Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorDueñas Gómez, Zulma Janeth
dc.contributor.authorSierra Murgeitio, Carlos Andrés
dc.date.accessioned2020-09-03T05:00:53Z
dc.date.available2020-09-03T05:00:53Z
dc.date.issued2020-08-28
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78370
dc.description.abstractSeres humanos y roedores, como la mayoría de los mamíferos, comparten en las primeras etapas de vida un vínculo dado por la relación madre-hijo, que permite la supervivencia y buen desarrollo del neonato. Se ha demostrado que la disrupción de este vínculo genera efectos negativos en la vida posterior de las crías a corto, mediano y largo plazo, alterando la respuesta neuroendocrina y comportamental. Utilizando un modelo animal de separación materna, se mostró que crías que habían sido separadas de su madre por períodos cortos durante la lactancia, en la adolescencia incrementaban su consumo de edulcorantes y comida altamente palatable. Por su parte el glutamato monosódico (GMS) es un aditivo alimentario ampliamente utilizado para potenciar y mejorar la aceptación los alimentos, además de estar relacionado con neurotoxicidad y consecuencias a largo plazo en modelos animales. El objetivo de este estudio fue determinar si la separación materna durante la lactancia (SMDL) influye en el consumo de glutamato monosódico (GMS) y si estos dos factores producen cambios en el aprendizaje, la memoria espacial y el peso de ratas macho separadas; comparadas con su grupo control. El protocolo de SMDL se realizó a partir del día postnatal 1 al 21 separando las crías 180 minutos en la mañana y 180 en la tarde, durante la fase de oscuridad. El grupo control correspondió a los animales que no se sometieron al protocolo de separación materna y se manipularon únicamente para el cambio respectivo de cama. El día postnatal 30 los animales previamente asignados comenzaron tratamiento con GMS. Se manejaron en total 4 grupos de trabajo distribuidos así: Grupo control: machos sin GMS y sin separación materna (n=7): machos con SMDL y GMS (n=12), machos sin SMDL y con GMS (n=11) y finalmente machos con SMDL y sin GMS (n=10). Durante un mes los grupos con GMS tenían dos botellas con agua, una de ellas con GMS. Se realizaban cambios de la solucion cada 1.5 días. Se registró el consumo de GMS cada 24 horas, el peso corporal cada 3 días y al día 60 las ratas fueron expuestas a la prueba del laberinto de Barnes. Se encontró que los animales sometidos al paradigma de SMDL, se generó un aumento de peso corporal cuando se comparó con sus controles (p 0.05), No se encontraron diferencias en el consumo de la solución que contenía GMS, para ningún grupo evaluado. Adicionalmente en las pruebas aprendizaje y recobro no se encontraron diferencias significativas para los individuos que se expusieron a SMDL. Los resultados indican que el estrés temprano podría estar asociado con cambios importantes en los patrones de ingesta alimentaria y que la adición de GMS únicamente se pudo relacionar con cambios en el peso corporal, sin tener efectos en la actividad cognitiva.
dc.description.abstractHumans and rodents, like most mammals, share in the early stages of life a bond given by the mother-child relationship, where it has been shown that disruption generates negative effects on the later life of the offspring in the short, medium and long term, altering the neuroendocrine and behavioral response. Monosodium glutamate (GMS) is a food additive widely used to enhance and improve food acceptance, in addition, it has been related to neurotoxicity and long-term consequences in animal models. The objective of this study was to determine if maternal separation during breastfeeding (MSDB) influences the consumption of MSG and whether these two factors produce changes in learning, spatial memory, weight and water intake of separate male rats; compared to their control group. The MSDB protocol was performed from day 1 to 21 of life for a period of 360 minutes daily: 180 in the morning and 180 in the afternoon, during the dark phase. The control group was the animals that did not undergo the maternal separation protocol, nor did them receive GMS. On the postnatal day 30 the animals previously assigned started treatment with MSG. Four work groups were managed: Control group: males without GMS and without maternal separation (n = 7): males with MSDB and GMS (n = 12), males without MSDB and with MSG (n = 11), and finally males with MSDB and without MSG (n = 10). During one month, the GMS groups were awarded two bottles with the same amount of water, one containing the GMS and the other just water, which was changed every 2 days. GMS every 24 hours, body weight every 3 days, and finally day 60 rats were exposed to the widely valid Barnes maze. It was found that animals subjected to the MSDB paradigm, an increase in the consumption of MSG, possibly related to an increase in weight found in the same experimental group. Additionally, in the learning and retrieval tests, significant differences were not found for individuals who were exposed to the MSDB paradigm, tending to perform worse in spatial memory tests when compared to their respective controls. The results indicate that early stress may be associated with changes in eating patterns, and the adition of MSG only can be ralated with changes in the body weight, show no effects in the cognitive activity
dc.description.sponsorshipHERMES
dc.format.extent151
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc610 - Medicina y salud
dc.subject.ddc590 - Animales
dc.subject.ddc155 - Psicología diferencial y del desarrollo
dc.titleEfectos de la separación materna sobre el consumo de glutamato monosódico y la memoria espacial en ratas macho
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Estrés Crónico
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Fisiología
dc.contributor.corporatenameUniversidad Nacional de Colombia
dc.contributor.researchgroupNeurofisiología Comportamental
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references4. Aisa, B., Elizalde, N., Tordera, R., Lasheras, B., Del Río, J. and Ramírez, M. (2009). Effects of neonatal stress on markers of synaptic plasticity in the hippocampus: Implications for spatial memory. Hippocampus, 19(12), pp.1222-1231.
dc.relation.references5. Arborelius, L. and Eklund, M. (2007). Both long and brief maternal separation produces persistent changes in tissue levels of brain monoamines in middle-aged female rats. Neuroscience, 145(2), pp.738-750.
dc.relation.references6 .Aya-Ramos, L., Contreras-Vargas, C., Rico, J. and Dueñas, Z. (2017). Early maternal separation induces preference for sucrose and aspartame associated with increased blood glucose and hyperactivity. Food & Function, 8(7), pp.2592-2600.
dc.relation.references7 .Aya. L., Dueñas Z (2015) Efecto de la separación maternal durante la lactancia en ratas, sobre el consumo de edulcorantes, el peso corporal y la locomoción. Tesis de maestría. Universidad Nacional de Colombia, sede Bogotá.
dc.relation.references8 .Bach, M., Hawkins, R., Osman, M., Kandel, E. and Mayford, M. (1995). Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal ltp in the range of the frequency. Cell, 81(6), pp.905-915.
dc.relation.references9. Banqueri, M., Méndez, M., & Arias, J. (2017). Spatial memory-related brain activity in normally reared and different maternal separation models in rats. Physiology & Behavior, 181, 80-85. http://dx.doi.org/10.1016/j.physbeh.2017.09.007
dc.relation.references10. Barnes, C. (1979). Memory deficits associated with senescence: A neurophysiological and behavioral study in the rat. Journal of Comparative and Physiological Psychology, 93(1), pp.74-104.
dc.relation.references10. Barnes, C., Nadel, L. and Honig, W. (1980). Spatial memory deficit in senescent rats. Canadian Journal of Psychology/Revue canadienne de psychologie, 34(1), pp.29-39.
dc.relation.references11. Bautista, E. and Dueñas, Z. (2012). Maternal separation during breastfeeding induces changes in the number of cells immunolabeled to GFAP. Psychology & Neuroscience, 5(2), pp.207-213.
dc.relation.references12. Bischof, H. (2007). Behavioral and neuronal aspects of developmental sensitive periods. NeuroReport, 18(5), pp.461-465.
dc.relation.references13. Boccia, M. and Pedersen, C. (2001). Brief vs. long maternal separations in infancy: contrasting relationships with adult maternal behavior and lactation levels of aggression and anxiety. Psychoneuroendocrinology, 26(7), pp.657-672.
dc.relation.references14 .Boonnate, P., Waraasawapati, S., Hipkaeo, W., Pethlert, S., Sharma, A., Selmi, C., Prasongwattana, V. and Cha’on, U. (2015). Monosodium Glutamate Dietary Consumption Decreases Pancreatic β-Cell Mass in Adult Wistar Rats. PLOS ONE, 10(6), p.e0131595.
dc.relation.references15. Bowlby J. Maternal care and mental health 2 Ed, Northvale NJ, London, Jarson Aronson, 1995.
dc.relation.references16 .Buwalda, B., Blom, W., Koolhaas, J. and van Dijk, G. (2001). Behavioral and physiological responses to stress are affected by high-fat feeding in male rats. Physiology & Behavior, 73(3), pp.371-377.
dc.relation.references17. Caicedo M, Dueñas Z. (2015) Efectos del estrés inducido por separación materna durante la lactancia. Evaluación de probables mecanismos involucrados en la expresión diferencial asociada al género. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.relation.references18. Caicedo.M., Dueñas Z., & Torner L. (2017). Global Effects of Early Life Stress on Neurons and Glial Cells. Current Pharmaceutical Design, 23(39), 6042-6049. http://dx.doi.org/10.2174/1381612823666170224111641
dc.relation.references19. Cárdenas, F. P., Lamprea, M. R., & Morato, S. (2005). XPloRat v.3.5. Beta Para Windows. Universidade de São Paulo, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Ribeirão Preto, Brasil. Available via DIALOG. <http://www.oocities.org/xplorat/>. Accessed 27 Feb 2018.
dc.relation.references20. Champagne, F., Francis, D., Mar, A., & Meaney, M. (2003). Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiology & Behavior, 79(3), 359-371.
dc.relation.references21. Collison, K., Makhoul, N., Inglis, A., Al-Johi, M., Zaidi, M., Maqbool, Z., Saleh, S., Bakheet, R., Mondreal, R., Al-Rabiah, R., Shoukri, M., Milgram, N. and Al-Mohanna, F. (2010). Dietary trans-fat combined with monosodium glutamate induces dyslipidemia and impairs spatial memory. Physiology & Behavior, 99(3), pp.334-342.
dc.relation.references22. Conrad, C. (2010). A critical review of chronic stress effects on spatial learning and memory. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34(5), pp.742-755.
dc.relation.references23. Conrad, C., McLaughlin, K., Huynh, T., El-Ashmawy, M. and Sparks, M. (2012). Chronic stress and a cyclic regimen of estradiol administration separately facilitate spatial memory: Relationship with hippocampal CA1 spine density and dendritic complexity. Behavioral Neuroscience, 126(1), pp.142-156.
dc.relation.references24. Contini, M., Fabro, A., Millen, N., Benmelej, A. and Mahieu, S. (2017). Adverse effects in kidney function, antioxidant systems and histopathology in rats receiving monosodium glutamate diet. Experimental and Toxicologic Pathology.
dc.relation.references25. Corsini, N., Kettler, L., Danthiir, V., & Wilson, C. (2018). Parental feeding practices to manage snack food intake: Associations with energy intake regulation in young children. Appetite, 123, 233-240. http://dx.doi.org/10.1016/j.appet.2017.12.024
dc.relation.references26. Cotrell C y Selk R J, Prenatal Stress, Glucocorticoids and the programing of adult disease. 2009, Behavioral Frontiers in neurosciene, Frontiers.
dc.relation.references27. C.W Nogeira, Suzan G. Rosa a , Juliana T. Da Rocha a , Bibiana M. Gai a , Cristiani F. Bortolatto a , Marta Maria M.F. Duarte b (2014).Monosodium glutamate, a food additive, induces depressive-like and anxiogenic-like behaviors in young rats , Elsevier, Life sciences journal..
dc.relation.references28. De Kloet, C., Vermetten, E., Geuze, E., Kavelaars, A., Heijnen, C. and Westenberg, H. (2006). Assessment of HPA-axis function in posttraumatic stress disorder: Pharmacological and non-pharmacological challenge tests, a review. Journal of Psychiatric Research, 40(6), pp.550-567.
dc.relation.references29. De Kloet, E., Oitzl, M. and Joëls, M. (1999). Stress and cognition: are corticosteroids good or bad guys?.Trends in Neurosciences, 22(10), pp.422-426.
dc.relation.references30. De Souza, J., da Silva, M., de Matos, R., do Amaral Almeida, L., Beltrão, L., & de Souza, F. et al. (2018). Pre-weaning maternal separation increases eating later in life in male and female offspring, but increases brainstem dopamine receptor 1a and 2a only in males. Appetite, 123, 114-119. http://dx.doi.org/10.1016/j.appet.2017.12.004
dc.relation.references31. Dief, A., Kamha, E., Baraka, A. and Elshorbagy, A. (2014). Monosodium glutamate neurotoxicity increases beta amyloid in the rat hippocampus: A potential role for cyclic AMP protein kinase. NeuroToxicology, 42, pp.76-82.
dc.relation.references32. Dixit, S., Rani, P., Anand, A., Khatri, K., Chauhan, R., & Bharihoke, V. (2013). To study the effect of monosodium glutamate on histomorphometry of cortex of kidney in adult albino rats. Renal Failure, 36(2), 266-270. http://dx.doi.org/10.3109/0886022x.2013.846865
dc.relation.references33. Dueñas, Z., Caicedo-Mera, J. and Torner, L. (2018). Global Effects of Early Life Stress on Neurons and Glial Cells. Current Pharmaceutical Design, 23(39), pp.6042-6049.
dc.relation.references34. EL TIEMPO. Al año nacen cerca de 159.000 bebés de madres adolescentes. 22 deseptiembre de 2014
dc.relation.references35 .EL TIEMPO. Dos niños por día son abandonados en Bogotá. 18 de noviembre de 2013
dc.relation.references36. https://www.efsa.europa.eu/en/press/news/170712
dc.relation.references36 .http://www.fao.org/food/food-safety-quality/scientific-advice/jecfa/es/
dc.relation.references37. Farombi, E.O.; Onyema, O.O. (2006) Monosodium Glutamate Induced Oxidative Damage and Genotoxicity in the Rat: Modulatory Role of Vitamin C, Vitamin E and Quercetin; Human and Experimental Toxicology 25(5), 251–259
dc.relation.references38. Foran, L., Blackburn, K. and Kulesza, R. (2017). Auditory hindbrain atrophy and anomalous calcium binding protein expression after neonatal exposure to monosodium glutamate. Neuroscience, 344, pp.406-417.
dc.relation.references39. Fowler, S. (2016). Low-calorie sweetener uses and energy balance: Results from experimental studies in animals, and large-scale prospective studies in humans. Physiology & Behavior, 164, pp.517-523.
dc.relation.references40. Fuentes, I., Walker, N., Pierce, A., Holt, B., Di Silvestro, E., & Christianson, J. (2016). Neonatal maternal separation increases susceptibility to experimental colitis and acute stress exposure in male mice. IBRO Reports, 1, 10-18. http://dx.doi.org/10.1016/j.ibror.2016.07.001
dc.relation.references41. González-Burgos, I., Velázquez-Zamora, D. and Beas-Zárate, C. (2009). Damage and plasticity in adult rat hippocampal trisynaptic circuit neurons after neonatal exposure to glutamate excitotoxicity. International Journal of Developmental Neuroscience, 27(8), pp.741-745.
dc.relation.references42. Grønli, J., Fiske, E., Murison, R., Bjorvatn, B., Sørensen, E., Ursin, R. and Portas, C. (2007). Extracellular levels of serotonin and GABA in the hippocampus after chronic mild stress in rats. A microdialysis study in an animal model of depression. Behavioural Brain Research, 181(1), pp.42-51.
dc.relation.references43. Harlow, H. F., Harlow, M. K., Dodsworth, R. O., & Arling, G. L. Maternal Behavior of Rhesus Monkeys Deprived of Mothering and Peer Associations in Infancy. Proceedings of the American Philosophical Society. 1966; 110(1), 58-66.
dc.relation.references44 .Harrison, F., Reiserer, R., Tomarken, A. & McDonald, M. (2006). Spatial and nonspatial escape strategies in the Barnes maze. Learning & Memory, 13(6), 809-819
dc.relation.references45. Henao M, Martín L, Caicedo JC, Dueñas Z. Efecto de la Separación Materna Durante la Lactancia sobre el comportamiento Motor Espontáneo y la memoria de reconocimiento deobjetos en ratas Wistar. Poster. Neuroscience; 2014
dc.relation.references46. Hata, K., Kubota, M., Shimizu, M., Moriwaki, H., Kuno, T., & Tanaka, T. et al. (2012). Monosodium glutamate-induced diabetic mice are susceptible to azoxymethane-induced colon tumorigenesis. Carcinogenesis, 33(3), 702-707.
dc.relation.references47. Hermanussen, Μ. & Tresguerres, J. (2003). Does High Glutamate Intake Cause Obesity? Journal Of Pediatric Endocrinology And Metabolism, 16(7).
dc.relation.references48. Hermanussen, M. & Tresguerres, J. (2003). Does the thrifty phenotype result from chronic glutamate intoxication? A hypothesis. Journal of Perinatal Medicine, 31(6).
dc.relation.references49. Hermanussen, M., García, A., Sunder, M., Voigt, M., Salazar, V., & Tresguerres, J. (2005). Obesity, voracity, and short stature: the impact of glutamate on the regulation of appetite. European Journal of Clinical Nutrition, 60(1), 25-31.
dc.relation.references50. Hui, J., Feng, G., Zheng, C., Jin, H., & Jia, N. (2017). Maternal separation exacerbates Alzheimer’s disease-like behavioral and pathological changes in adult APPswe/PS1dE9 mice. Behavioural Brain Research, 318, 18-23.
dc.relation.references51. ICBF. Guías alimentarias para la población colombiana mayor de dos años. Bases técnicas. Instituto Colombiano de Bienestar Familiar. 1998
dc.relation.references52. Instituto Colombiano de Bienestar Familiar. Alarmantes cifras de maltrato infantil. 2013
dc.relation.references53. Instituto Colombiano de Bienestar Familiar. Encuesta Nacional de la Situación Nutricional en Colombia 2005 – ENSIN. Bogotá; 2005.
dc.relation.references54. Instituto Colombiano de Bienestar Familiar. Encuesta Nacional de la Situación Nutricional en Colombia 2010 – ENSIN, Bogotá; 2010
dc.relation.references55.Insawang, T.; Selmi, C.; Cha’on, U.; Pethlert, S.; Yongvanit, P.; Areejitranusorn, P.; Prasongwattana, V. Monosodium Glutamate (MSG) (2012) Intake Is Associated with the Prevalence of Metabolic Syndrome in a Rural Thai Population. Nutrition & Metabolism.
dc.relation.references55. Instituto Colombiano de Bienestar Familiar. Encuesta Nacional de la Situación Nutricional en Colombia 2010 – ENSIN, Bogotá; 2015
dc.relation.references56. Izquierdo, I. and Medina, J. (1997). Memory Formation: The Sequence of Biochemical Events in the Hippocampus and Its Connection to Activity in Other Brain Structures. Neurobiology of Learning and Memory, 68(3), pp.285-316.
dc.relation.references57. Jahng, J. (2011). An animal model of eating disorders associated with stressful experience in early life. Hormones and Behavior, 59(2), pp.213-220.
dc.relation.references57. Jubaidi, F., Mathialagan, R., Noor, M., Taib, I. and Budin, S. (2019). Monosodium glutamate daily oral supplementation: study of its effects on male reproductive system on rat model. Systems Biology in Reproductive Medicine, 65(3), pp.194-204.
dc.relation.references58. Juruena, M. (2014). Early-life stress and HPA axis trigger recurrent adulthood depression. Epilepsy & Behavior, 38, pp.148-159.
dc.relation.references59. Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2013). Principles of neural science. New York: McGraw-Hill, Health Professions Division.
dc.relation.references60 .Kazmi, Z., Fatima, I., Perveen, S., & Malik, S. (2017). Monosodium glutamate: Review on clinical reports. International Journal Of Food Properties, 1-9. http://dx.doi.org/10.1080/10942912.2017.1295260
dc.relation.references61. Keeley, R., Bye, C., Trow, J. and McDonald, R. (2015). Strain and sex differences in brain and behaviour of adult rats: Learning and memory, anxiety and volumetric estimates. Behavioural Brain Research, 288, pp.118-131.
dc.relation.references62. Krause, E., De Kloet, A., Flak, J., Smeltzer, M., Solomon, M., & Evanson, N. et al. (2011). Hydration state controls stress responsiveness and social behavior. Appetite, 57, S24. doi: 10.1016/j.appet.2011.05.202
dc.relation.references62.Kritzer, M., Brewer, A., Montalmant, F., Davenport, M. and Robinson, J. (2007). Effects of gonadectomy on performance in operant tasks measuring prefrontal cortical function in adult male rats. Hormones and Behavior, 51(2), pp.183-194.
dc.relation.references63. Kondoh, T. and Torii, K. (2008). MSG intake suppresses weight gain, fat deposition, and plasma leptin levels in male Sprague–Dawley rats. Physiology & Behavior, 95(1-2), pp.135-144.
dc.relation.references64. Lajud, N., Roque, A., Cajero, M., Gutiérrez-Ospina, G. and Torner, L. (2012). Periodic maternal separation decreases hippocampal neurogenesis without affecting basal corticosterone during the stress hyporesponsive period, but alters HPA axis and coping behavior in adulthood. Psychoneuroendocrinology, 37(3), pp.410-420.
dc.relation.references65. Lehmann, J., Pryce, C., Bettschen, D. and Feldon, J. (1999). The Maternal Separation Paradigm and Adult Emotionality and Cognition in Male and Female WistarRats.Pharmacology Biochemistry and Behavior, 64(4), pp.705-715.
dc.relation.references66. León Rodríguez DA, Dueñas Z (2013) Maternal Separation during Breastfeeding Induces Gender-Dependent Changes in Anxiety and the GABA-AReceptor Alpha-Subunit in Adult Wistar Rats. PLoS ONE 8(6): e68010. doi:10.1371/journal.pone.0068010
dc.relation.references67. Levine, S. (1967). Maternal and Environmental Influences on the Adrenocortical Response to Stress in Weanling Rats.Science, 156(3772), pp.258-260.
dc.relation.references68. Levine, S. and Thoman, E. (1969).Physiological and behavioral consequences of postnatal maternal stress in rats.Physiology& Behavior, 4(2), pp.139-142.
dc.relation.references69. Levine, S. Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology. 2005; 30, 939–946.
dc.relation.references70. León G. D, Dueñas Z 2012, efectos de la separación materna temprana sobre el desempeño en el laberinto en cruz elevado en ratas adultas. Acta Biológica colombiana, N 17, pp.129 -142, 2012
dc.relation.references71. Liu, C., Hao, S., Zhu, M., Wang, Y., Zhang, T., & Yang, Z. (2018). Maternal Separation Induces Different Autophagic Responses in the Hippocampus and Prefrontal Cortex of Adult Rats. Neuroscience, 374, 287-249 http://dx.doi.org/10.1016/j.neuroscience.2018.01.043
dc.relation.references72. López-Pérez, S., Vergara, P., Ventura-Valenzuela, J., Ureña-Guerrero, M., Segovia, J. and Beas-Zárate, C. (2005). Modification of dopaminergic markers expression in the striatum by neonatal exposure to glutamate during development.International Journal of Developmental Neuroscience, 23(4), pp.335-342.
dc.relation.references73. Ludmer, J., Jamieson, B., Gonzalez, A., Levitan, R., Kennedy, J., & Villani, V. et al. (2017). Maternal DRD2, SLC6A3, and OXTR genotypes as potential moderators of the relation between maternal history of care and maternal cortisol secretion in the context of mother-infant separation. Biological Psychology, 129, 154-164. http://dx.doi.org/10.1016/j.biopsycho.2017.09.004
dc.relation.references74. Maghami, S., Zardooz, H., Khodagholi, F., Binayi, F., Ranjbar Saber, R., Hedayati, M., Sahraei, H. and Ansari, M. (2018). Maternal separation blunted spatial memory formation independent of peripheral and hippocampal insulin content in young adult male rats. PLOS ONE, 13(10), p.e0204731.
dc.relation.references74. Maras PM, Baram TZ, (2015), Early life stress: Rodent models, Lessons and Challenges. Chapter 12 in Neuroendocrinology of stress, first edition. Edited by John A Russell and Michael J Shimptom. Wiley books. Pp. 265-286.
dc.relation.references75. Madl, T., Chen, K., Montaldi, D. and Trappl, R. (2015). Computational cognitive models of spatial memory in navigation space: A review. Neural Networks, 65, pp.18-43.
dc.relation.references76. Mahieu, S., Klug, M., Millen, N., Fabro, A., Benmelej, A., & Contini, M. (2016). Monosodium glutamate intake affect the function of the kidney through NMDA receptor. Life Sciences, 149, 114-119. doi: 10.1016/j.lfs.2016.02.023
dc.relation.references76. Maniam, J., & Morris, M. (2008). Palatable, high fat diet ameliorates anxiety-like behavior induced by maternal separation in male rats. Appetite, 51(2), 383. http://dx.doi.org/10.1016/j.appet.2008.04.156
dc.relation.references77. Maniam, J., & Morris, M. (2010). Long-term postpartum anxiety and depression-like behavior in mother rats subjected to maternal separation are ameliorated by palatable high fat diet. Behavioural Brain Research, 208(1), 72-79. http://dx.doi.org/10.1016/j.bbr.2009.11.005
dc.relation.references78. Matthews, K. and Robbins, T. (2003). Early experience as a determinant of adult behavioural responses to reward: the effects of repeated maternal separation in the rat. Neuroscience &Biobehavioral Reviews, 27(1-2), pp.45-55.
dc.relation.references79. McEwen, B. (2000). Allostasis and Allostatic Load Implications for Neuropsychopharmacology.Neuropsychopharmacology, 22(2), pp.108-124.
dc.relation.references80. Meaney, M., Diorio, J., Francis, D., Widdowson, J., LaPlante, P., Caldji, C., Sharma, S., Seckl, J. and Plotsky, P. (1996). Early Environmental Regulation of Forebrain Glucocorticoid Receptor Gene Expression: Implications for Adrenocortical Responses to Stress; pp. 61&ndash;72. Developmental Neuroscience, 18(1-2), pp.61-72.
dc.relation.references81. Miyatake, Y., Shiuchi, T., Mawatari, K., Toda, S., Taniguchi, Y., Futami, A., Sato, F., Kuroda, M., Sebe, M., Tsutsumi, R., Harada, N., Minokoshi, Y., Kitamura, T., Gotoh, K., Ueno, M., Nakaya, Y. and Sakaue, H. (2017). Intracerebroventricular injection of ghrelin decreases wheel running activity in rats. Peptides, 87, pp.12-19.
dc.relation.references82. Mueller, B. and Bale, T. (2007). Early prenatal stress impact on coping strategies and learning performance is sex dependent. Physiology & Behavior, 91(1), pp.55-65.
dc.relation.references83. Noll J. G, Shalev I (2018) The Biology of Early Life Stress. Springer International Publishing AG, part of Springer Nature.Online ISBN 978-3-319-72589-5.
dc.relation.references84.Oliva, L., Aranda, T., Caviola, G., Fernández-Bernal, A., Alemany, M., Fernández-López, J., & Remesar, X. (2017). In rats fed high-energy diets, taste, rather than fat content, is the key factor increasing food intake: a comparison of a cafeteria and a lipid-supplemented standard diet. Peerj, 5, e3697. doi: 10.7717/peerj.3697
dc.relation.references85. Olney, J. W. Brain lesions, obesity and other disturbances in mice treated with monosodium glutamate. Science 164:719–721; 1969.
dc.relation.references86. Olney, J. and HO, O. (1970). Brain Damage in Infant Mice following Oral Intake of Glutamate, Aspartate or Cysteine.Nature, 227(5258), pp.609-611.
dc.relation.references87. Olney, J. W. Brain damage and oral intake of certain amino acids. Adv. Exp. Med. Biol. 69:497–506; 1976
dc.relation.references88. Olton, D. (1977). Spatial Memory.Sci Am, 236(6), pp.82-98.
dc.relation.references89. Olton, D. (1988). Aging and spatial cognition. Neurobiology of Aging, 9, pp.569-570.
dc.relation.references88. Ortiz- Montero P, Vernot J. P, Múnera G A .2011.Estrés agudo en ratas y su efecto en la adquisición, consolidación y extinción de la memoria espacial: papel de la proteína quinasa erk1/2 y de las proteínas fosfatasas pp1 y pp2b en el hipocampo. (Trabajo de grado) Universidad Nacional de Colombia, Facultad de medicina, sede Bogotá, 2011.
dc.relation.references89. Park, E., Kim, J., Lee, J. and Jahng, J. (2014). Increased depression-like behaviors with dysfunctions in the stress axis and the reward center by free access to highly palatable food. Neuroscience, 262, pp.31-39.
dc.relation.references90. Pepino, M., Finkbeiner, S., Beauchamp, G. and Mennella, J. (2010). Obese Women Have Lower Monosodium Glutamate Taste Sensitivity and Prefer Higher Concentrations Than Do Normal-weight Women. Obesity, 18(5), pp.959-965. https://doi.org/10.1038/oby.2009.493
dc.relation.references91. Plotsky, P. and Meaney, M. (1993). Early, postnatal experience alters hypothalamic corticotrophin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Molecular Brain Research, 18(3), pp.195-200.
dc.relation.references92. Plotsky, P., Owens, M. and Nemeroff, C. (1998).Psychoneuroendocrinology of Depression.Psychiatric Clinics of North America, 21(2), pp.293-307.
dc.relation.references93. Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A.-S., McNamara, J. O., Williams, S. M. & White L.E (Eds.). (2018). Neuroscience (6th ed.). Sunderland, MA, US: Sinauer Associates.
dc.relation.references94. Ramírez R .Dueñas, Z, (2009). Estudio Comparativo: Efectos De La Separación Tempana Sobre El Aprendizaje Y La Extinción De Una Tarea De Memoria Espacial En Ratas Wistar. Tesis de grado. Programa de psicología, p.p 27,30-49
dc.relation.references95. Raone, A., Cassanelli, A., Scheggi, S., Rauggi, R., Danielli, B. and De Montis, M. (2007). Hypothalamus–pituitary–adrenal modifications consequent to chronic stress exposure in an experimental model of depression in rats.Neuroscience, 146(4), pp.1734-1742.
dc.relation.references96. Reynoso-Robles, R., Ponce-Macotela, M., Rosas-López, L. E., & Ramos-Morales, A. (2015). The invasive- potential of Giardia intestinalis in an in vivo model. Scientific Reports, 1 - 8.
dc.relation.references97. Rivera-Cervantes, M., Flores-Soto, M., Chaparro-Huerta, V., Reyes-Gómez, J., Feria-Velasco, A., Schliebs, R. and Beas-Zárate, C. (2009). Changes in hippocampal NMDA-R subunit composition induced by exposure of neonatal rats to l-glutamate. International Journal of Developmental Neuroscience, 27(2), pp.197-204.
dc.relation.references98. Riveros-Barrera, I., & Dueñas, Z. (2015). La separación materna durante la lactancia altera los niveles basales neuroendocrinos en ratas adolescentes y adultas. Biomédica, 36(1). http://dx.doi.org/10.7705/biomedica.v36i1.2830
dc.relation.references99. Romeo, R., Mueller, A., Sisti, H., Ogawa, S., McEwen, B. and Brake, W. (2003). Anxiety and fear behaviors in adult male and female C57BL/6 mice are modulated by maternal separation. Hormones and Behavior, 43(5), pp.561-567.
dc.relation.references100. Roozendaal, B. (2002). Stress and Memory: Opposing Effects of Glucocorticoids on Memory Consolidation and Memory Retrieval, Neurobiology of Learning and Memory, 78(3), pp.578-595.
dc.relation.references101. Roozendaal, B. & McGaugh, J. (1997). Glucocorticoid receptor agonist and antagonist administration into the basolateral but not central amygdala modulates memory storage. Neurobiology of Learning and Memory, 67(2), 176-179.
dc.relation.references102. Rosenfeld, P., Gutierrez, Y., Martin, A., Mallett, H., Alleva, E. and Levine, S. (1991). Maternal regulation of the adrenocortical response in preweanling rats. Physiology& Behavior, 50(4), pp.661-671.
dc.relation.references103. Ryu, V., Lee, J., Yoo, S., Gu, X., Moon, Y., & Jahng, J. (2008). Sustained hyperphagia in adolescent rats that experienced neonatal maternal separation. International Journal Of Obesity, 32(9), 1355-1362. http://dx.doi.org/10.1038/ijo.2008.108
dc.relation.references104. Sasagawa, T., Horii-Hayashi, N., Okuda, A., Hashimoto, T., Azuma, C., & Nishi, M. (2017). Long-term effects of maternal separation coupled with social isolation on reward seeking and changes in dopamine D1 receptor expression in the nucleus accumbens via DNA methylation in mice. Neuroscience Letters.
dc.relation.references105. Shah, S., Yoon, G., Kim, H. and Kim, M. (2015). Vitamin C Neuroprotection Against Dose-Dependent Glutamate-Induced Neurodegeneration in the Postnatal Brain. Neurochemical Research, 40(5), pp.875-884.
dc.relation.references106. Sharma A, Wongkham C, Prasongwattana V, Boonnate P, Thanan R, Reungjui S, et al. (2014) Proteomic Analysis of Kidney in Rats Chronically Exposed to Monosodium Glutamate. PLoS ONE 9(12): e116233.
dc.relation.references107. Shin, S., Han, S., Woo, R., Jang, S., & Min, S. (2016). Adolescent mice show anxiety- and aggressive-like behavior and the reduction of long-term potentiation in mossy fiber-CA3 synapses after neonatal maternal separation. Neuroscience, 316, 221-231.
dc.relation.references108-Shi, Z., Luscombe-Marsh, N., Wittert, G., & Taylor, A. (2010). Monosodium glutamate is not associated with obesity or a greater prevalence of weight gain over 5 years: findings from the Jiangsu Nutrition Study of Chinese adults – response by Shi et al. British Journal Of Nutrition, 104(11), 1730-1730. doi: 10.1017/s000711451000276x
dc.relation.references109. Spencer, R., Kim, P., Kalman, B. and Cole, M. (1998).Evidence for Mineralocorticoid Receptor Facilitation of Glucocorticoid Receptor-Dependent Regulation of Hypothalamic-Pituitary-Adrenal Axis Activity 1.Endocrinology, 139(6), pp.2718-2726.
dc.relation.references110. Spencer, R. & Deak, T. (2016). A users guide to HPA axis research. Physiology & Behavior. http://dx.doi.org/10.1016/j.physbeh.2016.11.014
dc.relation.references111. Suchecki, D., Rosenfeld, P. and Levine, S. (1993). Maternal regulation of the hypothalamic-pituitary-adrenal axis in the infant rat: the roles of feeding and stroking. Developmental Brain Research, 75(2), pp.185-192.
dc.relation.references112. Tawfik, M.S.; Al-Badr, N. (2012) Adverse Effects of Monosodium Glutamate on Liver and Kidney Functions in Adult Rats and Potential Protective Effect of Vitamins C and E. Food and Nutrition Sciences, 3, 651–659.
dc.relation.references112. Thomas, A., Caporale, N., Wu, C., & Wilbrecht, L. (2016). Early maternal separation impacts cognitive flexibility at the age of first independence in mice. Developmental Cognitive Neuroscience, 18, 49-56. http://dx.doi.org/10.1016/j.dcn.2015.09.005
dc.relation.references113. Tretter, L. (2004). Generation of Reactive Oxygen Species in the Reaction Catalyzed by -Ketoglutarate Dehydrogenase. Journal of Neuroscience, 24(36), pp.7771-7778.
dc.relation.references114. truthinlabeling. History of Invention and Use of MSG. n.d. http://www.truthinlabeling.org/IVhistoryOfUse.ht
dc.relation.references115. Tsankova, N., Renthal, W., Kumar, A., & Nestler, E. (2007). Epigenetic regulation in psychiatric disorders. Nature Reviews Neuroscience, 8(5), 355-367.
dc.relation.references116. Tsuda, M. and Ogawa, S. (2010). Adverse early life experiences alter the development of social interactive behaviors in adult C57BL/6J female mice. Neuroscience Research, 68, p.e413.
dc.relation.references17. Uneyama, H., Niijima, A., San Gabriel, A. and Torii, K. (2006). Luminal amino acid sensing in the rat gastric mucosa.AJP: Gastrointestinal and Liver Physiology, 291(6), pp.G1163-G1170.
dc.relation.references118. Vargas-López, V., Lamprea, M. and Múnera, A. (2011). Characterizing spatial extinction in an abbreviated version of the Barnes maze. Behavioural Processes, 86(1), pp.30-38.
dc.relation.references119. WAM, d., & BO, M. (2016). The Cognitive Function Of Wistar Rats Subjected To Cafeteria Diet And To Chronic Stress. Journal Of Obesity & Eating Disorders, 2(1). doi: 10.21767/2471-8203.100012
dc.relation.references119. Wassum, K., & Izquierdo, A. (2015). The basolateral amygdala in reward learning and addiction. Neuroscience & Biobehavioral Reviews, 57, 271-283. http://dx.doi.org/10.1016/j.neubiorev.2015.08.017
dc.relation.references120. Windmueller, H., & Spaeth, A. (2009). UPTAKE AND METABOLISM OF PLASMA GLUTAMINE BY THE SMALL INTESTINE. Nutrition Reviews, 48(8), 310-312. doi: 10.1111/j.1753-4887.1990.tb02968.x
dc.relation.references120.Williams, M., Blankenmeyer, T., Schaefer, T., Brown, C., Gudelsky, G. and Vorhees, C. (2003). Long-term effects of neonatal methamphetamine exposure in rats on spatial learning in the Barnes maze and on cliff avoidance, corticosterone release, and neurotoxicity in adulthood. Developmental Brain Research, 147(1-2), pp.163-175.
dc.relation.references121. Willner, P., Towell, A., Sampson, D., Sophokleous, S. and Muscat, R. (1987). Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology, 93(3).
dc.relation.references122. World Health Organization. Infant and young child feeding: model chapter for textbooks for medical students and allied health professionals. Ginebra: WHO Press; 2009
dc.relation.references123. Windmueller, H.G.; Spaeth, A.E. (1980) Respiratory Fuels and Nitrogen Metabolism in Vivo in Small Intestine of Fed Rats. Quantitative Importance of Glutamine, Glutamate, and Aspartate. Journal of Biological Chemistry, 255, 107–112.v
dc.relation.references124. Yehuda, S., Carasso, R. and Mostofsky, D. (1991). The facilitative effects of α-MSH and melanin on learning, thermoregulation, and pain in neonatal MSG-treated rats. Peptides, 12(3), pp.465-469.
dc.relation.references125. Yoo, S., Ryu, V., Park, E., Kim, B., Kang, D., Lee, J., & Jahng, J. (2011). The arcuate NPY, POMC, and CART expressions responding to food deprivation are exaggerated in young female rats that experienced neonatal maternal separation. Neuropeptides, 45(5), 343-349. doi: 10.1016/j.npep.2011.07.005
dc.relation.references125. Zar, J.H., 1974. Multiple comparisons. In: McElroy, W.O., Swanson, C.D. (Eds.), Biostatistical Analysis. Prentice Hall, New York, pp. 120–131
dc.relation.references126.Zeeni, N., Bassil, M., Fromentin, G., Chaumontet, C., Darcel, N., Tome, D., & Daher, C. (2015). Environmental enrichment and cafeteria diet attenuate the response to chronic variable stress in rats. Physiology & Behavior, 139, 41-49. doi: 10.1016/j.physbeh.2014.11.003
dc.relation.references127.Zeeni, N., Daher, C., Fromentin, G., Tome, D., Darcel, N., & Chaumontet, C. (2012). A cafeteria diet modifies the response to chronic variable stress in rats. Stress, 16(2), 211-219. doi: 10.3109/10253890.2012.708952
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalseparación materna
dc.subject.proposalmaternal separation
dc.subject.proposalglutamato monosódico
dc.subject.proposalmonosodium glutamate
dc.subject.proposalestrés temprano
dc.subject.proposalearly stress
dc.subject.proposalmemoria espacial
dc.subject.proposalspatial memory
dc.subject.proposallaberinto de Barnes
dc.subject.proposalBarnes Maze
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito