Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGraciano Gallego, Carlos Alberto
dc.contributor.advisorVega Posada, Carlos Alberto
dc.contributor.authorSenior Arrieta, Vanessa
dc.date.accessioned2020-09-08T20:27:54Z
dc.date.available2020-09-08T20:27:54Z
dc.date.issued2020-08-20
dc.identifier.citationSenior-Arrieta V. 2020
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78415
dc.description.abstractThis study presents an experimental investigation on the rutting resistance of permeable asphalt mixes (PAM). In practice, PAM, also referred to as Open-graded friction courses (OGFC) or permeable friction courses (PFC), are prone to permanent deformation due to heavy vehicle traffic loads and a weak mineral skeleton caused by their high air void contents. Consequently, the draining capacity of the PAM is diminished making the roads unsafe particularly in wet conditions. Hence, the rutting mechanism of PAM is evaluated through three laboratory tests: dynamic modulus, flow number, and Hamburg wheel tracking test (HWTT). The laboratory samples were prepared and compacted considering four air voids (AV) contents: 18%, 20%, 22% and 25%. From the HWTT, a comparative analysis was conducted using X-ray computer tomography (X-ray CT) images obtained before and after the tests in order to investigate AV distribution due to rutting. Results from the tests indicated that an increase in AV content reduced the rutting performance of PAM, as well as higher AV content led to larger mix densification and thus a deeper rut was achieved. Similar results were attained from the analysis of the X-ray CT images, nevertheless, a larger AV densification was observed in the upper part of the samples beneath the developed rut, which can lead to further weakening the mineral skeleton and progress of other several distress that typically develop for PAM.
dc.description.abstractEste estudio presenta una investigación experimental sobre la resistencia al ahuellamiento en las mezclas asfálticas permeables (PAM). En la práctica, estas mezclas también conocidas como OGFC, (capas asfálticas de gradación abierta), o PFC (capas de desgaste permeables); son propensas a desarrollar deformación permanente debido a las altas cargas de tráfico vehicular y a un esqueleto mineral débil causado por su alto contenido de vacíos de aire. En consecuencia, la capacidad de drenaje de las PAM disminuye, lo que hace que las superficies de rodadura asfálticas sean inseguras, especialmente en condiciones de humedad. Por esta razón, el mecanismo de ahuellamiento en PAM es evaluado a través de tres pruebas de laboratorio: módulo dinámico, número de flujo y el ensayo en la rueda de Hamburgo (HWTT). Los especímenes fueron preparados y compactados considerando cuatro contenidos de vacíos de aire (AV): 18%, 20%, 22% y 25%. Se realizó un análisis comparativo empleando imágenes de tomografía computarizada de rayos X, obtenidas antes y después de realizar las pruebas en HWTT para determinar el perfil de distribución de AV debido al ahuellamiento. Los resultados indicaron que un aumento en el contenido AV redujo la resistencia al ahuellamiento de las PAM, así como un mayor contenido de vacíos condujo a una mayor densificación de la mezcla y por lo tanto se logró una huella más profunda. Resultados similares se obtuvieron del análisis de imágenes de CT de rayos X, sin embargo, se observó una mayor densificación AV en la parte superior de las muestras debajo de la huella desarrollada, lo que puede conducir a un mayor debilitamiento del esqueleto mineral y al progreso de otros tipos de deterioro típicos en este tipo de mezclas.
dc.description.sponsorshipColciencias
dc.format.extent124
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civil
dc.titleExperimental assessment of rutting in permeable asphalt mixtures
dc.title.alternativeEvaluación experimental de ahuellamiento en mezclas asfálticas permeables
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de investigación : Pavements – Asphalt Mixes
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ingeniería Civil
dc.contributor.corporatenameUniversidad Nacional de Colombia - sede Medellín
dc.contributor.researchgroupVIAS Y TRANSPORTE (VITRA)
dc.description.degreelevelDoctorado
dc.publisher.departmentDepartamento de Ingeniería Civil
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.references[1] A. Alvarez, O. Reyes, R. Miró, A review of the characterization and evaluation of permeable friction course mixtures, Ingeniare 22 (4) (2014) 469–482.
dc.relation.references[2] H. Smith, Performance Characteristics of Open-Graded Friction Courses. Synthesis No. 180. National Coop. Highway Research Project (NHCRP), Federal Highway Administration (FHWA), Washington, D.C., USA, 1992.
dc.relation.references[3] G. Huber, Performance Survey on Open-Graded Friction Course Mixes. Synthesis No. 284. National Coop. Highway Research Project (NHCRP), Federal Highway Administration (FHWA), Washington, D.C., USA, 2000.
dc.relation.references[4] L. Cooley, J. Brumfield, R. Mallick, W. Mogawer, M. Partl, L. Poulikakos, G. Hicks, Construction and Maintenance Practices for Permeable Friction Courses. National Coop. Report 640. Highway Research Project (NHCRP). Washington, D.C., USA, 2009.
dc.relation.references[5] P.S. Kandhal, Design, Construction and Maintenance of Open-Graded Asphalt Friction Courses, NAPA, Information series 115, Lanham, Maryland, USA, 2002.
dc.relation.references[6] E. Arámbula, C. Estakhri, A. Martin, M. Trevino, A. Smit, J. Prozzi, Performance and Cost Effectiveness of Permeable Friction Course (PFC) Pavements. Report No. FHWA/TX-12/0-5836-2. Texas Transportation Institute. Austin, Texas, USA, 2013.
dc.relation.references[7] P. Weiss, M. Kayhanian, J. Gulliver, L. Khazanovich, Permeable pavement in northern North American urban areas: research review and knowledge gaps, Inter. J. Pavement Eng. 20 (2) (2019) 143–162.
dc.relation.references[8] J. Van Der Zwan, T. Goeman, H. Gruis, J. Swart, R. Oldenburger, Porous asphalt wearing courses in the Netherlands: State of the Art Review, Transp. Res. Rec. 1265 (1990) 95–110.
dc.relation.references[9] G. Van Heystraeten, C. Moraux, Ten Years’ Experience of Porous Asphalt in Belgium, Transp. Res. Rec. 1265 (1990) 34–40.
dc.relation.references[10] A. Ruiz, R. Alberola, F. Pérez, B. Sánchez, Porous asphalt mixtures in Spain, Transp. Res. Rec. 1265 (1990) 87–94.
dc.relation.references[11] T. Isenring, H. Köster, I. Scazziga, Experiences with Porous Asphalt in Switzerland, Transp. Res. Rec. 1265 (1990) 41–53.
dc.relation.references[12] G. Di Mino, M. Giunta, The volumetric mix-design of porous asphalt: An Italian study of N design determination, Adv. Characterisation Pavement Soil Eng. Mater, Proc. Inter. Conf. Adv. Characterisation Pavement Soil Eng. Mater. 2 (2007) 1055–1062.
dc.relation.references[13] M. Hamzah, M. Hasan, C. Che, N. Abdullah, A Comparative Study on Performance of Malaysian Porous Asphalt Mixes incorporating Conventional and Modified binders, J. Appl. Sci. 10 (20) (2010) 2403–2410.
dc.relation.references[14] H. Nakanishi, M. Hamzah, M. Mohd, P. Karthigeyan, O. Shaur, Mix design and application of porous asphalt pavement using Japanese technology, Mater. Sci. Eng. 512 (1) (2019) 012026.
dc.relation.references[15] F. Gu, D. Watson, J. Moore, N. Tran, Evaluation of the benefits of open graded friction course: Case study, Constr. Build. Mater. 189 (2018) 131–143.
dc.relation.references[16] A. Alvarez, A. Martin, C. Estakhri, J. Button, C. Glover, S. Jung, Synthesis of Current Practice on the Design, Construction, and Maintenance of Porous Friction Courses. FHWA/TxDOT Report 0-5262-1. Texas Transportation Institute Austin, Texas, USA, 2006.
dc.relation.references[17] R. Smith, J. Rice, S. Spelma, Design of Open-graded Friction Courses. Interim Report FHWA-RD-74-2. Federal Highway Administration (FHWA), Washington, D.C., USA, 1974.
dc.relation.references[18] P.S. Kandhal, R. Mallick, Open-Graded Asphalt Friction Course: State of the Practice. Transportation Research Circular E-C005, National Research Council, Washington, D.C., USA, 1998.
dc.relation.references[19] M. Hernandez, S. Caro, E. Arámbula, A.E. Martin, Mix design, performance and maintenance of Permeable Friction Courses (PFC) in the United States: State of the Art, Constr. Build. Mater. 111 (2016) 358–367.
dc.relation.references[20] R.B. Mallick, P.S. Kandhal, L. Cooley, D. Watson, Design, Construction, and Performance of New-Generation Open-Graded Friction Courses. Report 00-01. NCAT, Auburn, Alabama, USA, 2000.
dc.relation.references[21] D. Watson, K. Moore, K. Williams, L. Cooley, Refinement of New-Generation Open-Graded Friction Course Mix Design, Transp. Res. Rec. 1832 (2003) 78–85.
dc.relation.references[22] E. Masad, A. Castelblanco, B. Birgisson, Effects of air void size distribution, pore pressure, and bond energy on moisture damage, J. Test. Eval. 34 (1) (2006) 15–23.
dc.relation.references[23] K. Jeong, S. Hwang, S. Lee, K. Kim, Investigation of rutting potential of Open Graded Friction Course (OGFC) mixes using asphalt pavement analyzer, KSCE J. Civ. Eng. 15 (7) (2011) 1259–1262.
dc.relation.references[24] E. Coleri, J.T. Harvey, K. Yang, J. M. Boone, Micromechanical investigation of open-graded asphalt friction courses’ rutting mechanisms, Constr. Build. Mater. 44 (2013) 25–34.
dc.relation.references[25] W. Song, X. Shu, B. Huang, M. Woods, Laboratory investigation of interlayer shear fatigue performance between open-graded friction course and underlying layer, Constr. Build. Mater. 115 (2016) 381–389.
dc.relation.references[26] W. Song, X. Shu, B. Huang, M. Woods, Factors affecting shear strength between open-graded friction course and underlying layer, Constr. Build. Mater. 101 (2015) 527–535.
dc.relation.references[27] W. Song, X. Shu, B. Huang, M. Woods, Influence of interface characteristics on the shear performance between open-graded friction course and underlying layer, J. Mater. Civ. Eng. 29 (8) (2017) 1–9.
dc.relation.references[28] L. Mo, M. Huurman, M. Woldekidan, S. Wu, A. Molenaar, Investigation into material optimization and development for improved ravelling resistant porous asphalt concrete, Mater. Des. 31 (7) (2010) 3194–3206.
dc.relation.references[29] E. Arámbula, R.A. Hill, S. Caro, L. Manrique, E.S. Park, E.G. Fernando, Understanding mechanisms of ravelling to extend open graded friction course (OGFC) service life. Final Report BDR74–977–04. Texas A&M University System, College Station, USA, 2016.
dc.relation.references[30] J. De Visscher, A. Vanelstraete, Ravelling by traffic: Performance testing and field validation, Inter. J. Pavement Res. Technol. 10 (2017) 54–61.
dc.relation.references[31] H. Wu, J. Yu, W. Song, J. Zou, Q. Song, L. Zhou, A critical state-of-the-art review of durability and functionality of open-graded friction course mixtures, Constr. Build. Mater. 237 (2020) 117759.
dc.relation.references[32] A.E. Alvarez, A.E. Martin, C. Estakhri, R. Izzo, Evaluation of durability tests for permeable friction course mixtures, Inter. J. Pavement Eng. 11 (1) (2010) 49–60.
dc.relation.references[33] A. Alvarez, A. Martin, C. Estakhri, Drainability of permeable friction course mixtures, J. Mater. Civ. Eng. 22 (6) (2010) 556–564.
dc.relation.references[34] J. Chen, Y. Zhang, H. Li, Y. Gao, Rutting-induced permeability loss of open graded friction course mixtures, J. Test. Eval. 44 (2) (2016) 719–724.
dc.relation.references[35] E. Coleri, M. Kayhanian, J.T. Harvey, K. Yang, J.M. Boone, Clogging evaluation of open graded friction course pavements tested under rainfall and heavy vehicle simulators, J. Environ. Manag. 129 (2013) 164–172.
dc.relation.references[36] S.N. Suresha, G. Varghese, A. U. Ravi, Effect of aggregate gradations on properties of porous friction course mixes, Mater. Struct. 43 (6) (2010) 789–801.
dc.relation.references[37] L.F. Walubita, J. Zhang, A.N. Faruk, A.E. Alvarez, T. Scullion, Laboratory hot-mix asphalt performance testing: asphalt mixture performance tester versus universal testing machine, Transp. Res. Rec. 2447 (1) (2014) 61–73.
dc.relation.references[38] L.F. Walubita, L. Fuentes, A. Prakoso, L.M. Rico, J.J. Komba, B. Naik, Correlating the HWTT laboratory test data to field rutting performance of in-service highway sections, Constr. Build. Mater. 236 (2020) 117552.
dc.relation.references[39] L.F. Walubita, L. Fuentes, S.I. Lee, I. Dawd, E. Mahmoud, Comparative evaluation of five HMA rutting-related laboratory test methods relative to field performance data: DM, FN, RLPD, SPST, and HWTT, Constr. Build. Mater. 215 (2019) 737–753.
dc.relation.references[40] J. Wang, F. Xiao, Z. Chen, X. Li, S. Amirkhanian, Application of tack coat in pavement engineering, Constr. Build. Mater. 152 (2017) 856–871.
dc.relation.references[41] M. Mazumder, M.S. Lee, S.J. Lee, Installation and implementation of proper tack coat application, J. Korean Asph. Inst. 9 (1) (2019) 14–39.
dc.relation.references[42] B. Danish, Investigation of bonding between open graded friction courses and underlying asphalt pavement layers. (PhD. Dissertation), Clemson University, South Carolina, USA, 2018.
dc.relation.references[43] W. Zhang, Effect of tack coat application on interlayer shear strength of asphalt pavement: A state-of-the-art review based on application in the United States, Inter. J. Pavement Res. Technol. 10 (2017) 434–445.
dc.relation.references[44] F.A. Reyes-Lizcano, C.M. Lizarazo, A.S. Figueroa, M.A. Candia, G.W. Flintsch, Dynamic characterization of hot-mix asphalt mixtures using modified and conventional asphalts in Colombia, Proc. of the 88th TRB Annual Meeting, Washington, D.C., USA, 2009.
dc.relation.references[45] S. Caro, L. Coral, B. Caicedo, Modelación del ahuellamiento en mezclas asfálticas de pavimentos [Rutting modeling in asphalt pavement mixtures], Rev. Ing. 18 (7) (2003) 41–47 [In Spanish].
dc.relation.references[46] J. Preciado, G. Martínez, M. Dugarte, A. Bonicelli, J. Cantero, D. Vega, Y. Barros, Improving Mechanical Properties of Hot Mix Asphalt using Fibres and Polymers in Developing Countries, IOP Conference Series Mater. Sci. Eng. 245 (2) (2017) 022013.
dc.relation.references[47] H. Rondón, F.A. Reyes, G. Flintsch, D.E. Mogrovejo, Environmental effects on hot mix asphalt dynamic mechanical properties: Case study in Bogota, Colombia, Transp. Res. Rec. 3637 (1) (2012) p.13.
dc.relation.references[48] H. Rondón, F.A. Reyes, A.S. Figueroa, E. Rodriguez, C.M. Real, T.A. Montealegre, Estado del conocimiento del estudio sobre mezclas asfálticas modificadas en Colombia [State-of-knowledge on modified asphalt mixtures in Colombia], Infraestruct. Vial, 19 (2008) 10–20 [In Spanish].
dc.relation.references[49] SECOP I, Colombian government entity website. (SECOP I). https://www.contratos.gov.co/consultas/inicioConsulta.do. Accessed: 07 September 2019.
dc.relation.references[50] American Society for Testing and Materials, Standard Practice for Open-Graded Friction Course (OGFC) Mix Design. ASTM D 7064, ASTM International, West Conshohocken, PA, USA, 2013.
dc.relation.references[51] Texas Department of Transportation, Standard specificaction for Permeable fiction Courses (PFC). Item 342. TxDOT, USA, 2014.
dc.relation.references[52] Instituto Nacional de Vías, Especificaciones Generales de Construcción de carreteras: Mezcla drenante [Colombian Specifications for Road Construction: Permeable Asphalt Mixes]. Artículo 453 (Item 453-13). Bogotá, Colombia, 2007 [In Spanish].
dc.relation.references[53] Austroads, Austroads. Guide to Pavement Technology Part 4B: asphalt, Sydney, Australia, 2014.
dc.relation.references[54] Y. Yildirim, Polymer modified asphalt binders, Constr. Build. Mater. 21 (1) (2007) 66–72.
dc.relation.references[55] C.K. Estakhri, A.E. Alvarez, A.E. Martin, Guidelines on construction and maintenance of porous friction in Texas. Report FHWA/TX-08/0-5262-2. Austin, Texas, USA, 2008.
dc.relation.references[56] Instituto Nacional de Vías, Normas de Ensayo para Materiales de Carreteras. Caracterización de las mezclas bituminosas abiertas por medio del ensayo Cantabro de pérdida por desgaste [Colombian Road Standards: Characterization of Permeable Asphalt Mixes by means of Cantabro Loss Test]. INV E-760. In correspondance to AASHTO T-96. Bogotá, Colombia, 2013 [In Spanish].
dc.relation.references[57] Instituto Nacional de Vías, Normas de Ensayo para Materiales de Carreteras. Resistencia de mezclas asfálticas en caliente empleando el aparato Marshall [Colombian Road Standards: Resistance of Hot Asphalt Mixes employing Marshall]. INV E-748. In correspondance to AASHTO T-245. Bogotá, Colombia, 2013 [In Spanish].
dc.relation.references[58] Instituto Nacional de Vías, Normas de Ensayo para Materiales de Carreteras. Porcentaje de vacios con aire en mezclas asfálticas compactadas densas y abiertas [Colombian Road Standards: Air Voids Percent in Compacted Dense- and Permeable Asphalt Mixes]. INV E-736. In correspondance to ASTM D 3203. Bogotá, Colombia, 2013 [In Spanish].
dc.relation.references[59] Instituto Nacional de Vías, Normas de Ensayo para Materiales de Carreteras. Determinación de la gravedad específica bulk y de la densidad de mezclas asfálticas compactadas mediante el método de sellado automático por vacío [Colombian Road Standards: Determination of Bulk Specific Gravity and Density of Compacted Asphalt Mixtures through the Automatic Vacuum Sealing Method]. INV E-802. In correspondance to ASTM D 6752. Bogotá, Colombia, 2013 [In Spanish].
dc.relation.references[60] Instituto Nacional de Vías, Normas de Ensayo para Materiales de Carreteras. Gravedad Específica Máxima Medida (Gmm) y Densidad de mezclas asfálticas para pavimentos [Colombian Road Standards: Theoretical Maximum Specific Gravity and Density of Asphalt Mixtures]. INV E-735. In correspondance to ASTM D 2041. Bogotá, Colombia, 2013 [In Spanish].
dc.relation.references[61] Instituto Nacional de Vías, Normas de Ensayo para Materiales de Carreteras. Determinación de la gravedad específica máxima y de la densidad máxima de las mezclas asfálticas para pavimentación mediante el método de sellado automático por vacío [Colombian Road Standards: Maximum Specific Gravity and Density of Asphalt Mixtures through the Automatic Vacuum Sealing Method]. INV E-803. In correspondance to ASTM D 6857. Bogotá, Colombia, 2013 [In Spanish].
dc.relation.references[62] A. Alvarez, A. Martin, C. Estakhri, R. Izzo, Determination of Volumetric Properties for Permeable Friction Course Mixtures, J. Test. Eval. 37 (1) (2008) 1–10.
dc.relation.references[63] The World Bank, Average precipitation in depth (mm per year). (The World Bank, 2014), https://data.worldbank.org/indicator/AG.LND.PRCP.MM?end=2014&most_recent_value_desc=true&start=2014&view=map. Accessed 11 November 2019.
dc.relation.references[64] IDEAM, Average precipitation in depth (mm per year) for Colombian states. (IDEAM), http://atlas.ideam.gov.co/visorAtlasClimatologico.html. Accessed 17 November 2019.
dc.relation.references[65] Federal Highway Administration, Open Graded Friction Courses. Technical Advisory T 5040.31, FHWA, Washington, D.C., USA, 1990.
dc.relation.references[66] Strategic Highway Research Program (SHRP), The Long-Term Pavement Performance (LTPP) program, United States, 1991. https://infopave.fhwa.dot.gov/Data/DataSelection. Accessed 07 September 2019.
dc.relation.references[67] F. Pérez, M. Calzada, Analysis and Evaluation of the Performance of Porous Asphalt: The Spanish Experience in Surface Characteristics of Roadways: International Research and Technologies, West Conshohocken, PA, USA, 1990.
dc.relation.references[68] G. Flintsch, E. De León, K. McGhee, I. Al-Qadi, Pavement Surface Macrotexture, Measurement and Applications, Transp. Res. Rec. 1860 (2003) 168–177.
dc.relation.references[69] P. Georgiou, A. Loizos, Quality assurance of HMA pavement surface macrotexture: empirical models vs experimental approach, Inter. J. Pavement Res. Technol. 12 (4) (2019) 356–363.
dc.relation.references[70] R. Justo-Silva, A. Ferreira, Pavement maintenance considering traffic accident costs, Inter. J. Pavement Res. Technol. 12 (6) (2019) 562–573.
dc.relation.references[71] S. Cafisoa, A. Di Graziano, D.G. Gouliasb, C. D’Agostino, Distress and profile data analysis for condition assessment in pavement management systems, Inter. J. Pavement Res. Technol. 12 (2019) 527–536.
dc.relation.references[72] L. Cooley, E. Brown, D. Watson, Evaluation of OGFC Mixtures containing Cellulose Fibers. NCAT Report 00-05. Auburn, Alabama, USA, 2000.
dc.relation.references[73] H. Nekkanti, B.J. Putman, B. Danish, Influence of Aggregate Gradation and Nominal Maximum Aggregate Size on the Performance Properties of OGFC, Transp. Res. Rec. 2673 (1) (2019) 240-245.
dc.relation.references[74] D.M. Kusumawardani, Y.D. Wong, Evaluation of aggregate gradation on aggregate packing in porous asphalt mixture (PAM) by 3D numerical modelling and laboratory measurements, Constr. Build. Mater. 246 (2020) 118414.
dc.relation.references[75] D.M. Kusumawardani, Y.D. Wong, The influence of aggregate shape properties on aggregate packing in porous asphalt mixture (PAM), Constr. Build. Mater. 255 (2020) 119379.
dc.relation.references[76] L. Bo, M.J. Kundwa, C.Y. Jiao, Z.X. Wei, Pavement performance evaluation and maintenance decision-making in Rwanda, Inter. J. Pavement Res. Technol. 12 (2019) 443–447.
dc.relation.references[77] Public Works Department, Standard Specification for Road Works, Section 4, Flexible Pavement, Kuala Lumpur, Malaysia, 2008.
dc.relation.references[78] R.S. Mc Daniel, W. Thornton, Field Evaluation of a Porous Friction Course for Noise Control, TRB Annual Meeting Transp. Res. Board. Washington, D.C., USA, 2005.
dc.relation.references[79] D. Gibbs, R. Iwasaki, R. Bernhard, J. Bledsoe, D. Carlson, C. Corbisier, K. Fults, T. Hearne, K. McMullen, D. Newcomb, J. Roberts, J. Rochat, L. Scofield, M. Swanlund, Quiet Pavement systems in Europe. Report No. FHWA-9L-05-011. Alexandria, VA, USA, 2005.
dc.relation.references[80] American Society for Testing and Materials, Standard Test Method for Bulk Density (Unit Weight) and Voids in Aggregate. ASTM C 29. ASTM International, West Conshohocken, PA, USA, 2017.
dc.relation.references[81] A. Alvarez, E. Mahmoud, A. Martin, E. Masad, C. Estakhri, Stone-on-Stone Contact of Permeable Friction Course Mixtures, J. Mater. Civ. Eng. 22 (11) (2010) 1129–1138.
dc.relation.references[82] Instituto Nacional de Vías, Normas de Ensayo para Materiales de Carreteras. Textura superficial de un pavimento mediante el método del círculo de arena [Colombian Road Standards: Measuring Pavement Macrotexture Depth Using a Volumetric Technique]. INV E-791. In correspondance to ASTM E 965. Bogotá, Colombia, 2013 [In Spanish].
dc.relation.references[83] F. Praticò, R. Vaiana, A study on the relationship between mean texture depth and mean profile depth of asphalt pavements, Constr. Build. Mater. 101 (2015) 72–79.
dc.relation.references[84] V. Senior, C. Graciano, C. Vega-Posada, S. Álvarez, N. Ramírez, Permeability flow measurement for open-graded friction courses, in Pavement and Asset Management – Proc. World Conference on Pavement and Asset Management, WCPAM 2017, M. Crispino, Ed. London, Taylor & Francis Group, UK, 2019, pp. 585–592.
dc.relation.references[85] S.N. Suresha, G. Varghese, U. Ravi, Laboratory and Theoretical Evaluation of Clogging behaviour of Porous Friction Course Mixes, Inter. J. Pavement Eng. 11 (1) (2010) 61–70.
dc.relation.references[86] D. Savio, M.R. Nivitha, J.M. Krishnan, Influence of climate and traffic on the HMA rut-depth for India, Inter. J. Pavement Res. Technol. 12 (2019) 595–603.
dc.relation.references[87] CALTRANS, Tack Coat Guidelines, State of California Department of Transportation Division of Construction, Sacramento, USA, 2009.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalpermeable asphalt mixes
dc.subject.proposalmezclas asfálticas permeables
dc.subject.proposalrutting resistance
dc.subject.proposalresistencia al ahuellamiento
dc.subject.proposalmoisture damage
dc.subject.proposalcontenido de vacíos de aire
dc.subject.proposalflow number
dc.subject.proposaldaño por humedad
dc.subject.proposaldynamic modulus
dc.subject.proposalnúmero de flujo
dc.subject.proposalX-ray CT
dc.subject.proposalmódulo dinámico
dc.subject.proposalAV content
dc.subject.proposaltomografía computarizada de rayos X
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito