (2018). Effects of the Welding inclusion and notch on the fracture behaviors of low-allow steel. Journal of material research and technology, 8(1), 447-456.
dc.relation.referencesChunguo Zhang., Pengmin Lu., Xiaozhi Hu (2014). Residual stress and softening in welded high-strength low-allow steel with a buffering layer. Journal of material processing technology, 214 (2014), 229-237.
dc.relation.referencesAnton Evdokimov., Aleksei Obrosov., Ralf Ossenbrink., Sabine Weib. Vesselin Michailov (2018). Mechanical properties of dissimilar steel-aluminum welds. Material science and engineering: A, 722 (2018), 242-254.
dc.relation.referencesKuang-Hung Tseng, Ya-Jie Shiu (2015). Effect of thermal of powdered oxide on joint penetration and metallurgical feature of AISI 4130 steel TIG weldment. Powder Technology, 286 (2015), 31-38.
dc.relation.referencesF. Souza Neto, D. Neves, O.M.M. Silva, M.S.F. Lima, A.J. Adballa (2015). An analysis of the Mechanical behavior of AISI 4130 steel after TIG and laser welding process. Procedia Engineering, 114 (2015), 181-188.
dc.relation.referencesMarcelino P. Nascimento., Carolina C. Batista., Bruno A. Sorrija., Herman J.C. Voorwald (2014). Fatigue crack growth investigation on a maintenance Welding repair applied on a high responsibility airframe. Procedia Materials Science, 3 (2014), 744-749.
dc.relation.referencesMarcelino P. Nascimento., Herman J.C. Voorwald., Joao da C. Payao Filho. (2011). Fatigue strength of Tungsten inert gas-repaired weld joints in airplane critical structures. Journal of material processing technology, 211 (2011), 1126-1135.
dc.relation.referencesMarcelino P. Nascimento., Herman J.C. Voorwald. (2010) Considerations about the welding repair effects on the Structural integrity of an airframe critical to the flight-safety. Procedia Engineering, 2 (2010), 1895-1903.
dc.relation.referencesRaymer, Daniel P (2006). Aircraft Design – A conceptual approach. Reston VA, Estados Unidos. American Institute of Aeronautics and Astronautics.
dc.relation.referencesSecretary of the Air Force and Direction of the Chief of the Naval Air Systems Command (1999). TO 1-1A-9 Aerospace metals – General data and usage factors. Robins AFB GA, Estados Unidos. Secretary of the Air Force and Direction of the Chief of the Naval Air Systems Command.
dc.relation.referencesAmerican Welding Society (2000). AWS B1.11:2000 Guide or visual examination of welds. Danvers MA, Estados Unidos. American Welding Society.
dc.relation.referencesAmerican Welding Society (2012). AWS 2.4:2012 Standard symbols for welding, brazing and nondestructive examination. Danvers MA, Estados Unidos. American Welding Society.
dc.relation.referencesDenis Howe (2004). Aircraft loading and structural layout. London, United Kingdom. Professional Engineering Publishing.
dc.relation.referencesOACI (2009). Manual de gestión de la seguridad operacional. Montreal, Canadá. Organización de Aviación Civil Internacional.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalplaneador
dc.subject.proposalglider
dc.subject.proposalcorrientes ascendentes
dc.subject.proposalascendant airstreams
dc.subject.proposalcorrientes descendentes
dc.subject.proposaldescendant airstreams
dc.subject.proposaltubular steel
dc.subject.proposalacero tubular
dc.subject.proposalproceso de soldadura
dc.subject.proposalwelding
dc.subject.proposaluniones soldadas críticas
dc.subject.proposalcomplex welded joints
dc.subject.proposalmaniobra extrema
dc.subject.proposalcritical maneuver
dc.subject.proposalqualification
dc.subject.proposalcalificación
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito