Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorLara Valencia, Luis Augusto
dc.contributor.advisorBlandon Valencia, John Jairo
dc.contributor.authorCaicedo Diaz, Daniel Alejandro
dc.date.accessioned2020-09-04T22:23:40Z
dc.date.available2020-09-04T22:23:40Z
dc.date.issued2020-06
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78399
dc.description.abstractTo accomplish an appropriate performance of tuned mass dampers (TMDs) in building structures subjected to earthquake excitations, considerable amounts of mass must be added at upper floors, which in occasions may result impractical or economically unfeasible, especially in tall buildings. Therefore, this investigation contemplates two possible alternatives for the passive control of buildings avoiding the addition of large masses through inerter-based devices, the Tuned Mass Damper Inerter (TMDI), and a variant-type of Tuned Inerter Damper (TID) proposed herein. The former couples the classic TMD with an inerter, a two-terminal mechanical device able to produce a force proportional to the relative acceleration between its terminals, acting as a TMD mass amplifier. The latter is based on the conventional TID scheme, with the main difference that its location is changed from the ground story-level to the last two levels of the structural system. A metaheuristic optimization algorithm based on the differential evolution method is used to solve the tuning problem of the control devices. Besides, eight different accelerograms of recorded earthquakes are considered to simulate the seismic loads during the optimization process, in which the mitigation of the seismic response is measured by the reduction of three objective functions: horizontal peak displacements, root mean square (RMS) response of displacements, and horizontal peak floor acceleration. Three case-studies are employed for the analysis, determined from actual buildings of Medellin city from low, medium to high rise (30 meters, 97 meters, and 144 meters respectively). In the TMDI analysis, the results show a clear trend in the amplification of displacements as inertance values increase, and consequently, a better behavior of the case-studies controlled via TMD is attained. On the contrary, the numerical results exhibited a clear enhancement of the seismic performance of the case-studies when the variant-type of the TID proposed herein is applied, better than conventional TIDs installed at the ground story level.
dc.description.abstractPara lograr un desempeño adecuado de amortiguadores de masa sintonizada (AMS) en edificaciones sometidas a excitaciones sísmicas, se deben agregar cantidades considerables de masa en los niveles superiores, lo que en ocasiones puede resultar poco práctico o económicamente inviable, especialmente para el caso de edificios altos. Por lo tanto, esta investigación contempla dos posibles alternativas para el control pasivo de edificios sin incluir grandes cantidades de masa, mediante dispositivos basados en el inerter, el amortiguador de masa sintonizado inerter (AMSI) y una variante del amortiguador sintonizado inerter (ASI) propuesto en este trabajo. El primero, combina el clásico AMS con un inerter, el cual es un dispositivo mecánico de dos terminales capaz de producir una fuerza proporcional a la aceleración relativa entre sus terminales, actuando como un amplificador de masa para el AMS. El segundo dispositivo está inspirado en el ASI convencional, con la diferencia principal de que su ubicación cambia del nivel de piso a los dos últimos niveles del sistema estructural. Ahora bien, un algoritmo de optimización metaheurística basado en el método de evolución diferencial se va a emplear para resolver el problema de ajuste de los dispositivos de control. Además, ocho acelerogramas de diferentes terremotos se emplean para representar las cargas sísmicas durante el proceso de optimización, en el que la mitigación de la respuesta sísmica se mide mediante la reducción de tres funciones objetivo: desplazamientos máximos horizontales, media cuadrática (valor eficaz) de la respuesta de desplazamientos y máxima aceleración horizontal de piso. Para el análisis se van a emplear tres casos de estudio, los cuales fueron determinados a partir de edificios reales de la ciudad de Medellín, de pequeña, mediana y gran altura (30 metros, 97 metros y 144 metros respectivamente). En el análisis del AMSI, los resultados muestran una clara tendencia en la amplificación de los desplazamientos a medida que aumentan los valores de inertance, observándose un mejor comportamiento de las edificaciones controladas mediante el AMS convencional. Por el contrario, los resultados numéricos exhiben una mejora significativa del desempeño sísmico de las edificaciones cuando su respuesta se controla mediante la variante de ASI propuesta en esta investigación, mejor que cuando se utilizó el ASI convencional instalado a nivel de piso.
dc.format.extentxix, 71 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
dc.titleA comparative analysis on the seismic behavior of buildings using inerter-based devices: Tuned Mass Damper Inerter (TMDI) and Tuned Inerter Damper (TID)
dc.title.alternativeUn análisis comparativo del comportamiento sísmico de edificaciones usando dispositivos basados en inerter: Amortiguador de Masa Sintonizado Inerter (AMSI) y Amortiguador Sintonizado Inerter (ASI
dc.typeTrabajo de grado - Maestría
dc.rights.spaAcceso abierto
dc.description.additionalResearch line: Structural control – Dynamics of structures
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Estructuras
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellín
dc.contributor.researchgroupCentro de Proyectos e Investigaciones Sísmicas (CPIS)
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ingenierías - Estructuras
dc.publisher.departmentDepartamento de Ingeniería Civil
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesA. Rothwell, The Conventional Design Process. In: Optimization Methods in Structural Design. Solid Mechanics and Its Applications, Vol 242. Springer, Cham. (2017).
dc.relation.referencesG. Buckle, Passive control of structures for seismic loads. Bull. N.Z. Natl. Soc. Earthq. Eng., 33(3), 209-221. (2000). https://doi.org/10.5459/bnzsee.33.3.209-221.
dc.relation.referencesA. M. Kaynia, D. Venerziano, J. M. Biggs, Seismic effectiveness of tuned mass dampers, J. Struct. Div. ASCE 107(8) (1981) 1465–1484
dc.relation.referencesJ. R. Sladek, R. E. Klinger, Effect of tune mass dampers of seismic response, J. Struct. Eng. ASCE 109 (1983) 2004–2009.
dc.relation.referencesM.C. Smith, Synthesis of mechanical networks: The inerter, IEEE Transactions on automatic control, 47(10), 1648-1662. (2002). https://doi.org/10.1109/TAC.2002.803532.
dc.relation.referencesX.S. Yang, G. Bekdaş, S.M. Nigdeli, Review and applications of metaheuristic algorithms in civil engineering. In Metaheuristics and Optimization in Civil Engineering, Springer, Cham. (2016) 1–24.
dc.relation.referencesA.Y.T. Leung, H. Zhang, C.C. Cheng, Y.Y. Lee, Particle swarm optimization of TMD by non-stationary base excitation during earthquake, Earthq. Eng. Struct. Dyn., 37(9), (2008) 1223–1246.
dc.relation.referencesA.Y.T. Leung, H. Zhang, Particle swarm optimization of tuned mass dampers, Eng. Struct. 31(3), (2009) 715–728.
dc.relation.referencesG. Bekdaş, S.M. Nigdeli, Estimating optimum parameters of tuned mass dampers using harmony search, Eng. Struct. 33(9), (2011) 2716–2723.
dc.relation.referencesG. Bekdaş, S.M. Nigdeli, Metaheuristic based optimization of tuned mass dampers under earthquake excitation by considering soil-structure interaction, Soil Dyn. Earthq. Eng. 92, (2017) 443–461.
dc.relation.referencesG. Bekdaş, S.M. Nigdeli, Optimization of tuned mass damper with harmony search. In: Gandomi Amir Hossein, Yang Xin-She, Alavi Amir Hossein, Talatahari Siamak, editors. Metaheuristic applications in structures and infrastructures, Elsevier, (2013) 345–371.
dc.relation.referencesA. Farshidianfar, S. Soheili, Optimization of TMD Parameters for Earthquake Vibrations of Tall Buildings Including Soil Structure Interaction, Iran University of Science & Technology, 3(3), Eng. (2013) 409–429.
dc.relation.referencesA. Farshidianfar, S. Soheili, Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil-structure interaction, Soil Dyn. Earthq. Struct. 51, (2013) 14–22.
dc.relation.referencesS.M. Nigdeli, G. Bekdaş, X.S. Yang, Optimum tuning of mass dampers for seismic structures using flower pollination algorithm. Int. J. Theor. Appl. Mech, 1, (2016) 264–268.
dc.relation.referencesS.M. Nigdeli, G. Bekdaş, X.S. Yang, Optimum tuning of mass dampers by using a hybrid method using harmony search and flower pollination algorithm. In International Conference on Harmony Search Algorithm Springer, Singapore, (2017). 222–231.
dc.relation.referencesG. Bekdaş, S.M. Nigdeli, X.S. Yang, A novel bat algorithm based optimum tuning of mass dampers for improving the seismic safety of structures, Eng. Struct. (2018) 159, 89–98.
dc.relation.referencesS. Etedali, H. Rakhshani, Optimum design of tuned mass dampers using multi-objective cuckoo search for buildings under seismic excitations, Alex. Eng. J. 57(4), (2018) 3205–3218.
dc.relation.referencesS. Pourzeynali, S. Salimi, H.E. Kalesar, Robust multi-objective optimization design of TMD control device to reduce tall building responses against earthquake excitations using genetic algorithms, Sci. Iran. 20(2), (2013) 207–221.
dc.relation.referencesS. Pourzeynali, S. Salimi, Multi-objective optimization design of control devices to suppress tall buildings vibrations against earthquake excitations using fuzzy logic and genetic algorithms, in: Design Optimization of Active and Passive Structural Control Systems (2015) 180–215.
dc.relation.referencesS. Pal, D. Singh, V. Kumar, Hybrid SOMA: A tool for optimizing TMD parameters, in: Proc. of Sixth International Conference on Soft Computing for Problem Solving, Springer, Singapore. (2017) 35–41.
dc.relation.referencesM. Yucel, G. Bekdaş, S.M. Nigdeli, S. Sevgen, Estimation of optimum tuned mass damper parameters via machine learning, J. Build. Eng. 26, 100847 (2019).
dc.relation.referencesR. Storn, K. Price, Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, J. Global Optim. 11(4), 341-359. (1997). https://doi.org/10.1023/A:1008202821328.
dc.relation.referencesB.F. Spencer Jr, S. Nagarajaiah, State of the art of structural control. Journal of structural engineering, 129(7), (2003). 845-856.
dc.relation.referencesY.M. Parulekar, G.R. Reddy, Passive response control systems for seismic response reduction: A state-of-the-art review. International Journal of Structural Stability and Dynamics, 9(01), (2009). 151-177.
dc.relation.referencesJ. M. Kelly, S. B. Hodder, Experimental study of lead and elastomeric dampers for base isolation system in laminated neoprene bearings, Bull. N.Z. Nat. Soc. Earthq. Eng. 15 (1982) 53–67.
dc.relation.referencesJ. M. Kelly, K. E. Beucke, A frictional damped base isolation system with fail-safe characteristics, Earthq. Eng. Struct. Dynam. 11 (1983) 33–56.
dc.relation.referencesJ. M. Kelly, Base isolation: Origins and development, EERC News 12(1) (1998).
dc.relation.referencesS. J. Tuholski, P. E. Rodler, San Francisco’s new Asian Art Museum, in 13th World Conf. Earthq. Eng., Canada (2004).
dc.relation.referencesR. S. Jangid, Optimum damping in a nonlinear base Isolation system, J. Sound Vib. 189(4) (1996) 477–487.
dc.relation.referencesT. W. Lin, C. C. Hone, Base isolation by free rolling rods under basement, Earthq. Eng. Struct. Dynam. 22 (1993) 261–273.
dc.relation.referencesR. S. Jangid, Y. B. Londhe, Effectiveness of elliptical rolling rods for base isolation, J. Struct Eng. ASCE 124 (1998) 469–472.
dc.relation.referencesC. S. Tsai, T. C. Chiang, B. J. Chen, Shaking table tests of a full scale steel structure isolated with MFPS, ASME Pressure Vessels and Piping Conference, Ohio, USA, Vol. 466 (2003) 41–47.
dc.relation.referencesR. S. Jangid, Computational numerical models for seismic response of structures isolated by sliding systems, Struct. Contr. Health Monitoring 12 (2005) 117–137.
dc.relation.referencesR. S. Jangid, Optimum lead–rubber isolation bearings for near-fault motions, Eng. Struct. 29 (2007) 2503–2513.
dc.relation.referencesF. Pakpour, H.A Beigi, C. Christopoulos, Development of low-cost Seismic Isolation Platform (SIP) for mass implementation in developing countries. surfaces, 7, 9.
dc.relation.referencesA. S. Pall, C. Marsh, P. Fazio, Friction joints for seismic control of large panel structures, J. Prestressed Concrete Inst. 6 (1980) 38–61.
dc.relation.referencesA. S. Pall, C. Marsh, Seismic response of friction damped braced frames, J. Struct. Div. ASCE 108(9) (1982) 1313–1323.
dc.relation.referencesA. S. Pall, V. Verganelakis, C. Marsh, Friction-dampers for seismic control of concordia university library building, in Proc. Fifth Can. Conf. Earthq. Eng., Ottawa (1987), pp. 191–200.
dc.relation.referencesC. Pasquin, A. N. Leboeuf, T. Pall, Friction dampers for seismic rehabilitation of Eaton Building, Montreal, in 4th Struct. Specialty Conf. Can. Soc. Civ. Eng. (2002).
dc.relation.referencesJ. M. Kelly, R. I. Skinner, A. J. Heine, Mechanisms of energy absorption in special devices for use in earthquake resistant structures, Bull. N.Z. Soc. Earthq. Eng. 5(3) (1972) 63–73.
dc.relation.referencesA. S. Whittaker, V. V. Bertero, C. L. Thompson, L. J. Alonso, Seismic testing of steel plate energy dissipation devices, Earthq. Spectra 7(4) (1991) 563–604.
dc.relation.referencesK. C. Tsai, H. W. Chen, C. P. Hong, Y. F. Su, Design of steel triangular plate energy absorbers for seismic-resistant construction, Earthq. Spectra 9(3) (1993) 505–528.
dc.relation.referencesR. I. Skinner, R. G. Tyler, A. J. Heine, W. H. Robinson, Hysteretic dampers for the protection of structures from earthquakes, Bull. N.Z. Soc. Earthq. Eng. 13(1) (1980) 22–36.
dc.relation.referencesT. Fujita, Seismic isolation and response control for nuclear and nonnuclear structures, in Special Issue of the 11th Int. Conf. SMiRT, Tokyo (1991).
dc.relation.referencesC. L. Perry, E. A. Fierro, H. Sedarat, R. E. Scholl, Seismic upgrade in San Francisco using energy dissipation devices, Earthq. Spectra 9(3) (1992) 559–579.
dc.relation.referencesC. S. Tsai, K. C. Tsai, TPEA Device as seismic damper for high rise buildings, J. Eng. Mech. 121(10) (1995) 1075–1081. Int. J. Str. Stab. Dyn. 2009.09:151-177. Downloaded from www.worldscientific.com by UNIVERSITY OF AUCKLAND LIBRARY - SERIALS UNIT on 10/16/14. For personal use only. Passive Response Control Systems for Seismic Response Reduction 173
dc.relation.referencesR. E. Scholl, Design criteria for yielding and friction energy dissipaters, in Proc. ATC 17-1 on Seismic Isolation, Energy Dissipation and Active Control 2, pp. 485–495.
dc.relation.referencesJ. C. De la Llera, C. Esguerra, J. L. Almazan, Earthquake behavior of structures with copper energy dissipators, Earthq. Eng. Struct. Dynam. 33 (2004) 329–358.
dc.relation.referencesM. C. Phocas, A. Pocanschi, Steel frames with bracing mechanism and hysteretic dampers, Earthq. Eng. Struct. Dynam. 32 (2003) 811–825.
dc.relation.referencesC. Zhong, J. Binder, O.S. Kwon, C. Christopoulos, Experimental and Numerical Characterization of Ultralow-Cycle Fatigue Behavior of Steel Castings. Journal of Structural Engineering, 146(2), 04019195. (2020).
dc.relation.referencesP. Mahmoodi, Structural dampers, J. Struct. Div. ASCE 95 (1969) 1661–1672.
dc.relation.referencesP. Mahmoodi, Design and analysis of viscoelastic vibration dampers for structures, in Proc. INOVA- -73 World Innovative Week Conference (Elsevier, London, 1974), pp. 25–39.
dc.relation.referencesK. C. Chang, T. T. Soong, S. T. Oh, M. L. Lai, Study of ambient temperature of viscoelastically damped structure, J. Struct. Eng. ASCE 118(7) (1992) 1955–1973.
dc.relation.referencesE. Elsesser, M. Jokerst, S. Naaseh, Historic upgrades in San Francisco, J. Civil. Eng. ASCE (1997).
dc.relation.referencesC. Christopoulos, M. Montgomery, Viscoelastic coupling dampers (VCDs) for enhanced wind and seismic performance of high‐rise buildings. Earthquake Engineering & Structural Dynamics 42.15 (2013): 2217-2233.
dc.relation.referencesR. MacKay-Lyons, C. Christopoulos, M. Montgomery, Viscoelastic Coupling Dampers for Enhanced Multiple Seismic Hazard Level Performance of High-Rise Buildings. Earthquake Spectra, 34(4), (2018). 1847-1867.
dc.relation.referencesN. Makris, M. C. Constantinou, Viscous dampers: Testing modeling and application in vibration and seismic isolation, Report No. NCEER-90-O028, Buffalo, New York, 1990.
dc.relation.referencesW. H. Lin, A. K. Chopra, Earthquake response of elastic SDF systems with nonlinear fluid viscous dampers, Earthq. Eng. Struct. Dynam. 31 (2002) 1623–1642.
dc.relation.referencesJ. W. Asher, R. P. Young, R. D. Ewing, Seismic isolation design of the San Bernardino County Medical Center replacement project, J. Struct. Des. Tall Bldg. 5 (1996) 265–279.
dc.relation.referencesY. Kitagawa, M. Midorikawa, Seismic isolation and passive response-control buildings in Japan, Smart Mater. Struct. 7 (1998) 581–587.
dc.relation.referencesG.P. Cimellaro, S. Marasco, Tuned-mass dampers, in: Introduction to Dynamics of Structures and Earthquake Engineering (pp. 421-438). Springer, Cham. (2018). https://doi.org/10.1007/978-3-319-72541-3_18.
dc.relation.referencesH. Frahm, Device for damping vibrations of bodies. U.S. Pat. No 989,958. (1911). https://doi.org/10.1016/j.tree.2005.10.010.
dc.relation.referencesJ. Ormondroyd, The theory of the dynamic vibration absorber. Trans., ASME, Applied Mechanics, 50, 9-22. (1928).
dc.relation.referencesJ.P. Den Hartog, Mechanical Vibrations. Fourth Edition. McGraw-Hill, New York, 1956. 67s. 6d., J. R. Aeronaut. Soc. (1957). https://doi.org/10.1017/s0368393100131049.
dc.relation.referencesG.B. Warburton, Optimum absorber parameters for various combinations of response and excitation parameters, Earthquake Engineering & Structural Dynamics, 10(3). (1982). 381-401. https://doi.org/10.1002/eqe.4290100304.
dc.relation.referencesF. Sadek, B. Mohraz, A.W. Taylor, R.M. Chung, A method of estimating the parameters of tuned mass dampers for seismic applications, Earthquake Engineering & Structural Dynamics, 26(6), 617-635. (1997). https://doi.org/10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO;2-Z.
dc.relation.referencesS.M. Nigdeli, G. Bekdaş, Optimum tuned mass damper design in frequency domain for structures. KSCE, J. Civ. Eng. 21(3), (2017) 912–922.
dc.relation.referencesL. Marian, A. Giaralis, Optimal design of inerter devices combined with TMDs for vibration control of buildings exposed to stochastic seismic excitations, S Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures-Proceedings of the 11th International Conference on Structural Safety and Reliability, ICOSSAR 2013 (pp. 1025-1032). CRC Press. (2013).
dc.relation.referencesC. Papageorgiou, M.C. Smith, Laboratory Experimental Testing of Inerters, in: Proc. of the 44th IEEE Conference on Decision and Control IEEE. (2005). 3351–3356.
dc.relation.referencesA. Giaralis, L. Marian, Use of inerter devices for weight reduction of tuned mass-dampers for seismic protection of multi-story building: the Tuned Mass-Damper-Interter (TMDI), in: Active and Passive Smart Structures and Integrated Systems (Vol. 9799, p. 97991G). International Society for Optics and Photonics. (2016).
dc.relation.referencesJ. Salvi, A. Giaralis, Concept study of a novel energy harvesting-enabled tuned mass-damper-inerter (EH-TMDI) device for vibration control of harmonically-excited structures, in: Journal of Physics: Conference Series (Vol. 744, No. 1, p. 012082). IOP Publishing. (2016).
dc.relation.referencesA. Javidialesaadi, N. Wierschem, Seismic Performance Evaluation of Inerter-Based Tuned Mass Dampers. In 3RD Huixian International Forum on Earthquake Engineering for Young Researchers, University of Illinois, Urbana-Champaign, IL. (2017).
dc.relation.referencesM. Lazarek, P. Brzeski, P. Perlikowski, Design and identification of parameters of tuned mass damper with inerter which enables changes of inertance, Mech. Mach. Theory, 119, (2018) 161–173.
dc.relation.referencesL. Marian, A. Giaralis, Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems, Probabilistic Eng. Mech. 38, 156–164. 38 (2015) 156–164.
dc.relation.referencesL. Marian, A. Giaralis, The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting, Smart struct Syst. 19(6), (2017) 665–678.
dc.relation.referencesD. Pietrosanti, M. De Angelis, M. Basili, Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI), Earthq. Eng. Struct. Dyn., 46(8), (2017) 1367–1388.
dc.relation.referencesM. De Angelis, A. Giaralis, F. Petrini, D. & Pietrosanti, D. Optimal tuning and assessment of inertial dampers with grounded inerter for vibration control of seismically excited base-isolated systems. Eng. Struct. 196, 109250. (2019).
dc.relation.referencesA. Giaralis, A.A. Taflanidis, Reliability-based Design of Tuned Mass-Damper-Inerter (TMDI) Equipped Multi-storey Frame Buildings under Seismic Excitation, in: 2th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP. University of British Columbia Library. (2015).
dc.relation.referencesA. Giaralis, A.A. Taflanidis, Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria, Struct. Contr. Health Monit. 25(2), e2082. (2018) 1–22.
dc.relation.referencesL. Marian, The tuned mass damper inerter for passive vibration control and energy harvesting in dynamically excited structural systems. (Doctoral thesis, City University London) (2016).
dc.relation.referencesY. Shen, L. Chen, X. Yang, D. Shi, J. Yang, Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension. J. Sound and Vib., 361, 148-158. (2016). https://doi.org/10.1016/j.jsv.2015.06.045.
dc.relation.referencesY. Hu, M. Z. Chen, Performance evaluation for inerter-based dynamic vibration absorbers. Int. J. Mech. Sci., 99, 297-307. (2015). https://doi.org/10.1016/j.ijmecsci.2015.06.003.
dc.relation.referencesF. C. Wang, C. W. Chen, M. K. Liao, M. F. Hong, Performance analyses of building suspension control with inerters. In 2007 46th IEEE Conference on Decision and Control (pp. 3786-3791). IEEE. (2007).
dc.relation.referencesF. C. Wang, M. F. Hong, C. W. Chen, Building suspensions with inerters. Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 224(8), 1605-1616. (2010). https://doi.org/10.1243/09544062JMES1909.
dc.relation.referencesY.C. Chen, J. Y. Tu, F. C. Wang, Earthquake vibration control for buildings with inerter networks. In 2015 European Control Conference (ECC) (pp. 3137-3142). IEEE. (2015).
dc.relation.referencesI. F. Lazar, S. A. Neild, D. J. Wagg, Using an inerter‐based device for structural vibration suppression. Earthq. Eng. Struct. Dyn., 43(8), 1129-1147. (2014). https://doi.org/10.1002/eqe.2390.
dc.relation.referencesI. F. Lazar, D. J. Wagg, S. A. Neild, An inerter vibration isolation system for the control of seismically excited structures, Int. In Conf. Urban Earthq. Eng. (2013).
dc.relation.referencesI. F. Lazar, S. A. Neild, D. J. Wagg, Inerter-based vibration suppression systems for laterally and base-excited structures. In Proceedings of EURODYN 2014 (pp. 1525-1530). Sheffield. (2014).
dc.relation.referencesY. Wen, Z. Chen, X. Hua, Design and evaluation of tuned inerter-based dampers for the seismic control of MDOF structures. J. Struct. Eng., 143(4), 04016207. (2017).
dc.relation.referencesI. F. Lazar, S. A. Neild, D. J. Wagg, Design and performance analysis of inerter-based vibration control systems. In Dynamics of Civil Structures, Volume 4 (pp. 493-500). Springer, Cham. (2014).
dc.relation.referencesS. Y. Zhang, T. D. Lewis, J. Z. Jiang, S. A. Neild, Passive vibration suppression using multiple inerter-based devices for a multi-storey building structure. In Proceedings of the Sixth European Conference on Structural Control (EACS 2016) (pp. 1-11). Sheffield, England. (2016).
dc.relation.referencesL. Sun, D. Hong, L. Chen, Cables interconnected with tuned inerter damper for vibration mitigation. Eng. Struct., 151, 57-67. (2017). https://doi.org/10.1016/j.engstruct.2017.08.009.
dc.relation.referencesI. F. Lazar, S. A. Neild, D. J. Wagg, Vibration suppression of cables using tuned inerter dampers. Eng. Struct., 122, 62-71. (2016). https://doi.org/10.1016/j.engstruct.2016.04.017.
dc.relation.referencesC. Pan, R. Zhang, Design of structure with inerter system based on stochastic response mitigation ratio. Struct. Control Hlth., 25(6), e2169. (2018). https://doi.org/10.1002/stc.2169.
dc.relation.referencesW. Shen, A. Niyitangamahoro, Z. Feng, H. Zhu, Tuned Inerter Dampers for Civil Structures Subjected to Earthquake Ground Motions: optimum design and seismic performance. Eng. Struct., 198, 109470. (2019). https://doi.org/10.1016/j.engstruct.2019.109470.
dc.relation.referencesD. De Domenico, N. Impollonia, G. Ricciardi, Soil-dependent optimum design of a new passive vibration control system combining seismic base isolation with tuned inerter damper. Soil Dyn. Earthq. Eng., 105, 37-53. (2018). https://doi.org/10.1016/j.soildyn.2017.11.023.
dc.relation.referencesC. Papageorgiou, N. E. Houghton, M. C. Smith, Experimental testing and analysis of inerter devices. J. Dyn. Sys., Meas., Control. 131(1). (2009). https://doi.org/10.1115/1.3023120.
dc.relation.referencesX. Liu, J. Z. Jiang, B. Titurus, A. Harrison, Model identification methodology for fluid-based inerters. Mechanical Systems and Signal Processing, 106, 479-494. (2018). https://doi.org/10.1016/j.ymssp.2018.01.018.
dc.relation.referencesS. M. Elsayed, R. A. Sarker, D. L. Essam, Self-adaptive differential evolution incorporating a heuristic mixing of operators. Comput. Optim. Appl., 54(3), 771-790. (2013). https://doi.org/10.1007/s10589-012-9493-8.
dc.relation.referencesR. Ruiz, A.A. Taflanidis, A. Giaralis, D. Lopez-Garcia, Risk-informed optimization of the tuned mass-damper-inerter (TMDI) for the seismic protection of multi-storey building structures, Engineering Structures, 177, 836-850. (2018). https://doi.org/10.1016/j.engstruct.2018.08.074.
dc.relation.referencesA.K. Chopra, Dynamics of structures: Theory and applications to earthquake engineering. Englewood Cliffs, N.J: Prentice Hall, (1995).
dc.relation.referencesM. Ziyaeifar, H. Noguchi, Partial mass isolation in tall buildings. Earthq. Eng. Struct. Dyn.27(1), 49–65. (1998).
dc.relation.referencesZ. Tian, J Qian, L. Zhang, Slide roof system for dynamic response reduction. Earthq. Eng. Struct. Dyn. 37(4), 647–658. (2008). https://doi.org/10.1002/eqe.780.
dc.relation.referencesPacific Earthquake Engineering Research Center: Ground Motion Database. Available: http://peer.berkeley.edu/peer_ground_motion_database
dc.relation.referencesThe MathWorks Inc. MATLAB R2019a. Natick, MA, USA. (2019).
dc.relation.referencesMinisterio de Ambiente, Vivienda y Desarrollo Territorial, Reglamento Colombiano de construcción sismo resistente. NSR-10, Segunda actualización, Bogotá, Asociación Colombiana de Ingeniería Sísmica. AIS, 2010.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalTuned mass damper inerter
dc.subject.proposalAmortiguador de masa sintonizada inerter
dc.subject.proposalTuned inerter damper
dc.subject.proposalamortiguador sintonizado inerter
dc.subject.proposaloptimización metaheurística
dc.subject.proposalPassive control
dc.subject.proposalMetaheuristic optimization
dc.subject.proposalmétodo de evolución diferencial
dc.subject.proposalDifferential evolution method
dc.subject.proposaldesempeño sísmico
dc.subject.proposalSeismic performance
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito