Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGuerrero Fonseca, Carlos Arturo
dc.contributor.advisorAcosta Losada, Orlando
dc.contributor.authorGuerrero Rojas, Rafael Antonio
dc.date.accessioned2020-09-04T17:00:01Z
dc.date.available2020-09-04T17:00:01Z
dc.date.issued2018-09-28
dc.identifier.citationRafael A. Guerrero, Carlos A. Guerrero, Orlando Acosta. (2018) Caracterización del potencial oncolítico del aislamiento rotaviral Wt1 -5 en cultivos primarios de leucemia linfoblástica aguda de precursores B. Doctorado en Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá-Colombia
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78384
dc.description.abstractCancer is a major health problem that poses a great challenge to health care systems around the world. Current tools for cancer treatment have advanced rapidly in recent years, resulting in new alternative and complementary therapeutic strategies to conventional treatment. Work aims to identify the oncolytic potential of rotavirus Wt1-5 adapted to tumor cells, in addition, to establish the cell surface receptors and markers of cell death induced by rotavirus infection in B- cell acute lymphoblastic leukemia cells and Reh cells. We used Wt1 -5 rotavirus isolate recently adapted to tumor cells, to infect the B- cell acute lymphoblastic leukemia cells and Reh cells. We assessed rotavirus infection by viral antigens detection through flow cytometry analysis. Also, we analyze some cell surface proteins and cell death markers induced by viral infection. The assays showed that rotavirus Wt1 -5 was able to use cell-surface proteins such as heat shock proteins Hsp90, Hsp70, Hsc70, PDI, and β3 integrin. Rotavirus Wt1-5 induced cytotoxic effects including changes in cell membrane permeability, alteration of mitochondrial membrane potential, DNA fragmentation, and activation of cell death signaling. We conclude that rotavirus Wt1 -5 may be a potential candidate to be used as an oncolytic agent. This rotavirus could induce apoptosis as a cell death mechanism in B- cell acute lymphoblastic leukemia cells and Reh cells.
dc.description.abstractEl cáncer es un importante problema de salud que plantea un gran desafío para los sistemas de atención de salud en todo el mundo. Las herramientas para el tratamiento del cáncer han avanzado rápidamente en los últimos años, dando como resultado nuevas estrategias terapéuticas alternativas y complementarias al tratamiento convencional. Este trabajo busca identificar el potencial oncolítico del rotavirus Wt1-5 adaptado a células tumorales y algunos de los receptores de superficie celular utilizados por el rotavirus Wt1-5 y los marcadores de muerte celular inducidos por la infección en células de leucemia linfoblástica aguda de precursores B y células Reh. Para esto, se usó el aislamiento de rotavirus Wt -5 recientemente adaptado a células tumorales, para infectar las células de leucemia linfoblástica aguda de precursores B y las células Reh. La infección por rotavirus Wt1 -5 fue seguida mediante análisis de antígenos virales por citometría de flujo. Se evaluaron algunas proteínas de superficie celular como posibles receptores y marcadores de muerte celular inducidos por la infección viral. El trabajo muestra que el rotavirus Wt1-5 fue capaz de utilizar las proteínas de la superficie celular como las proteínas de choque térmico Hsp90, Hsp70, Hsc70, PDI e integrina β3. El rotavirus Wt1-5 indujo efectos citotóxicos que incluyen cambios en la permeabilidad de la membrana celular, alteración del potencial de membrana mitocondrial, fragmentación del ADN y activación de la señalización de la muerte celular. Concluimos que el rotavirus Wt1 -5 puede ser un candidato potencial para ser utilizado como un agente oncolítico y que la apoptosis podría ser un mecanismo por el cual Wt1-5 reducir la viabilidad de las células de leucemia linfoblástica aguda de precursores y las células Reh.
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS, Convocatoria No. 110171250829.
dc.format.extent216
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610 - Medicina y salud
dc.titleCaracterización del potencial oncolítico del aislamiento rotaviral Wt1-5 en cultivos primarios de leucemia linfoblástica aguda de precursores B
dc.title.alternativeCharacterization of the oncolytic potential of rotaviral isolate Wt1 -5 in primary cultures of precursor B-cell lymphoblastic leukemia
dc.typeManual
dc.rights.spaAcceso abierto
dc.description.projectEvaluación in vitro de virus oncolítico para el tratamiento de leucemia linfoblástica aguda en muestras de sangre periférica de pacientes en edad pediátrica.
dc.description.additionalLínea de Investigación: Virus Oncolíticos
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Biotecnología
dc.contributor.corporatenameLaboratorio de Biología Molecular de Virus - Facultad de Medicina - Universidad Nacional de Colombia
dc.contributor.researchgroupBiología Molecular de virus
dc.description.degreelevelDoctorado
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesSiegel, R. L., Miller, K. D., and Jemal, A. (2017) Cancer Statistics, 2017, CA Cancer J Clin 67, 7-30.
dc.relation.referencesJabbour, E., O'Brien, S., Konopleva, M., and Kantarjian, H. (2015) New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia, Cancer 121, 2517-2528.
dc.relation.referencesHunger, S. P., and Mullighan, C. G. (2015) Acute Lymphoblastic Leukemia in Children, N Engl J Med 373, 1541-1552.
dc.relation.referencesTerwilliger, T., and Abdul-Hay, M. (2017) Acute lymphoblastic leukemia: a comprehensive review and 2017 update, Blood Cancer J 7, e577.
dc.relation.referencesGupta, S., Antillon, F. A., Bonilla, M., Fu, L., Howard, S. C., Ribeiro, R. C., and Sung, L. (2011) Treatment-related mortality in children with acute lymphoblastic leukemia in Central America, Cancer 117, 4788-4795.
dc.relation.referencesKato, M., and Manabe, A. (2017) Treatment and biology of pediatric acute lymphoblastic leukemia, Pediatr Int 60, 4-12.
dc.relation.referencesNess, K. K., Armenian, S. H., Kadan-Lottick, N., and Gurney, J. G. (2011) Adverse effects of treatment in childhood acute lymphoblastic leukemia: general overview and implications for long-term cardiac health, Expert Rev Hematol 4, 185-197.
dc.relation.referencesShah, N., Al-Ahmari, A., Al-Yamani, A., Dupuis, L., Stephens, D., and Hitzler, J. (2009) Outcome and toxicity of chemotherapy for acute lymphoblastic leukemia in children with Down syndrome, Pediatr Blood Cancer 52, 14-19.
dc.relation.referencesGarzon, R., Calin, G. A., and Croce, C. M. (2009) MicroRNAs in Cancer, Annu Rev Med 60, 167-179.
dc.relation.referencesGarzon, R., Marcucci, G., and Croce, C. M. (2010) Targeting microRNAs in cancer: rationale, strategies and challenges, Nat Rev Drug Discov 9, 775-789.
dc.relation.referencesGuo, W., Chen, W., Yu, W., Huang, W., and Deng, W. (2013) Small interfering RNA-based molecular therapy of cancers, Chin J Cancer 32, 488-493.
dc.relation.referencesde Fougerolles, A., Vornlocher, H. P., Maraganore, J., and Lieberman, J. (2007) Interfering with disease: a progress report on siRNA-based therapeutics, Nat Rev Drug Discov 6, 443-453.
dc.relation.referencesNakamura, K., and Smyth, M. J. (2017) Targeting cancer-related inflammation in the era of immunotherapy, Immunol Cell Biol 95, 325-332.
dc.relation.referencesBagnyukova, T. V., Serebriiskii, I. G., Zhou, Y., Hopper-Borge, E. A., Golemis, E. A., and Astsaturov, I. (2010) Chemotherapy and signaling: How can targeted therapies supercharge cytotoxic agents?, Cancer Biol Ther 10, 839-853.
dc.relation.referencesAtherton, M. J., and Lichty, B. D. (2013) Evolution of oncolytic viruses: novel strategies for cancer treatment, Immunotherapy 5, 1191-1206.
dc.relation.referencesPatel, M. R., and Kratzke, R. A. (2013) Oncolytic virus therapy for cancer: the first wave of translational clinical trials, Transl Res 161, 355-364.
dc.relation.referencesLiu, T. C., and Kirn, D. (2007) Systemic efficacy with oncolytic virus therapeutics: clinical proof-of-concept and future directions, Cancer Res 67, 429-432.
dc.relation.referencesRoberts, M. S., Lorence, R. M., Groene, W. S., and Bamat, M. K. (2006) Naturally oncolytic viruses, Curr Opin Mol Ther 8, 314-321.
dc.relation.referencesGarant, K. A., Shmulevitz, M., Pan, L., Daigle, R. M., Ahn, D. G., Gujar, S. A., and Lee, P. W. (2016) Oncolytic reovirus induces intracellular redistribution of Ras to promote apoptosis and progeny virus release, Oncogene 35, 771-782.
dc.relation.referencesGuo, Z. S., Thorne, S. H., and Bartlett, D. L. (2008) Oncolytic virotherapy: molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses, Biochim Biophys Acta 1785, 217-231.
dc.relation.referencesVaha-Koskela, M., and Hinkkanen, A. (2014) Tumor Restrictions to Oncolytic Virus, Biomedicines 2, 163-194.
dc.relation.referencesGuerrero, C. A., Mendez, E., Zarate, S., Isa, P., Lopez, S., and Arias, C. F. (2000) Integrin alpha(v)beta(3) mediates rotavirus cell entry, Proc Natl Acad Sci U S A 97, 14644-14649.
dc.relation.referencesZarate, S., Romero, P., Espinosa, R., Arias, C. F., and Lopez, S. (2004) VP7 mediates the interaction of rotaviruses with integrin alphavbeta3 through a novel integrin-binding site, J Virol 78, 10839-10847.
dc.relation.referencesZarate, S., Espinosa, R., Romero, P., Guerrero, C. A., Arias, C. F., and Lopez, S. (2000) Integrin alpha2beta1 mediates the cell attachment of the rotavirus neuraminidase-resistant variant nar3, Virology 278, 50-54.
dc.relation.referencesCiarlet, M., Crawford, S. E., Cheng, E., Blutt, S. E., Rice, D. A., Bergelson, J. M., and Estes, M. K. (2002) VLA-2 (alpha2beta1) integrin promotes rotavirus entry into cells but is not necessary for rotavirus attachment, J Virol 76, 1109-1123.
dc.relation.referencesHewish, M. J., Takada, Y., and Coulson, B. S. (2000) Integrins alpha2beta1 and alpha4beta1 can mediate SA11 rotavirus attachment and entry into cells, J Virol 74, 228-236.
dc.relation.referencesLondrigan, S. L., Hewish, M. J., Thomson, M. J., Sanders, G. M., Mustafa, H., and Coulson, B. S. (2000) Growth of rotaviruses in continuous human and monkey cell lines that vary in their expression of integrins, J Gen Virol 81, 2203-2213.
dc.relation.referencesGualtero, D. F., Guzman, F., Acosta, O., and Guerrero, C. A. (2007) Amino acid domains 280-297 of VP6 and 531-554 of VP4 are implicated in heat shock cognate protein hsc70-mediated rotavirus infection, Arch Virol 152, 2183-2196.
dc.relation.referencesGuerrero, C. A., Bouyssounade, D., Zarate, S., Isa, P., Lopez, T., Espinosa, R., Romero, P., Mendez, E., Lopez, S., and Arias, C. F. (2002) Heat shock cognate protein 70 is involved in rotavirus cell entry, J Virol 76, 4096-4102.
dc.relation.referencesZarate, S., Cuadras, M. A., Espinosa, R., Romero, P., Juarez, K. O., Camacho-Nuez, M., Arias, C. F., and Lopez, S. (2003) Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5, J Virol 77, 7254-7260.
dc.relation.referencesZarate, S., Cuadras, M. A., Espinosa, R., Romero, P., Juarez, K. O., Camacho-Nuez, M., Arias, C. F., and Lopez, S. (2003) Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5, J Virol 77, 7254-7260.
dc.relation.referencesCalderon, M. N., Guerrero, C. A., Dominguez, Y., Garzon, E., Barreto, S. M., and Acosta, O. (2011) [Interaction of rotavirus with protein disulfide isomerase in vitro and cell system], Biomedica 31, 70-81.
dc.relation.referencesCalderón, M. G., F. Acosta, O. Guerrero, C. (2012) Rotavirus VP4 and VP7-Derived Synthetic Peptides as Potential Substrates of Protein Disulfide Isomerase Lead to Inhibition of Rotavirus Infection., International Journal of Peptide Research and Therapeutics. 18., 373–382.
dc.relation.referencesDesgrosellier, J. S., and Cheresh, D. A. (2010) Integrins in cancer: biological implications and therapeutic opportunities, Nat Rev Cancer 10, 9-22.
dc.relation.referencesWu, J., Liu, T., Rios, Z., Mei, Q., Lin, X., and Cao, S. (2017) Heat Shock Proteins and Cancer, Trends Pharmacol Sci 38, 226-256.
dc.relation.referencesLee, E., and Lee, D. H. (2017) Emerging roles of protein disulfide isomerase in cancer, BMB Rep 50, 401-410.
dc.relation.referencesGuerrero, C. A., Guerrero, R. A., Silva, E., Acosta, O., and Barreto, E. (2016) Experimental Adaptation of Rotaviruses to Tumor Cell Lines, PLoS One 11, e0147666.
dc.relation.referencesKoonin, E. V., Senkevich, T. G., and Dolja, V. V. (2006) The ancient Virus World and evolution of cells, Biol Direct 1, 29.
dc.relation.referencesChiocca, E. A. (2002) Oncolytic viruses, Nat Rev Cancer 2, 938-950.
dc.relation.referencesMartuza, R. L., Malick, A., Markert, J. M., Ruffner, K. L., and Coen, D. M. (1991) Experimental therapy of human glioma by means of a genetically engineered virus mutant, Science 252, 854-856.
dc.relation.referencesMarkert, J. M., Malick, A., Coen, D. M., and Martuza, R. L. (1993) Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir, Neurosurgery 32, 597-603.
dc.relation.referencesFountzilas, C., Patel, S., & Mahalingam, D. (2017). Oncolytic virotherapy, updates and future directions. Oncotarget, 8(60).
dc.relation.referencesAsada, T. (1974) Treatment of human cancer with mumps virus, Cancer 34, 1907-1928.
dc.relation.referencesWheelock, E. F., and Dingle, J. H. (1964) Observations on the Repeated Administration of Viruses to a Patient with Acute Leukemia. A Preliminary Report, N Engl J Med 271, 645-651.
dc.relation.referencesBluming, A. Z., and Ziegler, J. L. (1971) Regression of Burkitt's lymphoma in association with measles infection, Lancet 2, 105-106.
dc.relation.referencesTaqi, A. M., Abdurrahman, M. B., Yakubu, A. M., and Fleming, A. F. (1981) Regression of Hodgkin's disease after measles, Lancet 1, 1112.
dc.relation.referencesMoore, A. E. (1952) Viruses with oncolytic properties and their adaptation to tumors, Ann N Y Acad Sci 54, 945-952.
dc.relation.referencesMoore, A. E. (1954) Effects of viruses on tumors, Annu Rev Microbiol 8, 393-410.
dc.relation.referencesNewman, W., and Southam, C. M. (1954) Virus treatment in advanced cancer; a pathological study of fifty-seven cases, Cancer 7, 106-118.
dc.relation.referencesCassel, W. A., and Garrett, R. E. (1965) Newcastle Disease Virus as an Antineoplastic Agent, Cancer 18, 863-868.
dc.relation.referencesVaha-Koskela, M. J., Heikkila, J. E., and Hinkkanen, A. E. (2007) Oncolytic viruses in cancer therapy, Cancer Lett 254, 178-216.
dc.relation.referencesSoutham, C. M. (1960) Present status of oncolytic virus studies, Trans N Y Acad Sci 22, 657-673.
dc.relation.referencesGanly, I., Kirn, D., Eckhardt, G., Rodriguez, G. I., Soutar, D. S., Otto, R., Robertson, A. G., Park, O., Gulley, M. L., Heise, C., Von Hoff, D. D., and Kaye, S. B. (2000) A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer, Clin Cancer Res 6, 798-806.
dc.relation.referencesGanly, I., Mautner, V., and Balmain, A. (2000) Productive replication of human adenoviruses in mouse epidermal cells, J Virol 74, 2895-2899.
dc.relation.referencesAghi, M., and Martuza, R. L. (2005) Oncolytic viral therapies - the clinical experience, Oncogene 24, 7802-7816.
dc.relation.referencesTyler, K. L., Squier, M. K., Brown, A. L., Pike, B., Willis, D., Oberhaus, S. M., Dermody, T. S., and Cohen, J. J. (1996) Linkage between reovirus-induced apoptosis and inhibition of cellular DNA synthesis: role of the S1 and M2 genes, J Virol 70, 7984-7991.
dc.relation.referencesSabin, A. B. (1959) Reoviruses. A new group of respiratory and enteric viruses formerly classified as ECHO type 10 is described, Science 130, 1387-1389.
dc.relation.referencesHashiro, G., Loh, P. C., and Yau, J. T. (1977) The preferential cytotoxicity of reovirus for certain transformed cell lines, Arch Virol 54, 307-315.
dc.relation.referencesDuncan, M. R., Stanish, S. M., and Cox, D. C. (1978) Differential sensitivity of normal and transformed human cells to reovirus infection, J Virol 28, 444-449.
dc.relation.referencesStoeckel, J., and Hay, J. G. (2006) Drug evaluation: Reolysin--wild-type reovirus as a cancer therapeutic, Curr Opin Mol Ther 8, 249-260.
dc.relation.referencesMorris, D. G., Forsyth, PA, Paterson, AH, Fonseca, K, Difrancesco, L.M, Thompson, BG et al. . (2002) A phase I clinical trial evaluating intralesional Reolysin (reovirus) in histologically confirmed malignancies., ASCO Annual Meeting 54. 244-256.
dc.relation.referencesForsyth, P., Roldan, G., George, D., Wallace, C., Palmer, C. A., Morris, D., Cairncross, G., Matthews, M. V., Markert, J., Gillespie, Y., Coffey, M., Thompson, B., and Hamilton, M. (2008) A phase I trial of intratumoral administration of reovirus in patients with histologically confirmed recurrent malignant gliomas, Mol Ther 16, 627-632.
dc.relation.referencesStrong, J. E., Coffey, M. C., Tang, D., Sabinin, P., and Lee, P. W. (1998) The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus, EMBO J 17, 3351-3362.
dc.relation.referencesCoffey, M. C., Strong, J. E., Forsyth, P. A., and Lee, P. W. (1998) Reovirus therapy of tumors with activated Ras pathway, Science 282, 1332-1334.
dc.relation.referencesNorman, K. L., Hirasawa, K., Yang, A. D., Shields, M. A., and Lee, P. W. (2004) Reovirus oncolysis: the Ras/RalGEF/p38 pathway dictates host cell permissiveness to reovirus infection, Proc Natl Acad Sci U S A 101, 11099-11104.
dc.relation.referencesThirukkumaran, C. M., Luider, J. M., Stewart, D. A., Cheng, T., Lupichuk, S. M., Nodwell, M. J., Russell, J. A., Auer, I. A., and Morris, D. G. (2003) Reovirus oncolysis as a novel purging strategy for autologous stem cell transplantation, Blood 102, 377-387.
dc.relation.referencesSmakman, N., van den Wollenberg, D. J., Borel Rinkes, I. H., Hoeben, R. C., and Kranenburg, O. (2005) Sensitization to apoptosis underlies KrasD12-dependent oncolysis of murine C26 colorectal carcinoma cells by reovirus T3D, J Virol 79, 14981-14985.
dc.relation.referencesKim, M., Egan, C., Alain, T., Urbanski, S. J., Lee, P. W., Forsyth, P. A., and Johnston, R. N. (2007) Acquired resistance to reoviral oncolysis in Ras-transformed fibrosarcoma cells, Oncogene 26, 4124-4134.
dc.relation.referencesComins, C., Heinemann, L., Harrington, K., Melcher, A., De Bono, J., and Pandha, H. (2008) Reovirus: viral therapy for cancer 'as nature intended', Clin Oncol (R Coll Radiol) 20, 548-554.
dc.relation.referencesEuropean, M. A. (2008) The international conference on harmonisation (ICH) of technical requirements for registration of pharmaceuticals for human use. ICH considetarions to oncolytic visuses, EMEA EMEA/CHMP/ICH/607698/2008, 1-6.
dc.relation.referencesEstes, M. K., and Cohen, J. (1989) Rotavirus gene structure and function, Microbiol Rev 53, 410-449.
dc.relation.referencesEstes, M. K., and Graham, D. Y. (1985) Rotavirus antigens, Adv Exp Med Biol 185, 201-214.
dc.relation.referencesKalica A. R., F. J., Greenberg B. H (1983) Identification of the Rotaviral Gene that Codes for Hemagglutination and Protease-enhanced Plaque Formation, Virology 125, 194 – 20
dc.relation.referencesPesavento, J. B., Crawford, S. E., Roberts, E., Estes, M. K., and Prasad, B. V. (2005) pH-induced conformational change of the rotavirus VP4 spike: implications for cell entry and antibody neutralization, J Virol 79, 8572-8580.
dc.relation.referencesArias, C. F., Dector, M. A., Segovia, L., Lopez, T., Camacho, M., Isa, P., Espinosa, R., and Lopez, S. (2004) RNA silencing of rotavirus gene expression, Virus Res 102, 43-51.
dc.relation.referencesBagchi, P., Dutta, D., Chattopadhyay, S., Mukherjee, A., Halder, U. C., Sarkar, S., Kobayashi, N., Komoto, S., Taniguchi, K., and Chawla-Sarkar, M. (2010) Rotavirus nonstructural protein 1 suppresses virus-induced cellular apoptosis to facilitate viral growth by activating the cell survival pathways during early stages of infection, J Virol 84, 6834-6845.
dc.relation.referencesLopez, S., and Arias, C. F. (2006) Early steps in rotavirus cell entry, Curr Top Microbiol Immunol 309, 39-66.
dc.relation.referencesBlutt, S. E., and Conner, M. E. (2007) Rotavirus: to the gut and beyond!, Curr Opin Gastroenterol 23, 39-43.
dc.relation.referencesBerkova, Z., Crawford, S. E., Blutt, S. E., Morris, A. P., and Estes, M. K. (2007) Expression of rotavirus NSP4 alters the actin network organization through the actin remodeling protein cofilin, J Virol 81, 3545-3553.
dc.relation.referencesBanyai, K., Mijatovic-Rustempasic, S., Hull, J. J., Esona, M. D., Freeman, M. M., Frace, A. M., Bowen, M. D., and Gentsch, J. R. (2011) Sequencing and phylogenetic analysis of the coding region of six common rotavirus strains: evidence for intragenogroup reassortment among co-circulating G1P[8] and G2P[4] strains from the United States, J Med Virol 83, 532-539.
dc.relation.referencesOrganization, P. A. H. (2007) Epidemiologic surveillance of diarrheal diseases due to rotavirus: Field guide, Organización Panamericana de la Salud Publicación Científica y Técnica No. 623, 12-43.
dc.relation.referencesParashar, U. D., Hummelman, E. G., Bresee, J. S., Miller, M. A., and Glass, R. I. (2003) Global illness and deaths caused by rotavirus disease in children, Emerg Infect Dis 9, 565-572.
dc.relation.referencesBern, C., Martines, J., de Zoysa, I., and Glass, R. I. (1992) The magnitude of the global problem of diarrhoeal disease: a ten-year update, Bull World Health Organ 70, 705-714.
dc.relation.referencesLeung, A. K., Kellner, J. D., and Davies, H. D. (2005) Rotavirus gastroenteritis, Adv Ther 22, 476-487.
dc.relation.referencesLópez, P., Cáceres, D., López, E. (2005) Enfermedad por rotavirus, características epidemiológicas, características epidemiológicas,clínicas, prevención y manejo, CCAP 6, 2.45, 45-55.
dc.relation.referencesArias, C. F., Isa, P., Guerrero, C. A., Mendez, E., Zarate, S., Lopez, T., Espinosa, R., Romero, P., and Lopez, S. (2002) Molecular biology of rotavirus cell entry, Arch Med Res 33, 356-361.
dc.relation.referencesRamig, R. F. (2004) Pathogenesis of intestinal and systemic rotavirus infection, J Virol 78, 10213-10220.
dc.relation.referencesBlutt, S. E., Matson, D. O., Crawford, S. E., Staat, M. A., Azimi, P., Bennett, B. L., Piedra, P. A., and Conner, M. E. (2007) Rotavirus antigenemia in children is associated with viremia, PLoS Med 4, e121.
dc.relation.referencesFeng, N., Kim, B., Fenaux, M., Nguyen, H., Vo, P., Omary, M. B., and Greenberg, H. B. (2008) Role of interferon in homologous and heterologous rotavirus infection in the intestines and extraintestinal organs of suckling mice, J Virol 82, 7578-7590.
dc.relation.referencesCiarlet, M., Ludert, J. E., Iturriza-Gomara, M., Liprandi, F., Gray, J. J., Desselberger, U., and Estes, M. K. (2002) Initial interaction of rotavirus strains with N-acetylneuraminic (sialic) acid residues on the cell surface correlates with VP4 genotype, not species of origin, J Virol 76, 4087-4095.
dc.relation.referencesCiarlet, M., Hyser, J. M., and Estes, M. K. (2002) Sequence analysis of the VP4, VP6, VP7, and NSP4 gene products of the bovine rotavirus WC3, Virus Genes 24, 107-118.
dc.relation.referencesSantana, A. Y., Guerrero, C. A., and Acosta, O. (2013) Implication of Hsc70, PDI and integrin alphavbeta3 involvement during entry of the murine rotavirus ECwt into small-intestinal villi of suckling mice, Arch Virol 158, 1323-1336.
dc.relation.referencesIsa, P., Arias, C. F., and Lopez, S. (2006) Role of sialic acids in rotavirus infection, Glycoconj J 23, 27-37.
dc.relation.referencesCiarlet, M., Crawford, S. E., and Estes, M. K. (2001) Differential infection of polarized epithelial cell lines by sialic acid-dependent and sialic acid-independent rotavirus strains, J Virol 75, 11834-11850.
dc.relation.referencesFleming, F. E., Graham, K. L., Taniguchi, K., Takada, Y., and Coulson, B. S. (2007) Rotavirus-neutralizing antibodies inhibit virus binding to integrins alpha 2 beta 1 and alpha 4 beta 1, Arch Virol 152, 1087-1101.
dc.relation.referencesGraham, K. L., Fleming, F. E., Halasz, P., Hewish, M. J., Nagesha, H. S., Holmes, I. H., Takada, Y., and Coulson, B. S. (2005) Rotaviruses interact with alpha4beta7 and alpha4beta1 integrins by binding the same integrin domains as natural ligands, J Gen Virol 86, 3397-3408.
dc.relation.referencesGraham, K. L., Zeng, W., Takada, Y., Jackson, D. C., and Coulson, B. S. (2004) Effects on rotavirus cell binding and infection of monomeric and polymeric peptides containing alpha2beta1 and alphaxbeta2 integrin ligand sequences, J Virol 78, 11786-11797.
dc.relation.referencesGraham, K. L., Halasz, P., Tan, Y., Hewish, M. J., Takada, Y., Mackow, E. R., Robinson, M. K., and Coulson, B. S. (2003) Integrin-using rotaviruses bind alpha2beta1 integrin alpha2 I domain via VP4 DGE sequence and recognize alphaXbeta2 and alphaVbeta3 by using VP7 during cell entry, J Virol 77, 9969-9978.
dc.relation.referencesGuerrero, C. A., and Moreno, L. P. (2012) Rotavirus receptor proteins Hsc70 and integrin alphavbeta3 are located in the lipid microdomains of animal intestinal cells, Acta Virol 56, 63-70.
dc.relation.referencesCalderón, M., Guzmán, Fanny., Acosta, Orlando., Guerrero, Carlos. (2012) Rotavirus VP4 and VP7-derived synthetic peptides as potential substrates of protein disulfide isomerase lead to inhibition of rotavirus infection, International Journal of Peptide Research and Therapeutics.
dc.relation.referencesGuerrero, C. A., Murillo, A., and Acosta, O. (2012) Inhibition of rotavirus infection in cultured cells by N-acetyl-cysteine, PPARgamma agonists and NSAIDs, Antiviral Res 96, 1-12.
dc.relation.referencesGuerrero, C. A., Murillo, A., and Acosta, O. (2012) Inhibition of rotavirus infection in cultured cells by N-acetyl-cysteine, PPARgamma agonists and NSAIDs, Antiviral Res 96, 1-12.
dc.relation.referencesLloyd-Evans, N., Springthorpe, V. S., and Sattar, S. A. (1986) Chemical disinfection of human rotavirus-contaminated inanimate surfaces, J Hyg (Lond) 97, 163-173.
dc.relation.referencesWard, R. L., Bernstein, D. I., Knowlton, D. R., Sherwood, J. R., Young, E. C., Cusack, T. M., Rubino, J. R., and Schiff, G. M. (1991) Prevention of surface-to-human transmission of rotaviruses by treatment with disinfectant spray, J Clin Microbiol 29, 1991-1996.
dc.relation.referencesWeiss, C., and Clark, H. F. (1985) Rapid inactivation of rotaviruses by exposure to acid buffer or acidic gastric juice, J Gen Virol 66 ( Pt 12), 2725-2730.
dc.relation.referencesEstes, M. K., Graham, D. Y., Smith, E. M., and Gerba, C. P. (1979) Rotavirus stability and inactivation, J Gen Virol 43, 403-409.
dc.relation.referencesFischer, T. K., Valentiner-Branth, P., Steinsland, H., Perch, M., Santos, G., Aaby, P., Molbak, K., and Sommerfelt, H. (2002) Protective immunity after natural rotavirus infection: a community cohort study of newborn children in Guinea-Bissau, west Africa, J Infect Dis 186, 593-597.
dc.relation.referencesRodrigues, A., de Carvalho, M., Monteiro, S., Mikkelsen, C. S., Aaby, P., Molbak, K., and Fischer, T. K. (2007) Hospital surveillance of rotavirus infection and nosocomial transmission of rotavirus disease among children in Guinea-Bissau, Pediatr Infect Dis J 26, 233-237.
dc.relation.referencesMartella, V., Banyai, K., Matthijnssens, J., Buonavoglia, C., and Ciarlet, M. (2010) Zoonotic aspects of rotaviruses, Vet Microbiol 140, 246-255.
dc.relation.referencesCDC, C. f. d. c. a. p. (2009) Biosafety in microbiologycal and biomedical laboratories. 5 th edition., U.S. Departament of health an human services 21-1112.
dc.relation.referencesWHO, W. H. O. (2005) Laboratory biosafety manual., World Health Organization 3th Edition.
dc.relation.referencesRitossa, F. (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila, Experientia 18, 571–573.
dc.relation.referencesMorimoto, R. I. (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators, Genes Dev 12, 3788-3796.
dc.relation.referencesWhitley, D., Goldberg, S. P., and Jordan, W. D. (1999) Heat shock proteins: a review of the molecular chaperones, J Vasc Surg 29, 748-751.
dc.relation.referencesCoronato, S., Di Girolamo, W., Salas, Margatira., Spinelli, O., Languens, G. (1999) Biología de las proteínas del shock térmico, Journal de Medicina Buenos Aires 59, 477-486.
dc.relation.referencesPoulain, P., Gelly, J. C., and Flatters, D. (2010) Detection and architecture of small heat shock protein monomers, PLoS One 5, e9990.
dc.relation.referencesHu Z, C. L., Zhang J, Li T, Tang J, Xu N, Wang X. (2007) Structure, function, property, and role in neurologic diseases and other diseases of the sHsp22, J Neurosci Res 85, 2071-2079.
dc.relation.referencesIrobi, J., Van Impe, K., Seeman, P., Jordanova,A., Dierick, I., et al (2004) Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy, Nature 36, 597-601.
dc.relation.referencesAckerley, S., James, P., Kalli, A., French, S., Davies, K., Talbot, K. (2006) A mutation in the small heat-shock protein HSPB1 leading to distal hereditary motor neuronopathy disrupts neurofilament assembly and the axonal transport of specific cellular cargoes, Hum Mol Genet 15, 347-354.
dc.relation.referencesVan de Klundert, F., Gijsen, M., Van del ljssel, P., Snoeckx, L. (1998) Alpha B-crystallin and hsp25 in neonatal cardiac cells differences in cellular localization under stress conditions. Eur J Cell Biol Eur J Cell Biol 75, 38-45.
dc.relation.referencesKlemenz, R., Andres, A., Fröhli, E., Schäfer, R., Aoyama, A. (1993) Expression of the murine small heat shock proteins hsp25 and α B crystallin in the absence of stress, J Cell Biol 120, 639-645.
dc.relation.referencesHoulden, H., De Vrièze, W., Blake, J., Wood, N., Reilly, M. (2008) Mutations in the HSP27 (HSPB1) gene cause dominant, recessive, and sporadic distal HMN/CMT type 2, Neurology 71, 1660-1668.
dc.relation.referencesCiocca, D., Stati, A., Fanelli, M., Gaestel, M. (1996) Expression of heat shock protein 25000 in rat uterus during pregnancy and pseudopregnancy Biol Reprod 54, 1326-1335.
dc.relation.referencesLi, D., Gordon, C., Stagg, C., Udelsman, R. . (1996) Heat shock protein expression in human placenta and umbilical cord, Shock 5, 320-323.
dc.relation.referencesXu, Q., and Wick, G. (1996) The role of heat shock proteins in protection and pathophysiology of the arterial wall, Mol Med Today 2, 372-379.
dc.relation.referencesHassan, S., Biswas, M. H., Zhang, C., Du, C., and Balaji, K. C. (2009) Heat shock protein 27 mediates repression of androgen receptor function by protein kinase D1 in prostate cancer cells, Oncogene 28, 4386-4396.
dc.relation.referencesCiocca, D. R., and Luque, E. H. (1991) Immunological evidence for the identity between the hsp27 estrogen-regulated heat shock protein and the p29 estrogen receptor-associated protein in breast and endometrial cancer, Breast Cancer Res Treat 20, 33-42.
dc.relation.referencesDavey, K., Parboosingh, J., McLeod, D., Chan. A., Casey, R., Ferreira, P., Snyder, F., Bridge, P., Bernier, F. (2006) Mutation of DNAJC19, a human homologue of yeast inner mitochondrial membrane co-chaperones, causes DCMA syndrome, a novel autosomal recessive Barth syndrome-like condition, J Med Genet 43, 385-393.
dc.relation.referencesHata, M., Okumura, K., Seto, M., and Ohtsuka, K. (1996) Genomic cloning of a human heat shock protein 40 (Hsp40) gene (HSPF1) and its chromosomal localization to 19p13.2, Genomics 38, 446-449.
dc.relation.referencesBorges, J. C., Fischer, H., Craievich, A. F., and Ramos, C. H. (2005) Low resolution structural study of two human HSP40 chaperones in solution. DJA1 from subfamily A and DJB4 from subfamily B have different quaternary structures, The Journal of biological chemistry 280, 13671-13681.
dc.relation.referencesHansen, J. J., Bross, P., Westergaard, M., Nielsen, M. N., Eiberg, H., Borglum, A. D., Mogensen, J., Kristiansen, K., Bolund, L., and Gregersen, N. (2003) Genomic structure of the human mitochondrial chaperonin genes: HSP60 and HSP10 are localised head to head on chromosome 2 separated by a bidirectional promoter, Hum Genet 112, 71-77.
dc.relation.referencesBukau, B., and Horwich, A. L. (1998) The Hsp70 and Hsp60 chaperone machines, Cell 92, 351-366.
dc.relation.referencesHendershot, L. M., Valentine, V. A., Lee, A. S., Morris, S. W., and Shapiro, D. N. (1994) Localization of the gene encoding human BiP/GRP78, the endoplasmic reticulum cognate of the HSP70 family, to chromosome 9q34, Genomics 20, 281-284.
dc.relation.referencesBrocchieri, L., Conway de Macario, E., Macario, A. . (2008) hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions, BMC Evol Biol 23, 8-19.
dc.relation.referencesOsipiuk, J., Walsh, M. A., Freeman, B. C., Morimoto, R. I., and Joachimiak, A. (1999) Structure of a new crystal form of human Hsp70 ATPase domain, Acta Crystallogr D Biol Crystallogr 55, 1105-1107.
dc.relation.referencesChen, B., Piel, W. H., Gui, L., Bruford, E., and Monteiro, A. (2005) The HSP90 family of genes in the human genome: insights into their divergence and evolution, Genomics 86, 627-637.
dc.relation.referencesSidera, K., Samiotaki, M., Yfanti, E., Panayotou, G., and Patsavoudi, E. (2004) Involvement of cell surface HSP90 in cell migration reveals a novel role in the developing nervous system, The Journal of biological chemistry 279, 45379-45388.
dc.relation.referencesBecker, B., Multhoff, G., Farkas, B., Wild, P. J., Landthaler, M., Stolz, W., and Vogt, T. (2004) Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases, Exp Dermatol 13, 27-32.
dc.relation.referencesTsutsumi, S., and Neckers, L. (2007) Extracellular heat shock protein 90: a role for a molecular chaperone in cell motility and cancer metastasis, Cancer Sci 98, 1536-1539.
dc.relation.referencesHelmbrecht, K., Zeise, E., and Rensing, L. (2000) Chaperones in cell cycle regulation and mitogenic signal transduction: a review, Cell Prolif 33, 341-365.
dc.relation.referencesDidelot, C., Schmitt, E., Brunet, M., Maingret, L., Parcellier, A., and Garrido, C. (2006) Heat shock proteins: endogenous modulators of apoptotic cell death, Handb Exp Pharmacol, 171-198.
dc.relation.referencesLi, Z. (2001) The roles of heat shock proteins in tumor immunity, Cancer Chemother Biol Response Modif 19, 371-383.
dc.relation.referencesMulthoff, G. (2006) Heat shock proteins in immunity, Handb Exp Pharmacol, 279-304.
dc.relation.referencesCalderwood, S. K., Khaleque, M. A., Sawyer, D. B., and Ciocca, D. R. (2006) Heat shock proteins in cancer: chaperones of tumorigenesis, Trends Biochem Sci 31, 164-172.
dc.relation.referencesShin, B. K., Wang, H., Yim, A. M., Le Naour, F., Brichory, F., Jang, J. H., Zhao, R., Puravs, E., Tra, J., Michael, C. W., Misek, D. E., and Hanash, S. M. (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function, J Biol Chem 278, 7607-7616.
dc.relation.referencesArrigo, A. P. (2005) [Heat shock proteins as molecular chaperones], Med Sci (Paris) 21, 619-625.
dc.relation.referencesSpiess, C., Meyer, A. S., Reissmann, S., and Frydman, J. (2004) Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets, Trends Cell Biol 14, 598-604.
dc.relation.referencesYoung, J. C., Agashe, V. R., Siegers, K., and Hartl, F. U. (2004) Pathways of chaperone-mediated protein folding in the cytosol, Nat Rev Mol Cell Biol 5, 781-791.
dc.relation.referencesMayer, M. P., and Bukau, B. (2005) Hsp70 chaperones: cellular functions and molecular mechanism, Cell Mol Life Sci 62, 670-684.
dc.relation.referencesWegele, H., Muller, L., and Buchner, J. (2004) Hsp70 and Hsp90--a relay team for protein folding, Rev Physiol Biochem Pharmacol 151, 1-44.
dc.relation.referencesPratt, W. B., and Toft, D. O. (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery, Exp Biol Med (Maywood) 228, 111-133.
dc.relation.referencesEaston, D. P., Kaneko, Y., and Subjeck, J. R. (2000) The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s, Cell stress & chaperones 5, 276-290.
dc.relation.referencesCiocca, D. R., and Calderwood, S. K. (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications, Cell Stress Chaperones 10, 86-103.
dc.relation.referencesXu, A., Tian, Tian., Hao, Jia., Liu, Jifu., Zhang, Zhao. (2007) Elevation of Serum HSP90α Correlated with the Clinical stage of Non-Small Cell Lung Cancer, Journal of Cancer Molecules 3 (4), 107-112.
dc.relation.referencesSzymanska, Z., Urbanski, J., and Marciniak-Czochra, A. (2009) Mathematical modelling of the influence of heat shock proteins on cancer invasion of tissue, J Math Biol 58, 819-844.
dc.relation.referencesGlaessgen, A., Jonmarker, S., Lindberg, A., Nilsson, B., Lewensohn, R., Ekman, P., Valdman, A., and Egevad, L. (2008) Heat shock proteins 27, 60 and 70 as prognostic markers of prostate cancer, APMIS 116, 888-895.
dc.relation.referencesGarg, M., Kanojia, D., Seth, A., Kumar, R., Gupta, A., Surolia, A., and Suri, A. (2010) Heat-shock protein 70-2 (HSP70-2) expression in bladder urothelial carcinoma is associated with tumour progression and promotes migration and invasion, Eur J Cancer 46, 207-215.
dc.relation.referencesReyes-Del Valle, J., Chavez-Salinas, S., Medina, F., and Del Angel, R. M. (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells, J Virol 79, 4557-4567.
dc.relation.referencesLi, G., Zhang, J., Tong, X., Liu, W., and Ye, X. (2011) Heat shock protein 70 inhibits the activity of Influenza A virus ribonucleoprotein and blocks the replication of virus in vitro and in vivo, PLoS One 6, e16546.
dc.relation.referencesGonzalez, O., Fontanes, V., Raychaudhuri, S., Loo, R., Loo, J., Arumugaswami, V., Sun, R., Dasgupta, A., and French, S. W. (2009) The heat shock protein inhibitor Quercetin attenuates hepatitis C virus production, Hepatology 50, 1756-1764.
dc.relation.referencesHu, J., Flores, D., Toft, D., Wang, X., and Nguyen, D. (2004) Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function, J Virol 78, 13122-13131.
dc.relation.referencesKumar, M., and Mitra, D. (2005) Heat shock protein 40 is necessary for human immunodeficiency virus-1 Nef-mediated enhancement of viral gene expression and replication, J Biol Chem 280, 40041-40050.
dc.relation.referencesLaFlamme, S. E., and Auer, K. L. (1996) Integrin signaling, Semin Cancer Biol 7, 111-118.
dc.relation.referencesFilippo, G., Ruoslaht, Erkki. (1999) Integrin Signaling, Science 285 (5430), 1028-1033.
dc.relation.referencesJiménez, Á., . Garrido J., Barbancho, Manuel. (2003) Caracterización molecular de las integrinas beta-1 (CD29) y beta-3 (CD61) porcinas. Obtención de anticuerpos contra dominios específicos de ambas moléculas, Universidad de Córdoba, Servicio de Publicaciones.
dc.relation.referencesClezardin, P. (1998) Recent insights into the role of integrins in cancer metastasis, Cell Mol Life Sci 54, 541-548.
dc.relation.referencesParry, C., Bell, S., Minson, T., and Browne, H. (2005) Herpes simplex virus type 1 glycoprotein H binds to alphavbeta3 integrins, J Gen Virol 86, 7-10.
dc.relation.referencesWickham, T. J., Mathias, P., Cheresh, D. A., and Nemerow, G. R. (1993) Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment, Cell 73, 309-319.
dc.relation.referencesTriantafilou, K., Triantafilou, M., Takada, Y., and Fernandez, N. (2000) Human parechovirus 1 utilizes integrins alphavbeta3 and alphavbeta1 as receptors, J Virol 74, 5856-5862.
dc.relation.referencesXiong, J. P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S. L., and Arnaout, M. A. (2002) Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand, Science 296, 151-155.
dc.relation.referencesStromblad, S., and Cheresh, D. A. (1996) Integrins, angiogenesis and vascular cell survival, Chem Biol 3, 881-885.
dc.relation.referencesKerr, J. S., Wexler, R. S., Mousa, S. A., Robinson, C. S., Wexler, E. J., Mohamed, S., Voss, M. E., Devenny, J. J., Czerniak, P. M., Gudzelak, A., Jr., and Slee, A. M. (1999) Novel small molecule alpha v integrin antagonists: comparative anti-cancer efficacy with known angiogenesis inhibitors, Anticancer Res 19, 959-968.
dc.relation.referencesCarron, C. P., Meyer, D. M., Pegg, J. A., Engleman, V. W., Nickols, M. A., Settle, S. L., Westlin, W. F., Ruminski, P. G., and Nickols, G. A. (1998) A peptidomimetic antagonist of the integrin alpha(v)beta3 inhibits Leydig cell tumor growth and the development of hypercalcemia of malignancy, Cancer Res 58, 1930-1935.
dc.relation.referencesLode, H. N., Moehler, T., Xiang, R., Jonczyk, A., Gillies, S. D., Cheresh, D. A., and Reisfeld, R. A. (1999) Synergy between an antiangiogenic integrin alphav antagonist and an antibody-cytokine fusion protein eradicates spontaneous tumor metastases, Proc Natl Acad Sci U S A 96, 1591-1596.
dc.relation.referencesBoney, W., Hiran, F. Gillart, G. (2004) Protein disulfide isomerase, Biochemica biophysica acta 1699, 35.
dc.relation.referencesAppenzeller-Herzog, C., and Ellgaard, L. (2008) The human PDI family: versatility packed into a single fold, Biochim Biophys Acta 1783, 535-548.
dc.relation.referencesHatahet, F., and Ruddock, L. W. (2009) Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation, Antioxid Redox Signal 11, 2807-2850.
dc.relation.referencesGruber, C. W., Cemazar, M., Heras, B., Martin, J. L., and Craik, D. J. (2006) Protein disulfide isomerase: the structure of oxidative folding, Trends Biochem Sci 31, 455-464.
dc.relation.referencesTurano, C., Coppari, S., Altieri, F., and Ferraro, A. (2002) Proteins of the PDI family: unpredicted non-ER locations and functions, J Cell Physiol 193, 154-163.
dc.relation.referencesJordan, P. A., and Gibbins, J. M. (2006) Extracellular disulfide exchange and the regulation of cellular function, Antioxid Redox Signal 8, 312-324.
dc.relation.referencesTerada, K., Manchikalapudi, P., Noiva, R., Jauregui, H. O., Stockert, R. J., and Schilsky, M. L. (1995) Secretion, surface localization, turnover, and steady state expression of protein disulfide isomerase in rat hepatocytes, J Biol Chem 270, 20410-20416.
dc.relation.referencesTager, M., Kroning, H., Thiel, U., and Ansorge, S. (1997) Membrane-bound proteindisulfide isomerase (PDI) is involved in regulation of surface expression of thiols and drug sensitivity of B-CLL cells, Exp Hematol 25, 601-607.
dc.relation.referencesDesilva, M. G., Lu, J., Donadel, G., Modi, W. S., Xie, H., Notkins, A. L., and Lan, M. S. (1996) Characterization and chromosomal localization of a new protein disulfide isomerase, PDIp, highly expressed in human pancreas, DNA Cell Biol 15, 9-16.
dc.relation.referencesGoplen, D., Wang, J., Enger, P. O., Tysnes, B. B., Terzis, A. J., Laerum, O. D., and Bjerkvig, R. (2006) Protein disulfide isomerase expression is related to the invasive properties of malignant glioma, Cancer Res 66, 9895-9902.
dc.relation.referencesEssex, D. W., and Li, M. (2003) Redox control of platelet aggregation, Biochemistry 42, 129-136.
dc.relation.referencesEssex, D. W., Miller, A., Swiatkowska, M., and Feinman, R. D. (1999) Protein disulfide isomerase catalyzes the formation of disulfide-linked complexes of vitronectin with thrombin-antithrombin, Biochemistry 38, 10398-10405.
dc.relation.referencesGallina, A., Hanley, T. M., Mandel, R., Trahey, M., Broder, C. C., Viglianti, G. A., and Ryser, H. J. (2002) Inhibitors of protein-disulfide isomerase prevent cleavage of disulfide bonds in receptor-bound glycoprotein 120 and prevent HIV-1 entry, J Biol Chem 277, 50579-50588.
dc.relation.referencesAbell, B. A., and Brown, D. T. (1993) Sindbis virus membrane fusion is mediated by reduction of glycoprotein disulfide bridges at the cell surface, J Virol 67, 5496-5501.
dc.relation.referencesMarkovic, I., Pulyaeva, H., Sokoloff, A., and Chernomordik, L. V. (1998) Membrane fusion mediated by baculovirus gp64 involves assembly of stable gp64 trimers into multiprotein aggregates, J Cell Biol 143, 1155-1166.
dc.relation.referencesAbou-Jaoude, G., and Sureau, C. (2007) Entry of hepatitis delta virus requires the conserved cysteine residues of the hepatitis B virus envelope protein antigenic loop and is blocked by inhibitors of thiol-disulfide exchange, J Virol 81, 13057-13066.
dc.relation.referencesJain, S., McGinnes, L. W., and Morrison, T. G. (2009) Role of thiol/disulfide exchange in newcastle disease virus entry, J Virol 83, 241-249.
dc.relation.referencesMirazimi, A., and Svensson, L. (1998) Carbohydrates facilitate correct disulfide bond formation and folding of rotavirus VP7, J Virol 72, 3887-3892.
dc.relation.referencesChen, J. Z., Settembre, E. C., Aoki, S. T., Zhang, X., Bellamy, A. R., Dormitzer, P. R., Harrison, S. C., and Grigorieff, N. (2009) Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM, Proc Natl Acad Sci U S A 106, 10644-10648.
dc.relation.referencesPatton, J. T., Hua, J., and Mansell, E. A. (1993) Location of intrachain disulfide bonds in the VP5* and VP8* trypsin cleavage fragments of the rhesus rotavirus spike protein VP4, J Virol 67, 4848-4855.
dc.relation.referencesLovat, P. E., Corazzari, M., Armstrong, J. L., Martin, S., Pagliarini, V., Hill, D., Brown, A. M., Piacentini, M., Birch-Machin, M. A., and Redfern, C. P. (2008) Increasing melanoma cell death using inhibitors of protein disulfide isomerases to abrogate survival responses to endoplasmic reticulum stress, Cancer Res 68, 5363-5369.
dc.relation.referencesFonseca, C., Soiffer, R., Ho, V., Vanneman, M., Jinushi, M., Ritz, J., Neuberg, D., Stone, R., DeAngelo, D., and Dranoff, G. (2009) Protein disulfide isomerases are antibody targets during immune-mediated tumor destruction, Blood 113, 1681-1688.
dc.relation.referencesHoffman, R., Furie, B., McGlave. . (2008) Hematology. Basic Principles and practice., Hematology 4 ed 63-68.
dc.relation.referencesArmstrong, S. A., and Look, A. T. (2005) Molecular genetics of acute lymphoblastic leukemia, J Clin Oncol 23, 6306-6315.
dc.relation.referencesAbbasi, S., Maleha, F., and Shobaki, M. (2013) Acute lymphoblastic leukemia experience: epidemiology and outcome of two different regimens, Mediterr J Hematol Infect Dis 5, e2013024.
dc.relation.referencesBennett, J. M., Catovsky, D., Daniel, M. T., Flandrin, G., Galton, D. A., Gralnick, H. R., and Sultan, C. (1981) The morphological classification of acute lymphoblastic leukaemia: concordance among observers and clinical correlations, Br J Haematol 47, 553-561.
dc.relation.referencesRavindranath, Y. (2003) Recent advances in pediatric acute lymphoblastic and myeloid leukemia, Curr Opin Oncol 15, 23-35.
dc.relation.referencesChan, K. W. (2002) Acute lymphoblastic leukemia, Curr Probl Pediatr Adolesc Health Care 32, 40-49.
dc.relation.referencesRedaelli, A., Laskin, B. L., Stephens, J. M., Botteman, M. F., and Pashos, C. L. (2005) A systematic literature review of the clinical and epidemiological burden of acute lymphoblastic leukaemia (ALL), Eur J Cancer Care (Engl) 14, 53-62.
dc.relation.referencesZiegler, D. S., Dalla Pozza, L., Waters, K. D., and Marshall, G. M. (2005) Advances in childhood leukaemia: successful clinical-trials research leads to individualised therapy, Med J Aust 182, 78-81.
dc.relation.referencesPiñeros, M., Pardo, C., Otero, J., Suarez, A., Vizcaino, M. (2008) Protocolo de vigilancia centinela en salud pública de las leucemias agudas pediátricas., Instituto Nacional de Salud, Ministerio de la Protección Social, Instituto Nacional de Cancerología 2008.
dc.relation.referencesRubnitz, J. E., and Pui, C. H. (2003) Recent advances in the treatment and understanding of childhood acute lymphoblastic leukaemia, Cancer Treat Rev 29, 31-44.
dc.relation.referencesBelson, M., Kingsley, B., and Holmes, A. (2007) Risk factors for acute leukemia in children: a review, Environ Health Perspect 115, 138-145.
dc.relation.referencesPombo-de-Oliveira, M. S., and Koifman, S. (2006) Infant acute leukemia and maternal exposures during pregnancy, Cancer Epidemiol Biomarkers Prev 15, 2336-2341.
dc.relation.referencesSakajiri, S., Mori, K., Isobe, Y., Kawamata, N., and Oshimi, K. (2002) Epstein-Barr virus-associated T-cell acute lymphoblastic leukaemia, Br J Haematol 117, 127-129.
dc.relation.referencesSlater, D. N. (2002) The new World Health Organization classification of haematopoietic and lymphoid tumours: a dermatopathological perspective, Br J Dermatol 147, 633-639.
dc.relation.referencesBhatnagar, S., Chandra, J., and Narayan, S. (2002) Hematological changes and predictors of bone marrow recovery in patients with neutropenic episodes in acute lymphoblastic leukemia, J Trop Pediatr 48, 200-203.
dc.relation.referencesKuriyama, K. (2003) [FAB amd WHO classification of leukemia], Nihon Naika Gakkai Zasshi 92, 934-941.
dc.relation.referencesSwerdlow, S., campo, E., Harris, N. . (2009) WHO classification of tumor of hematopoietic and lymphoid tissues, IARC Press, 109-138.
dc.relation.referencesDock, G. e. a. (1904) Rabies virus vaccination in a patient with cervical carcinoma, Am J Med Sci, 127-563.
dc.relation.referencesDePace, N. (1912) Sulla scomparsa di un enorme cancro vegetante del collo dell’utero senza cura chirurgica, Ginecologia 9, 82-89.
dc.relation.referencesCalderón, M. N., Acosta, O., Guererro, C. A., Guaman, F. . (2008) Protein isulfide isomerase activity is involved in rotavirus entry to MA104 cells, Proceding of the Xiv International congres of virology Instambul, 1632-1664.
dc.relation.referencesGuo, W., and Giancotti, F. G. (2004) Integrin signalling during tumour progression, Nat Rev Mol Cell Biol 5, 816-826.
dc.relation.referencesArrigo, A. P. (2012) Editorial: heat shock proteins in cancer, Curr Mol Med 12, 1099-1101.
dc.relation.referencesSilva, E., Guerrero, C., Acosta, O. (2012) Potencial oncolitico del rotavirus en la linea celular de linfoma histiocitico humano U937, Tesis de Maestría en genética humana. Universidad Nacional de Colombia.
dc.relation.referencesAlfonso, E., Rodríguez, S. Guerrero, C. (2012) Interacción de las proteínas de choque termico Hsp90 y Hsp70 con aislamientos de rotavirus en las lineas celulares U937, Tesis de pregrado licenciatura en Biología. Universidad Distrital Frnsisco José de Caldas.
dc.relation.referencesGuerrero, R., Guerrero, C. (2012) Determinación del potencial oncolítico del rotavirus en la línea celular de cáncer de mieloma murino sp2/0-ag14, Tesis de Maestría en Bioquímica. Facultad de medicina. Universidad Nacional de Colombia.
dc.relation.referencesGuerrero, C. A., Santana, A. Y., and Acosta, O. (2010) Mouse intestinal villi as a model system for studies of rotavirus infection, J Virol Methods 168, 22-30.
dc.relation.referencesGuerrero, C. A., Torres, D. P., Garcia, L. L., Guerrero, R. A., and Acosta, O. (2014) N-Acetylcysteine treatment of rotavirus-associated diarrhea in children, Pharmacotherapy 34, e333-340.
dc.relation.referencesArnold, M., Patton, J. T., and McDonald, S. M. (2009) Culturing, storage, and quantification of rotaviruses, Curr Protoc Microbiol Chapter 15, Unit 15C 13.
dc.relation.referencesGroene, W. S., and Shaw, R. D. (1992) Psoralen preparation of antigenically intact noninfectious rotavirus particles, J Virol Methods 38, 93-102.
dc.relation.referencesBerry, M. J., and Samuel, C. E. (1982) Detection of subnanogram amounts of RNA in polyacrylamide gels in the presence and absence of protein by staining with silver, Anal Biochem 124, 180-184.
dc.relation.referencesJones, R. W., Ross, J., and Hoshino, Y. (2003) Identification of parental origin of cognate dsRNA genome segment(s) of rotavirus reassortants by constant denaturant gel electrophoresis, J Clin Virol 26, 347-354.
dc.relation.referencesWHO. World Health Organization. Expanded Programme on Immunization of the Department of Immunization, V. a. B. (2009) Manual of rotavirus detection and characterization methods, WHO Document Production Services, Geneva, Switzerland. WHO/IVB/08.17.
dc.relation.referencesCampbell, S. A., and Gromeier, M. (2005) Oncolytic viruses for cancer therapy II. Cell-internal factors for conditional growth in neoplastic cells, Onkologie 28, 209-215.
dc.relation.referencesCampbell, S. A., and Gromeier, M. (2005) Oncolytic viruses for cancer therapy I. Cell-external factors: virus entry and receptor interaction, Onkologie 28, 144-149.
dc.relation.referencesCarreno-Torres, J. J., Gutierrez, M., Arias, C. F., Lopez, S., and Isa, P. (2010) Characterization of viroplasm formation during the early stages of rotavirus infection, Virol J 7, 350.
dc.relation.referencesEichwald, C., Rodriguez, J. F., and Burrone, O. R. (2004) Characterization of rotavirus NSP2/NSP5 interactions and the dynamics of viroplasm formation, J Gen Virol 85, 625-634.
dc.relation.referencesOffit, P. A., Clark, H. F., Taylor, A. H., Hess, R. G., Bachmann, P. A., and Plotkin, S. A. (1984) Rotavirus-specific antibodies in fetal bovine serum and commercial preparations of serum albumin, J Clin Microbiol 20, 266-270.
dc.relation.referencesSato, K., Inaba, Y., Tokuhisa, S., Miura, Y., Akashi, H., and Tanaka, Y. (1980) Antibodies against several viruses in sera from normal bovine fetuses and precolostral calves, Natl Inst Anim Health Q (Tokyo) 20, 77-78.
dc.relation.referencesEstes, M. K., Graham, D. Y., Gerba, C. P., and Smith, E. M. (1979) Simian rotavirus SA11 replication in cell cultures, J Virol 31, 810-815.
dc.relation.referencesChaibi, C., Cotte-Laffitte, J., Sandre, C., Esclatine, A., Servin, A. L., Quero, A. M., and Geniteau-Legendre, M. (2005) Rotavirus induces apoptosis in fully differentiated human intestinal Caco-2 cells, Virology 332, 480-490.
dc.relation.referencesBautista, D., Rodriguez, L. S., Franco, M. A., Angel, J., and Barreto, A. (2015) Caco-2 cells infected with rotavirus release extracellular vesicles that express markers of apoptotic bodies and exosomes, Cell Stress Chaperones 20, 697-708.
dc.relation.referencesPerez, J. F., Chemello, M. E., Liprandi, F., Ruiz, M. C., and Michelangeli, F. (1998) Oncosis in MA104 cells is induced by rotavirus infection through an increase in intracellular Ca2+ concentration, Virology 252, 17-27.
dc.relation.referencesHalasz, P., Holloway, G., and Coulson, B. S. (2010) Death mechanisms in epithelial cells following rotavirus infection, exposure to inactivated rotavirus or genome transfection, J Gen Virol 91, 2007-2018.
dc.relation.referencesHolloway, G., Johnson, R. I., Kang, Y., Dang, V. T., Stojanovski, D., and Coulson, B. S. (2015) Rotavirus NSP6 localizes to mitochondria via a predicted N-terminal a-helix, J Gen Virol 96, 3519-3524.
dc.relation.referencesBhowmick, R., Halder, U. C., Chattopadhyay, S., Chanda, S., Nandi, S., Bagchi, P., Nayak, M. K., Chakrabarti, O., Kobayashi, N., and Chawla-Sarkar, M. (2012) Rotaviral enterotoxin nonstructural protein 4 targets mitochondria for activation of apoptosis during infection, J Biol Chem 287, 35004-35020.
dc.relation.referencesMartin-Latil, S., Mousson, L., Autret, A., Colbere-Garapin, F., and Blondel, B. (2007) Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway, J Virol 81, 4457-4464.
dc.relation.referencesBhowmick, R., Halder, U. C., Chattopadhyay, S., Nayak, M. K., and Chawla-Sarkar, M. (2013) Rotavirus-encoded nonstructural protein 1 modulates cellular apoptotic machinery by targeting tumor suppressor protein p53, J Virol 87, 6840-6850.
dc.relation.referencesGuerrero, C. A., and Acosta, O. (2016) Inflammatory and oxidative stress in rotavirus infection, World J Virol 5, 38-62.
dc.relation.referencesGuerrero, C. A., and Acosta, O. (2016) Inflammatory and oxidative stress in rotavirus infection, World J Virol 5, 38-62.
dc.relation.referencesDutta, D., Bagchi, P., Chatterjee, A., Nayak, M. K., Mukherjee, A., Chattopadhyay, S., Nagashima, S., Kobayashi, N., Komoto, S., Taniguchi, K., and Chawla-Sarkar, M. (2009) The molecular chaperone heat shock protein-90 positively regulates rotavirus infectionx, Virology 391, 325-333.
dc.relation.referencesNomaguchi, M., Fujita, M., Miyazaki, Y., and Adachi, A. (2012) Viral tropism, Front Microbiol 3, 281.
dc.relation.referencesZhu, Y. Z., Cao, M. M., Wang, W. B., Wang, W., Ren, H., Zhao, P., and Qi, Z. T. (2012) Association of heat-shock protein 70 with lipid rafts is required for Japanese encephalitis virus infection in Huh7 cells, J Gen Virol 93, 61-71.
dc.relation.referencesCripe, T. P., Delos, S. E., Estes, P. A., and Garcea, R. L. (1995) In vivo and in vitro association of hsc70 with polyomavirus capsid proteins, J Virol 69, 7807-7813.
dc.relation.referencesChromy, L. R., Pipas, J. M., and Garcea, R. L. (2003) Chaperone-mediated in vitro assembly of Polyomavirus capsids, Proc Natl Acad Sci U S A 100, 10477-10482.
dc.relation.referencesNiewiarowska, J., D'Halluin, J. C., and Belin, M. T. (1992) Adenovirus capsid proteins interact with HSP70 proteins after penetration in human or rodent cells, Exp Cell Res 201, 408-416.
dc.relation.referencesFust, G., Beck, Z., Banhegyi, D., Kocsis, J., Biro, A., and Prohaszka, Z. (2005) Antibodies against heat shock proteins and cholesterol in HIV infection, Mol Immunol 42, 79-85.
dc.relation.referencesMcDonald, S. M., and Patton, J. T. (2011) Assortment and packaging of the segmented rotavirus genome, Trends Microbiol 19, 136-144.
dc.relation.referencesIturriza Gomara M, D. U. a. G. J. (2003) Molecular epidemiology of rotaviruses: genetic mechanisms associated with diversity., Perspectives in Medical Virology. Viral gastroenteritis. Desselberger U, Gray J, editors; Elsevier Science. 9, 27.
dc.relation.referencesYate., G. C. C. (2014) Distribución de genotipos de rotavirus del grupo a en once departamentos de Colombia posterior a la introducción de la vacuna anti-rotavirus, 2009 – 2013., Universidad Nacional de Colombia. Facultad de ciencias. Maestría en Microbiología. Bogotá, Colombia, 114.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalRotavirus
dc.subject.proposalRotavirus
dc.subject.proposalOncolytic viruses
dc.subject.proposalVirus oncolíticos
dc.subject.proposalLeucemia linfoblástica aguda
dc.subject.proposalAcute lymphoblastic leukemia
dc.subject.proposalheat shock proteins
dc.subject.proposalPDI
dc.subject.proposalIntegrina β3
dc.subject.proposalPDI
dc.subject.proposalIntegrin-β3
dc.subject.proposalProteínas de choque térmico
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito