Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorAlfonso Orjuela, José Edgar
dc.contributor.advisorOlaya Florez, Jhon Jairo
dc.contributor.authorVanegas Parra, Henry Samir
dc.date.accessioned2020-08-29T07:28:24Z
dc.date.available2020-08-29T07:28:24Z
dc.date.issued2020-01-20
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78336
dc.description.abstractIn this Ph.D. thesis work, zirconium nitride with silicon (ZrN-Si) coatings doped with silver (ZrSiN-Ag) and copper (ZrSiN-Cu) were deposited, using the sputtering technique on glass, silicon and 316L stainless steel substrates. The main objective of the study was to research the effect that silver (Ag) or copper (Cu) have on the chemical composition, microstructure and functional properties, such as mechanical, optical and electrical properties of the deposited coatings. The chemical characterization of the coatings was performed by means of Energy-Dispersive X-ray (EDX) spectroscopy and X-ray Photoelectron spectrometry (XPS) techniques. The characterization of the microstructure of the coatings was carried out by means of X-Ray Diffraction (XRD) and Transmission Electron Microscopy (MET) techniques. The morphology was studied by means of the Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM). To assess the mechanical properties of the coatings, nano hardness measurements were carried out. The optical response was evaluated by means of transmittance and reflectance measurements, using the ultraviolet-visible spectrophotometry technique (UV-VIS). Finally, electrical properties were evaluated by voltage vs. current measurements using the Van der Pauw method. The most relevant results of this work can be summarized in four points. i) ZrSiN-Ag and ZrSiN-Cu coatings have a microstructure with manometric dimensions (crystallite sizes smaller than 15 nm). ii) The addition of silicon to the ZrN coating had no nano-compound microstructure. iii) The addition of silver or copper to the ZrSiN structure modified both the microstructure and the morphology of these coatings. Finally, iv) the addition of silver or copper formed no compounds with zirconium (Zr), nitrogen (N) or silicon (Si) atoms, which indicates that these elements were immiscible and that most likely they have been lodged in the grain edges of the ZrSiN system. The characterization of the functional properties studied allowed us to establish that the nanohardness of the coatings had no improvement with the addition of silicon, silver or copper. The coatings with Ag added may have a possible application as dichroic filters, which block ultraviolet radiation, but allow infrared radiation to pass through. Cu coatings showed a high reflection (70%) in the infrared region, which decreases in the ultraviolet region. These last coatings were bright golden, with possible applications as decorative coating. Finally, the electrical measurements showed that the addition of silver and / or copper to the ZrSiN system produced a decrease in its electrical resistivity.
dc.description.abstractEn este trabajo de tesis de doctorado, se depositaron por primera vez recubrimientos de nitruro de zirconio con silicio (ZrN-Si) dopados con plata (ZrSiN-Ag) y cobre (ZrSiN-Cu), mediante la técnica de pulverización catódica sobre sustratos de vidrio, silicio y acero inoxidable 316L. El objetivo fundamental del estudio se centró en investigar el efecto que tienen la plata (Ag) o el cobre (Cu) sobre la composición química, la microestructura y las propiedades funcionales tales como las mecánicas, ópticas y eléctricas del material depositado. La caracterización química de los recubrimientos se realizó por medio de las técnicas de espectroscopia de rayos X dispersados (EDX) y de espectrometría de fotoelectrones emitidos por rayos X (XPS). La caracterización de la microestructura de los recubrimientos se realizó por medio de las técnicas de difracción de rayos X (DRX) y microscopia electrónica de transmisión (MET). La morfología fue estudiada por medio del microscopio electrónico de barrido (MEB) y microscopio de fuerza atómica (MFA). Para evaluar las propiedades mecánicas de los recubrimientos, se realizaron medidas de nanodureza. La respuesta óptica se evaluó mediante medidas de transmitancia y reflectancia, por medio de la técnica de espectrofotometría ultravioleta - visible (UV-VIS). Finalmente, las propiedades eléctricas se evaluaron mediante medidas de voltaje vs. corriente usando el método de Van der Pauw. Los resultados más relevantes de este trabajo se pueden resumir en cuatro. i) Los recubrimientos de ZrSiN-Ag y ZrSiN-Cu tienen una microestructura con dimensiones nanométricas (tamaños de cristalitos menores a 15 nm). ii) La adición de silicio al recubrimiento de ZrN no tiene microestructura de tipo nano compuesto. iii) La adición de plata o cobre a la estructura ZrSiN modificó tanto la microestructura como la morfología de estos recubrimientos. Finalmente, iv) la adición de plata o cobre no formó compuestos con átomos de zirconio (Zr), nitrógeno (N) o silicio (Si), lo que indica que estos elementos fueron inmiscibles y que lo más probable es que se hayan alojado en los bordes de grano del sistema ZrSiN. La caracterización de las propiedades funcionales investigadas permitió establecer que la nanodureza de los recubrimientos no mejoró con la adición de silicio, plata o cobre. Los recubrimientos a los que se les adiciono Ag pueden tener una posible aplicación como filtros dicroicos, los cuales bloquean la radiación ultravioleta, pero permiten el paso de la radiación infrarroja. Los recubrimientos con Cu mostraron tener una alta reflexión (70 %) en la región infrarroja, la cual disminuye en la región ultravioleta. Estos últimos recubrimientos fueron de color dorado brillante, con posibles aplicaciones como recubrimiento decorativo. Finalmente, las medidas eléctricas mostraron que la adición de plata y/o cobre al sistema ZrSiN produce una disminución en su resistividad eléctrica.
dc.description.sponsorshipUniversidad Nacional de Colombia y Colciencias.
dc.format.extent174
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc570 - Biología
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.ddc522 - Técnicas, procedimientos, aparatos, equipos, materiales
dc.titleRecubrimientos funcionales de (Zr, Ag, Si) N y (Zr, Cu, Si) N producidos por la técnica de co­sputtering magnetrón reactivo
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Crecimiento y Caracterización de Recubrimientos
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.contributor.researchgroupGrupo de Ciencia de Materiales y Superficies
dc.description.degreelevelDoctorado
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesFrey H, Khan HR. Handbook of Thin-Film Technology. First. Frey H, Khan H, editors. Springer-Verlag Berlin Heidelberg; 2015. 1–379 p.
dc.relation.referencesDaniel R, Musil J. Novel Nanocomposite Coatings: Advances and Industrial Applications. 1st edit. Pan Stanford Publishing; 2013. 310 p.
dc.relation.referencesAdachi H, Wasa K. Thin Films and Nanomaterials. In: Handbook of Sputter Deposition Technology: Fundamentals and Applications for Functional Thin Films, Nano-Materials and MEMS. Second edit. Elsevier Inc. All rights reserved; 2012. p. 3–39.
dc.relation.referencesAliofkhazraei M. Nanocoatings: Size effect in nanostructured films. First edit. Aliofkhazraei M, editor. Berlin: Springer-Verlag Berlin Heidelberg; 2011. 262 p.
dc.relation.referencesGharavi MA, Greczynski G, Eriksson F, Lu J, Balke B, Fournier D, et al. Synthesis and characterization of single-phase epitaxial Cr2N thin films by reactive magnetron sputtering. J. Mater. Sci. 2019;54(2):1434–1442.
dc.relation.referencesGao B, Li X, Ding K, Huang C, Li Q, Chu PK, et al. Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage. J Mater Chem A. 2019;7(1):14–37.
dc.relation.referencesSilva Neto PC, Freitas FGRGR, Fernandez DARAR, Carvalho RGG, Felix LCC, Terto ARR, et al. Investigation of microstructure and properties of magnetron sputtered Zr-Si-N thin films with different Si content. Surf Coatings Technol. 2018;353:355–63.
dc.relation.referencesChang L-C, Zheng Y-Z, Chen Y-I, Chang S-C, Liu B-W. Bonding Characteristics and Chemical Inertness of Zr–Si–N Coatings with a High Si Content in Glass Molding. Coatings. 2018;8(5):181.
dc.relation.referencesWarcholinski B, Kuznetsova TA, Gilewicz A, Zubar TI, Lapitskaya VA, Chizhik SA, et al. Structural and Mechanical Properties of Zr-Si-N Coatings Deposited by Arc Evaporation at Different Substrate Bias Voltages. J. Mater. Eng. Perform. 2018;27(8):3940–50.
dc.relation.referencesFerreira CP, Castro M das MR de, Tentardini EK, Lins V de FC, Saliba PA. Silicon influence on corrosion resistance of magnetron sputtered ZrN and ZrSiN thin films. Surf. Eng. 2018;0(0):1–8.
dc.relation.referencesMishra SK, Kumari S, Soni. Development of hard and optically transparent Al-Si-N nanocomposite coatings. Surf. Interface Anal. 2017;49(4):345–8.
dc.relation.referencesChen YI, Chang SC, Chang LC. Oxidation resistance and mechanical properties of Zr–Si–N coatings with cyclic gradient concentration. Surf Coatings Technol. 2017;320:168–73.
dc.relation.referencesTung H, Wu P, Yu G, Huang J. Microstructures , mechanical properties and oxidation behavior of vacuum annealed TiZrN thin films. Vaccum. 2015;115:12–8.
dc.relation.referencesChoi H, Jang J, Zhang T, Kim J-H, Park I-W, Kim KH. Effect of Si addition on the microstructure, mechanical properties and tribological properties of Zr–Si–N nanocomposite coatings deposited by a hybrid coating system. Surf Coatings Technol. 2014;259:707–13.
dc.relation.referencesYalamanchili K, Forsén R, Jiménez-Piqué E, Johansson Jöesaar MP, Roa JJJ, Ghafoor N, et al. Structure, deformation and fracture of arc evaporated Zr–Si–N hard films. Surf Coat Technol. 2014;258:1100–7.
dc.relation.referencesKelly, P. J. Li, H. Benson, P. S. Whitehead, K. A. Verran J, Arnell, R. D. and Iordanova I. Comparison of the tribological and antimicrobial properties of CrN/Ag, ZrN/Ag, TiN/Ag, and TiN/Cu nanocomposite coatings. Surf Coatings Technol. 2010;205(5):1606–10.
dc.relation.referencesPilloud D, Pierson JF, Pichon L. Influence of the silicon concentration on the optical and electrical properties of reactively sputtered Zr–Si–N nanocomposite coatings. Mater Sci Eng B. 2006;131(1–3):36–9.
dc.relation.referencesRezaee S, Ghobadi N. Synthesis of Ag-Cu-Pd alloy thin films by DC-magnetron sputtering: Case study on microstructures and optical properties. Results Phys. 2018;9:1148–54.
dc.relation.referencesKertzman Z, Marchal J, Suarez M, Staia MH, Filip P, Kohli P, et al. Mechanical, tribological, and biocompatibility properties of ZrN-Ag nanocomposite films. J Biomed Mater Res - Part A. 2008;84(4):1061–7.
dc.relation.referencesLoka C, Lee K, Joo SY, Lee KS. Thermally stable and high reflectivity Al-doped silver thin films deposited by magnetron sputtering. Mater Res Express. 2018;5(3) 034002.
dc.relation.referencesXu L, Zheng G, Xian F, Liu Y. Tailoring the photoluminescent property of ZnO/Ag nanocomposite thin films based on a thermal treatment. J Lumin. 2018;198:296–301.
dc.relation.referencesChangjie F, En C, Mingsheng L, Namei W. Effects of Cu Content on Microstructure and High-Temperature Oxidation Behavior of Ti-Al-Si-Cu-N Nanocomposite Films. Rare Met Mater Eng. 2017;46(3):627–33.
dc.relation.referencesPogrebnjak, A. D. Bagdasaryan, A. A. Beresnev, V. M. Nyemchenko, U. S. Ivashchenko, V. I. Kravchenko, Ya O. Shaimardanov, Z. H.K. Plotnikov, S. V. and Maksakova O. The effects of Cr and Si additions and deposition conditions on the structure and properties of the (Zr-Ti-Nb)N coatings. Ceram Int. 2017;43(1):771–82.
dc.relation.referencesHsu CH, Huang WC, Lee YP, Ho WY. Effect of nitrogen atmosphere heat treatment on structure and wear behavior of CrAlSiN nanocomposite film. Surf Coatings Technol. 2017;320:230–4.
dc.relation.referencesDang C, Li J, Wang Y, Yang Y, Wang Y, Chen J. Influence of Ag contents on structure and tribological properties of TiSiN-Ag nanocomposite coatings on Ti–6Al–4V. Appl Surf Sci. 2017;394:613–24.
dc.relation.referencesCui X, Jin G, Hao J, Li J, Guo T. The influences of Si content on biocompatibility and corrosion resistance of Zr – Si – N films. Surf Coat Technol. 2013;228:524–8.
dc.relation.referencesCalderon Velasco S, Cavaleiro A, Carvalho S. Functional properties of ceramic-Ag nanocomposite coatings produced by magnetron sputtering. Prog Mater Sci. 2016;84:158–91.
dc.relation.referencesMartin PJ, Bendavid A, Cairney JM, Hoffman M. Nanocomposite Ti-Si-N, Zr-Si-N, Ti-Al-Si-N, Ti-Al-V-Si-N thin film coatings deposited by vacuum arc deposition. Surf Coatings Technol. 2005;200(7):2228–35.
dc.relation.referencesZeman P, Musil J. Difference in high-temperature oxidation resistance of amorphous Zr–Si–N and W–Si–N films with a high Si content. Appl Surf Sci. 2006;252:8319–25.
dc.relation.referencesMusil J, Daniel R, Zeman P, Takai O. Structure and properties of magnetron sputtered Zr–Si–N films with a high (≥25 at.%) Si content. Thin Solid Films. 2005;478(1–2):238–47.
dc.relation.referencesMusil J. Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surf Coatings Technol. 2012;207:50–65.
dc.relation.referencesVepřek S. The search for novel, superhard materials. J Vac Sci Technol A Vacuum, Surfaces, Film. 1999;17(5):2401–20.
dc.relation.referencesVeprek S, Zhang RF, Veprek-Heijman MGJ, Sheng SH, Argon AS. Superhard nanocomposites: Origin of hardness enhancement, properties and applications. Surf Coatings Technol. 2010;204(12–13):1898–906.
dc.relation.referencesSanjinés R, Sandu and CS. Interfacial Electron Scattering in Nanocomposite Materials : Electrical Measurements to Reveal The Nc- MeN / a-SiN x Nanostructure in Order to Tune Macroscopic Properties. Chapter from B Nanocomposites - New Trends Dev. 2012;Chapter 19:483–503.
dc.relation.referencesSandu CS, Medjani F, Sanjinés R, Karimi A, Lévy F. Structure, morphology and electrical properties of sputtered Zr–Si–N thin films: From solid solution to nanocomposite. Surf Coatings Technol. 2006;201(7):4219–23.
dc.relation.referencesBaghriche O, Rtimi S, Zertal A, Pulgarin C, Sanjinés R, Kiwi J. Accelerated bacterial reduction on Ag-TaN compared with Ag-ZrN and Ag-TiN surfaces. Appl Catal B Environ. 2015;174–175:376–82.
dc.relation.referencesBai X, Li J, Zhu L, Wang L. Effect of Cu content on microstructure, mechanical and anti-fouling properties of TiSiN-Cu coating deposited by multi-arc ion plating. Appl Surf Sci. 2018;427:444–51.
dc.relation.referencesBorja-goyeneche EN, Olaya-florez JJ. A microstructural and corrosion resistance study of (Zr, Si, Ti)N-Ni coatings produced through co-sputtering. DYNA. 2018;85(207):192–7.
dc.relation.referencesKumar M, Mishra S, Mitra R. Effect of Ar:N2 ratio on structure and properties of Ni – TiN nanocomposite thin fi lms processed by reactive RF / DC magnetron sputtering. Surf Coat Technol. 2013;228:100–14.
dc.relation.referencesParveen F, Sannakki B, Mandke M V., Pathan HM. Copper nanoparticles: Synthesis methods and its light harvesting performance. Sol Energy Mater Sol Cells. 2016;144:371–82.
dc.relation.referencesVenables JA. Libro: Introduction to surface and thin film processes. Jhon A. Ve. Cambridge: CAMBRIDGE UNIVERSITY PRESS; 2003.
dc.relation.referencesStenzel O. Libro: Optical Coatings. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. (Springer Series in Surface Sciences; vol. 54). http://link.springer.com/10.1007/978-3-642-54063-9
dc.relation.referencesKrishna SB. Libro: Thin Film Structures in Energy Applications. Babu Krishna Moorthy S, editor. London: Springer International Publishing; 2015. http://link.springer.com/10.1007/978-3-319-14774-1
dc.relation.referencesLukaszkowicz K. Review of Nanocomposite Thin Films and Coatings Deposited by PVD and CVD Technology. In: Nanomaterials. InTech; 2011. p. 145–62.
dc.relation.referencesVepfek S, Reiprich S. A concept for the design of novel superhard coatings. Thin Solid Films. 1995;268:64–71.
dc.relation.referencesOlaya Florez JJ, Chipatecua Godoy YL, Sandra Elizabeth RP. Resistencia a la corrosión de recubrimientos de nitruros metálicos depositados sobre acero AISI M2. Ing Y Desarro. 2012;30(1).
dc.relation.referencesHuang J-H, Ho C-H, Yu G-P. Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si(100) and stainless steel substrates. Mater Chem Phys. 2007;102:31–8.
dc.relation.referencesNose M, Zhou M, Honbo E, Yokota M, Saji S. Colorimetric properties of ZrN and TiN coatings prepared by DC reactive sputtering. Surf Coatings Technol. 2001;142–144:211–7.
dc.relation.referencesArias DF, Arango YC, Devia A. Study of TiN and ZrN thin films grown by cathodic arc technique. Appl Surf Sci. 2006;253(4):1683–90.
dc.relation.referencesSandu CS, Sanjinés R, Medjani F. Control of morphology ( ZrN crystallite size and SiN x layer thickness ) in Zr–Si–N nanocomposite thin films. Surf Coat Technol. 2008;202(11):2278–81.
dc.relation.referencesBaghriche O, Kiwi J, Pulgarin C, Sanjinés R. Antibacterial Ag-ZrN surfaces promoted by subnanometric ZrN-clusters deposited by reactive pulsed magnetron sputtering. J Photochem Photobiol A Chem. 2012;229(1):39–45.
dc.relation.referencesSandu CS, Sanjinés R, Medjani F. Control of morphology (ZrN crystallite size and SiNx layer thickness) in Zr–Si–N nanocomposite thin films. Surf Coatings Technol. 2008;202(11):2278–81.
dc.relation.referencesTung HM, Huang JH, Tsai DG, Ai CF, Yu GP. Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment. Mater Sci Eng A. 2009;500(1–2):104–8.
dc.relation.referencesChen Y, Lin K-Y, Wang H, Lin K. Thermal stability of TaN, CrTaN, TaSiN, and CrTaSiN hard coatings in oxygen-containing atmospheres. Surf Coatings Technol. 2014;259:159–66.
dc.relation.referencesLi H, Zhang C, Liu C, Huang M. Improvement in corrosion resistance of CrN coatings. Surf Coatings Technol. 2019;365(393):158–63.
dc.relation.referencesMacías HA, Yate L, Coy LE, Olaya JJ, Aperador W. Effect of nitrogen flow ratio on microstructure, mechanical and tribological properties of TiWSiNx thin film deposited by magnetron co-sputtering. Appl Surf Sci. 2018;456:445–56.
dc.relation.referencesSanjińs R, Benkahoul M, Sandu CS, Schmid PE, Ĺvy F. Relationship between the physical and structural properties of Nb z Si y N x thin films deposited by dc reactive magnetron sputtering. J Appl Phys. 2005;98(12).
dc.relation.referencesVelasco L, Olaya JJ, Rodil SE. Effect of Si addition on the structure and corrosion behavior of NbN thin films deposited by unbalanced magnetron sputtering. Appl Phys A Mater Sci Process. 2016;122(2):1–10.
dc.relation.referencesSignore MA, Sytchkova A, Dimaio D, Cappello A, Rizzo A. Deposition of silicon nitride thin films by RF magnetron sputtering: A material and growth process study. Opt Mater (Amst). 2012;34(4):632–8.
dc.relation.referencesChou W-J, Yu G-P, Huang J-H. Bias effect of ion-plated zirconium nitride film on Si(100). Thin Solid Films. 2002;405(1–2):162–9.
dc.relation.referencesMorstein M, Willmott PR, Spillmann H, Döbeli M. From nitride to carbide: control of zirconium-based hard materials film growth and their characterization. Appl Phys A Mater Sci Process. 2002;75(6):647–54.
dc.relation.referencesVeszelei M, Andersson K, Ribbing C-G, Järrendahl K, Arwin H. Optical constants and Drude analysis of sputtered zirconium nitride films. Appl Opt. 1994;33(10):1993.
dc.relation.referencesSignore MA, Valerini D, Tapfer L, Caretto G, Rizzo A. Zirconium nitride films deposited in (Ar+N2 + H2) sputtering atmosphere: Optical, structural, and electrical properties. J Vac Sci Technol A Vacuum, Surfaces, Film. 2011;29(6):061507.
dc.relation.referencesButts DA, Gale WF. Smithells Metals Reference Book. Seventh Ed. Brook EAB& GB, editor. Butterworth-Heinemann; 2003. 1–534 p.
dc.relation.referencesKlumdoung P, Buranawong A, Chaiyakun S, Limsuwan P. Variation of color in Zirconium nitride thin films prepared at high Ar flow rates with reactive dc magnetron sputtering. Procedia Eng. 2012;32:916–21.
dc.relation.referencesDong Y, Zhao W, Yue J, Li G. Crystallization of Si3N4 layers and its influences on the microstructure and mechanical properties of ZrN∕Si3N4 nanomultilayers. Appl Phys Lett. 2006;89(12):121916.
dc.relation.referencesKulczyk-Malecka J, Kelly PJ, West G, G.C.B. C, Ridealgh JA. Diffusion studies in magnetron sputter deposited silicon nitride films. Surf Coatings Technol. 2014;255:37–42.
dc.relation.referencesTorchynska TV, Casas Espinola JL, Vergara Hernandez E, Khomenkova L, Delachat F, Slaoui A. Effect of the stoichiometry of Si-rich silicon nitride thin films on their photoluminescence and structural properties. Thin Solid Films. 2015;581:65–9.
dc.relation.referencesWu PH, Lin IK, Yan HY, Ou KS, Chen KS, Zhang X. Mechanical property characterization of sputtered and plasma enhanced chemical deposition (PECVD) silicon nitride films after rapid thermal annealing. Sensors Actuators, A Phys. 2011;168(1):117–26.
dc.relation.referencesAbadias G, Uglov V V., Saladukhin IA, Zlotski S V., Tolmachova G, Dub SN, et al. Growth, structural and mechanical properties of magnetron-sputtered ZrN/SiNxnanolaminated coatings. Surf Coatings Technol. 2016;308:158–67.
dc.relation.referencesCarlson ON. The N-Si (Nitrogen-Silicon) system. Bull Alloy Phase Diagrams. 1990;11(6):569–73.
dc.relation.referencesDaniel R, Musil J, Zeman P, Mitterer C. Thermal stability of magnetron sputtered Zr–Si–N films. Surf Coatings Technol. 2006;201(6):3368–76.
dc.relation.referencesColligon JS, Vishnyakov V, Valizadeh R, Donnelly SE, Kumashiro S. Study of nanocrystalline TiN/Si3N4 thin films deposited using a dual ion beam method. Thin Solid Films. 2005;485(1–2):148–54.
dc.relation.referencesVeprek S, Niederhofer A, Moto K, Bolom T, Nesladek P, Dollinger G, et al. Composition, Nanostructure and Origin of the Ultrahardness in nc-TiN r a-Si 3 N 4 r a- and nc-TiSi 2 Nanocomposites with H V s 80 to G 105 GPa. Surf Coatings Technol. 2000;133:152–9.
dc.relation.referencesUglov, V.V. Abadias, G. Zlotski, S.V. Saladukhin, I.A. Safronov, I.V. Shymanski, V.I. Janse van Vuuren, A. O’Connell, J. Skuratov, V. and Neethling JH. Features of microstructure of ZrN, Si3N4 and ZrN/SiNx nanoscale films irradiated by Xe ions. Vacuum. 2017;143:491–4.
dc.relation.referencesMusil J. Hard and superhard nanocomposite coatings. Surf Coatings Technol. 2000 Mar;125(1–3):322–30.
dc.relation.referencesMusil J, Vlček J. Magnetron sputtering of hard nanocomposite coatings and their properties. Surf Coatings Technol. 2001;142–144:557–66.
dc.relation.referencesS. Vanegas H, E. Alfonso J, J. Olaya J. Effect of Silicon Content in Functional Properties of Thin Films. In: Silicon Materials [Working Title]. IntechOpen; 2019. p. 1–22. https://www.intechopen.com/online-first/effect-of-silicon-content-in-functional-properties-of-thin-films
dc.relation.referencesSandu CS, Cusnir N, Oezer D, Sanjinés R, Patscheider J. Influence of bias voltage on the microstructure and physical properties of magnetron sputtered Zr–Si–N nanocomposite thin films. Surf Coatings Technol. 2009;204(6–7):969–72.
dc.relation.referencesMusil J, Daniel R, Zeman P, Takai O. Structure and properties of magnetron sputtered Zr–Si–N films with a high (≥25 at.%) Si content. Thin Solid Films. 2005;478(1–2):238–47.
dc.relation.referencesŠůna J, Musil J, Ondok V, Han JG. Enhanced hardness in sputtered Zr-Ni-N films. Surf Coatings Technol. 2006;200(22-23 SPEC. ISS.):6293–7.
dc.relation.referencesBushroa AR, Masjuki HH, Muhamad MR, Beake BD. Optimized scratch adhesion for TiSiN coatings deposited by a combination of DC and RF sputtering. Surf Coatings Technol. 2011;206(7):1837–44.
dc.relation.referencesMunroe P, Liu L, Xu J, Xie Z-H, Lu X, Wang G dong. Mechanical and corrosion-resistant properties of Ti–Nb–Si–N nanocomposite films prepared by a double glow discharge plasma technique. Ceram Int. 2014;40(6):8621–30.
dc.relation.referencesXu J, Chen J, Yu L. Influence of Si content on the microstructure and mechanical properties of VSiN films deposited by reactive magnetron sputtering. Vacuum. 2016;131:51–7.
dc.relation.referencesBenkahoul M, Robin P, Gujrathi SC, Martinu L, Klemberg-Sapieha JE. Microstructure and mechanical properties of Cr-Si-N coatings prepared by pulsed reactive dual magnetron sputtering. Surf Coatings Technol. 2008;202(16):3975–80.
dc.relation.referencesCui X, Jin G, Hao J, Li J, Guo T. The influences of Si content on biocompatibility and corrosion resistance of Zr-Si-N films. Surf Coatings Technol. 2013;228:524–8.
dc.relation.referencesDaniel R, Musil J, Zeman P, Mitterer C. Thermal stability of magnetron sputtered Zr–Si–N films. Surf Coatings Technol. 2006;201(6):3368–76.
dc.relation.referencesPilloud D, Pierson JF, Takadoum J. Structure and tribological properties of reactively sputtered Zr–Si–N films. Thin Solid Films. 2006;496(2):445–9.
dc.relation.referencesMusil J, Š M, Zeman P, Č R, He D, Han JG, et al. Properties of magnetron sputtered Al–Si–N thin films with a low and high Si content. Surf Coat Technol. 2008;202:3485–93.
dc.relation.referencesWan Q, Ding H, Yousaf MI, Chen YM, Liu HD, Hu L, et al. Corrosion behaviors of TiN and Ti-Si-N (with 2.9 at.% and 5.0 at.% Si) coatings by electrochemical impedance spectroscopy. Thin Solid Films. 2016;616:601–7.
dc.relation.referencesVeprek S, Veprek-Heijman MGJ, Karvankova P, Prochazka J. Different approaches to superhard coatings and nanocomposites. Thin Solid Films. 2005;476(1):1–29.
dc.relation.referencesDing JC, Wang QM, Liu ZR, Jeong S, Zhang TF, Kim KH, et al. Influence of bias voltage on the microstructure, mechanical and corrosion properties of AlSiN films deposited by HiPIMS technique. J Alloys Compd. 2019;772:112–21.
dc.relation.referencesGhafoor, Naureen. Petrov, Ivan. Klenov, Dmitri O. Freitag, Bert. Jensen, Jens. Greene, J. E. Hultman, Lars. and Odén M. Self-organized anisotropic (Zr1-xSix)Ny nanocomposites grown by reactive sputter deposition. Acta Mater. 2015;82:179–89.
dc.relation.referencesVanegas P HS, Calderon V S, Alfonso O JE, Olaya F JJ, Ferreira PJ, Carvalho S. Influence of silicon on the microstructure and the chemical properties of nanostructured ZrN-Si coatings deposited by means of pulsed-DC reactive magnetron sputtering. Appl Surf Sci. 2019;481:1249–59.
dc.relation.referencesOliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(06):1564–83.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalsputtering
dc.subject.proposalsputtering
dc.subject.proposalZrN
dc.subject.proposalZrN
dc.subject.proposalZrSiN-Cu
dc.subject.proposalZrSiNAg
dc.subject.proposalMEB
dc.subject.proposalZrSiNCu
dc.subject.proposalcoatings
dc.subject.proposalEDX
dc.subject.proposalrecubrimientos
dc.subject.proposalXRD
dc.subject.proposalTEM
dc.subject.proposalZrN-Si
dc.subject.proposalMEB
dc.subject.proposalZrSiN-Ag
dc.subject.proposalDRX
dc.subject.proposalEDS
dc.subject.proposalMET
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito