Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorPoveda Jaramillo, Germán
dc.contributor.advisorMesa Sánchez, Óscar José
dc.contributor.authorSalas Parra, Hernán Darío
dc.date.accessioned2020-09-08T21:45:43Z
dc.date.available2020-09-08T21:45:43Z
dc.date.issued2020-08-28
dc.identifier.citationSalas, H. D., Synchronization and interdependence between the cycles of Colombia’s hydroclimatology and El Niño-Southern Oscillation. PhD. Thesis. Universidad Nacional de Colombia - Sede Medellín, 2020.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78420
dc.descriptionilustraciones, mapas, tablas
dc.description.abstractHydroclimatology of Colombia is highly influenced by El Niño - Southern Oscillation (ENSO), which conditions the hydrological response over Colombia, increasing (decreasing) rainfall and streamflows during La Niña (El Niño) depending on the location in the country. This dissertation presents an approach based on synchronization techniques to study the interdependence between ENSO and hydrological variables in Colombia. To that end, we use synchronization techniques such as Phase synchronization (PS) that is based on the physical properties of weakly coupled periodic oscillators, and Generalized Synchronization (GS) that is based on properties of recurrence of non-linear dynamical systems. Furthermore, we quantify interannual hydroclimatic anomalies (HyAns) using diverse methods to evaluate the sensitivity of linear and non-linear interdependence quantifiers. Our main findings reveal that: (1) we need of quantifying the uncertainty of HyAns in terms of magnitude, sign, timing, and phases of ENSO, because HyAns methods induce an important error source and bias on the interdependence analysis and modeling of climate time series; (2) We find that the positive (negative) HyAns experienced in the Pacific, the Caribbean and the Andean regions of Colombia, during La Niña (El Niño), are phase-locked with the ENSO. Moreover, we provide evidence that the ENSO signal is phase-locked with the annual cycle of rainfall in some regions of Colombia. Furthermore, other macro-climatic processes also show significant PS such as the Pacific Decadal Oscillation (PDO) and the North Atlantic Oscillation (NAO); (3) The Caribbean, the CHOCO, and the Orinoco Low-Level Jets (LLJs), and the Cross-Equatorial Flow (CEF) constitute an interdependence mechanism and contribute to explaining hydrological anomalies in Colombia during the phases of ENSO. During La Niña (El Niño), GS is strong (weak) for the Caribbean and the CHOCO LLJs whereas GS is moderate (strong) for the Orinoco LLJ. Moreover, moisture advection by the Caribbean and CHOCO LLJs exhibit synchrony with HyAns at 0 to 2 (2 to 4) month-lags over north-western Colombia and the Orinoco LLJ moisture advection synchronizes with HyAns at similar month-lags over the Amazon region of Colombia. This work provides new evidence on the non-linear interactions between hydro-climatic processes in Colombia and ENSO, and constitute an unexplored approach to the understanding of climatic anomalies in tropical South America.
dc.description.abstractLa hidroclimatología de Colombia está fuertemente influenciada por El Niño - Oscilación del Sur (ENSO), el cual condiciona la respuesta hidrológica en Colombia, incrementando (disminuyendo) la lluvia y los caudales durante La Niña (El Niño) según la región de Colombia. Esta disertación presenta un enfoque basado en técnicas de sincronización para estudiar la interdependencia entre ENSO y las variables hidrológicas en Colombia. Para tal fin, usamos técnicas de sincronización tales como: Sincronización de Fases (PS) que está basada en propiedades físicas de osciladores periódicos débilmente acoplados, y Sincronización Generalizada (GS) que está basada en propiedades de recurrencia de sistemas dinámicos no-lineales. Además, cuantificamos las anomalias hidroclimáticas a escala interanual (HyAns) usando diversos métodos para evaluar la sensibilidad de los cuantificadores de interdependencia lineales y no-lineales. Nuestros principales hallazgos revelan que: (1) Es necesario cuantificar la incertidumbre de las HyAns en términos de la magnitud, signo, momento de ocurrencia y fase de ENSO porque los métodos HyAns inducen una importante fuente de error y sesgo para el análisis de interdependencia y modelación de series climáticas; (2) Encontramos que las anomalías positivas (negativas) en las regiones Pacífico, Caribe, y Andes de Colombia, durante La Niña (El Niño), están enfasadas con el ENSO. Además, presentamos evidencia que la señal de ENSO está enfasada con el ciclo anual de la lluvia en algunas regiones de Colombia. Adicionalmente, otros procesos macroclimáticos también exhiben sincronización de fase significativa tales como la Oscilación Decadal del Pacifico (PDO) y la Oscilación del Atlántico Norte (NAO); (3) La advección de humedad por las corrientes de Chorro de bajo nivel del Caribe, CHOCO y Orinoco, así como el Flujo Cruzado Ecuatorial (CEF) constituyen mecanismos de interdependencia y contribuyen a explicar las anomalías hidrológicas en Colombia durante las fases de ENSO. Durante La Niña (El Niño), GS es fuerte (débil) para las corrientes del Caribe y CHOCO mientras GS is moderada (fuerte) para la corriente del Orinoco. Además, la advección de humedad por las corrientes del Caribe y CHOCO exhiben sincronización con las anomalías con 0 a 2 (2 a 4) meses de rezago sobre el noroccidente Colombiano y la advección de humedad por la corriente del Orinoco se sincroniza con las anomalías de lluvia con tiempos de rezago similares sobre la región amazónica de Colombia. Este trabajo proporciona nueva evidencia sobre las interaciones no-lineales entre los procesos hidroclimáticos en Colombia y ENSO, y además constituye un enfoque inexplorado para el entendimiento de las anomalias climáticas en el norte de Sur America. (Texto tomado de la fuente)
dc.format.extentxiv, 119 páginas + 1 Anexo
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
dc.titleSynchronization and interdependence between the cycles of Colombia's hydroclimatology and El Niño-Southern Oscillation
dc.typeTrabajo de grado - Maestría
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Recursos Hidráulicos
dc.contributor.researchgroupPosgrado en Aprovechamiento de recursos hidráulicos
dc.coverage.countryColombia
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchgroupHidroclimatología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Geociencias y Medo Ambiente
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesCoelho, C., Uvo, C., and Ambrizzi, T. Exploring the impacts of the tropical Pacific SST on the precipitation patterns over South America during ENSO periods. Theor Appl Climatol 71, 185-197 (2002). https://doi.org/10.1007/s007040200004
dc.relation.referencesGrimm, A. M., and M. T. Zilli, 2009: Interannual Variability and Seasonal Evolution of Summer Monsoon Rainfall in South America. J. Climate, 22, 2257-2275, https://doi.org/10.1175/2008JCLI2345.1.
dc.relation.referencesPoveda, G., Mesa O.J. (1999) The low level westerly jet (Choco jet) and two other jets in Colombia: climatology and variability during ENSO phases (in Spanish), Revista Academia Colombiana de Ciencias Exactas, 23(89): 517-528.
dc.relation.referencesPoveda, G., Jaramillo, L., Vallejo, L.F. (2014) Seasonal precipitation patterns along pathways of South American low‐level jets and aerial rivers, Water Resources Research, 50(1), 98-118.
dc.relation.referencesMuñoz, P., Gorin, G., Parra, N., Vel\'asquez, C., Lemus, D., Monsalve-M, C., Jojoa, M., Holocene climatic variations in the Western Cordillera of Colombia: A multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ, Quaternary Science Reviews, 155, 159-178.
dc.relation.referencesHoyos, I., Dominguez, F., Cañón-Barriga, J., Martínez, J.A., Nieto, R., Gimeno, L., Dirmeyer, P.A. (2017) Moisture origin and transport processes in Colombia, northern South America, Clim. Dyn., DOI 10.1007/s00382-017-3653-6.
dc.relation.referencesJaramillo, L., Poveda, G., Mejía, J.F. (2017) Mesoscale convective systems and other precipitation features over the tropical Americas and surrounding seas as seen by TRMM, Int. J. Climatol., DOI: 10.1002/joc.5009
dc.relation.referencesCarvajal, L.F., Salazar,J.E., Mesa, O. J., Poveda, G. (1998) Hydrological prediction in Colombia using singular spectral analysis and the maximum entropy method, Hydraulic Engineering in Mexico (in Spanish). Vol. XIII, 1, 07-16.
dc.relation.referencesPoveda, G., Mesa O.J., Waylen, P. (2003) Non-linear forecasting of river flows in Colombia based upon ENSO and its associated economic value for hydropower generation, Kluwer Academic Publishers, Dordrecht, 351-371, ISBN 1-4020-1529-1, 424 p.
dc.relation.referencesHurtado, A. F., Poveda, G. (2009) Linear and global space‐time dependence and Taylor hypotheses for rainfall in the tropical Andes, Journal of Geophysical Research: Atmospheres, 114(D10).
dc.relation.referencesCarmona, A.M., Poveda, G. (2014) Detection of long-term trends in monthly hydro-climatic series of Colombia through Empirical Mode Decomposition, Climatic Change, 123, 301-313.
dc.relation.referencesDonner, R. V., Zou, Y., Donges, J. F., Marwan, N., and Kurths, J.: Recurrence networks -- a novel paradigm for nonlinear time series analysis, New J. Phys., 12, 033025, https://doi.org/10.1088/1367-2630/12/3/033025, 2010.
dc.relation.referencesArnhold, J., Grassberger, P., Lehnertz, K., and Elger, C. E.: A robust method for detecting interdependences: application to intracranially recorded EEG, Physica D, 134, 419-430, 1999.
dc.relation.referencesLe Van Quyen, M., Martinerie, J., Adam, C., and Varela, F. J.: Non-linear analyses of interictal EEG map the brain interdependences in human focal epilepsy, Physica D, 127, 250-266, 1999.
dc.relation.referencesSchiff, S. J., So, P., Chang, T., Burke, R. E., and Sauer, T.: Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble, Phys. Rev. E, 54, 6708-6724, https://doi.org/10.1103/PhysRevE.54.6708, 1996.
dc.relation.referencesRosenblum, M. G., Pikovsky, A. S., and Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett., 78, 4193-4196, https://doi.org/10.1103/PhysRevLett.78.4193, 1997.
dc.relation.referencesPikovsky, A., Rosenblum, M., Kurths, J. (2001) Synchronization: A universal concept in nonlinear sciences. Cambridge University Press.
dc.relation.referencesStolbova, V., Martin, P., Bookhagen, B., Marwan, N., and Kurths, J.:Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka, Nonlinear Proc. Geoph., 21, 901-917, 2014.
dc.relation.referencesMalik, N., Bookhagen, B., Marwan, N., and Kurths, J.: Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks, Clim. Dynam., 39, 971-987, 2012.
dc.relation.referencesRheinwalt, A., Boers, N., Marwan, N., Kurths, J., Hoffmann, P.,Gerstengarbe, F.-W., and Werner, P.: Non-linear time series analysis of precipitation events using regional climate networks for Germany, Clim. Dynam., 46, 1065-1074, 2016.
dc.relation.referencesAgarwal, A., N. Marwan, M. Rathinasamy, B. Merz, and J. Kurths, Multi-scale event synchronization analysis for unravelling climate processes: A wavelet-based approach, Nonlinear Process. Geophys., 2017.
dc.relation.referencesMarwan, N., Romano, M.C., Thiel, M., Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports. https://doi.org/10.1016/j.physrep.2006.11.001
dc.relation.referencesFraedrich, K., Muller, K., Climate anomalies in Europe associated with ENSO extremes, Int. J. Climatol., 12(1), 25-31 (1992).
dc.relation.referencesChandler, T. J. Teleconnections linking worldwie climate anomalies, Dyn. Atmos. Ocean., 17(1), 79-81 (1992).
dc.relation.referencesMason, S.L., Goddard, L. Probabilistic Precipitation Anomalies Associated with ENSO, Bull. Am. Meteorol. Soc., 82(4), 619-638 (2001).
dc.relation.referencesHegerl, G.C., Bronnimann, S., Schurer, A., \& Cowan, T. The early 20th century warming: Anomalies, causes, and consequences, Wiley Interdiscip. Rev. Clim. Chang., 9(4), 1-20 (2018).
dc.relation.referencesBrohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., Jones, P. D. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850, J. Geophys. Res., 111(D12), D12106 (2006).
dc.relation.referencesLange, H., Sippel, S. Rosso, O. A. Nonlinear dynamics of river runoff elucidated by horizontal visibility graphs. Chaos An Interdiscip. J. Nonlinear Sci., 28(7),075520, doi:10.1063/1.5026491 (2018).
dc.relation.referencesSalas, H. D., Poveda, G., Mesa, O. J. Marwan, N. Generalized Synchronization between ENSO and Hydrological variables in Colombia: A Recurrence Quantification Approach. Front. Appl. Math. Stat., 6(3), DOI: 10.3389/fams.2020.00003 (2020).
dc.relation.referencesSalas, J. D., Delleur, J. W., Yevjevich, V. L.Lane, W. Applied Modeling of Hydrologic Time Series (Water Resources Publications, 1980).
dc.relation.referencesDouglass, D. H. The Pacific sea surface temperature, Phys. Lett. A, 376(2), 128-135, 10.1016/j.physleta.2011.10.042 (2011).
dc.relation.referencesDouglass, D. H., Knox, R. S. The Sun is the climate pacemaker I. Equatorial Pacific Ocean temperatures, Phys. Lett. A, 379(9), 823-829 (2015).
dc.relation.referencesVautard, R., Yiou, P. Ghil, M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals, Phys. D Nonlinear Phenom., 58(1-4), 95-126 (1992).
dc.relation.referencesGhil, M. Advanced spectral methods for climatic time series, Rev. Geophys., 40(1), 1003 (2002).
dc.relation.referencesHuang, N. E. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci., 454(1971), 903-995 (1998).
dc.relation.referencesWu, Z., Huang, N. E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., DOI: 10.1142/s1793536909000047 (2008).
dc.relation.referencesCai, W. et al. Climate impacts of the El Niño-Southern Oscillation on South America. Nat. Rev. Earth andEnviron., DOI: 10.1038/s43017-020-0040-3 (2020).
dc.relation.referencesPoveda, G. The hydro-climatology of Colombia: A synthesis from inter-decadal to diurnal timescales (in spanish). Rev. Acad. Colomb. Cienc., 28, 201-222 (2004).
dc.relation.referencesPoveda, G., Mesa, O. J. Feedbacks between hydrological processes in tropical South America and large-scale ocean-atmospheric phenomena. J. Clim., 10(10), 2690-2702, 10.1175/1520-0442(1997)010\<2690:FBHPIT\>2.0.CO;2 (1997).
dc.relation.referencesPoveda, G., Álvarez, D. M., Rueda, O. A. Hydro-climatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth's most important biodiversity hotspots, DOI:10.1007/s00382-010-0931-y (2011).
dc.relation.referencesAndreoli, R. V. et al. The influence of different El Niño types on the South American rainfall. Int. J. Climatol., 37(3), 1374-1390, DOI:10.1002/joc.4783 (2017).
dc.relation.referencesBedoya-Soto, J. M., Poveda, G., Trenberth, K. E., Vélez-Upegui, J. J. Interannual hydroclimatic variability and the 2009-2011 extreme ENSO phases in Colombia: from Andean glaciers to Caribbean lowlands, Theor. Appl. Climatol., 135(3-4), 1531-1544, DOI:10.1007/s00704-018-2452-2 (2019).
dc.relation.referencesPoveda, G. et al. High Impact Weather Events in the Andes. Front. Earth Sci., DOI: 10.3389/feart.2020.00162 (2020).
dc.relation.referencesPoveda, G. et al. The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Mon. Weather. Rev., 133 (1), 228-240, DOI:10.1175/MWR-2853.1 (2005).
dc.relation.referencesBedoya-Soto, J. M., Poveda, G., Sauchyn, D. New insights on land surface-atmosphere feedbacks over tropical South America at interannual timescales. Water, 10(8), 1095, DOI: 10.3390/w10081095 (2018).
dc.relation.referencesPoveda, G., Jaramillo, A., Gil, M. M., Quiceno, N., Mantilla, R. I. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resour. Res., 37(8), 2169-2178, DOI:10.1029/2000WR900395 (2001).
dc.relation.referencesWu, Z. et al. The modulated annual cycle: An alternative reference frame for climate anomalies. Clim. Dyn., 31 (7-8), 823-841, DOI:10.1007/s00382-008-0437-z (2008).
dc.relation.referencesFedorov, A. V., Philander, S. G. Is El Nino changing?, Science, 288(5473), 1997-2002, DOI: 10.1126/science.288.5473.1997 (2000).
dc.relation.referencesThoning, K. W., Tans, P. P. Atmospheric carbon dioxide at Mauna Loa Observatory. 2. Analysis of the NOAA GMCC data, 1974-1985. J. Geophys. Res., 94(D6), 8549-8565, DOI: 10.1029/JD094iD06p08549 (1989).
dc.relation.referencesZhang, J., Wu, Y. k-Sample tests based on the likelihood ratio. Comput. Stat. Data Analysis, DOI: 10.1016/j.csda.2006.08.029 (2007).
dc.relation.referencesZhang, J. Powerful goodness-of-fit tests based on the likelihood ratio. J. Royal Stat. Soc. Ser. B: Stat. Methodol., 64(2), 281-294, DOI:10.1111/1467-9868.00337 (2002).
dc.relation.referencesPearson, K. Note on regression and inheritance in the case of two parents. Proc. Royal Soc. Lond. (1895).
dc.relation.referencesWolter, K., Timlin, M. S. El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol., 31(7), 1074-1087, DOI: 10.1002/joc.2336 (2011).
dc.relation.referencesTerray, P., Delecluse, P., Labattu, S., Terray, L. Sea surface temperature associations with the late Indian summer monsoon. Clim. Dyn., 21(7-8), 593-618, DOI:10.1007/s00382-003-0354-0 (2003).
dc.relation.referencesBoschat, G., Simmonds, I., Purich, A., Cowan, T., Pezza, A. B. On the use of composite analyses to form physical hypotheses: An example from heat wave - SST associations. Sci. Reports, 6(1), 29599, DOI: 10.1038/srep29599 (2016).
dc.relation.referencesXie, Z., Duan, A., Tian, Q. Weighted composite analysis and its application: an example using ENSO and geopotential height. Atmospheric Sci. Lett., 18(11), 435-440, DOI: 10.1002/asl.786 (2017).
dc.relation.referencesNicholls, N. The Insignificance of Significance Testing, Bull. Am. Meteorol. Soc., 82(5), 981-986, DOI:10.1175/1520-0477(2001)082\<0981:caatio\>2.3.co;2 (2001).
dc.relation.referencesInstituto Geográfico Agustín Codazzi (IGAC), Natural regions of Colombia, https://www.igac.gov.co (2020).
dc.relation.referencesHurtado-Montoya, A. F., Mesa-Sanchez, O. J. Reanalysis of monthly precipitation fields in Colombian territory. DYNA, DOI: 10.15446/dyna.v81n186.40419 (2014).
dc.relation.referencesLehner, B., Verdin, K., Jarvis, A. New Global Hydrography Derived From Spaceborne Elevation Data, Eos, Trans. Am. Geophys. Union, 89(10), 93 (2008).
dc.relation.referencesDaly, C., Neilson, R. P., Phillips, D. L. A. Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain. J. Appl. Meteorol., 33(2), 140-158, DOI: 10.1175/1520-0450(1994)033\<0140:astmfm\>2.0.co;2 (2002).
dc.relation.referencesFunk, C. et al. The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes. Sci. Data,2(1), 150066, DOI: 10.1038/sdata.2015.66 (2015).
dc.relation.referencesWolter, K., Timlin, M. S. Measuring the strength of ENSO events: How does 1997/98 rank?, Weather, 53(9), 315-324 (1998).
dc.relation.referencesRasmusson, E. M., Carpenter, T. H. Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Ni\ño. Mon. Wea. Rev., 110(5): 354-384 (1982).
dc.relation.referencesTrenberth, K. E., Stepaniak, D. P. Indices of El Niño evolution. J. Clim., 14(8), 1697-1701 (2001).
dc.relation.referencesKashyap, R., Ramachandra, R. Dynamic stochastic models from empirical data (Academic press, New York, 1976).
dc.relation.referencesSmith, S. W. The Scientist and Engineer's Guide to Digital Signal Processing. In The Scientist and Engineer's Guide to Digital Signal Processing, DOI: 10.1007/BF02834636 (California Technical Pub. San Diego, 1999).
dc.relation.referencesHuang, N. E., Shen, S. S. P. Hilbert-Huang Transform And Its Applications (World Scientific, 2005).
dc.relation.referencesFlandrin, P., Goncalves, P., Rilling, G. EMD equivalent filter banks, from interpretation to applications (World Scientific, 2005).
dc.relation.referencesWu, Z., Huang, N. E. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. Royal Soc. A: Math. Phys. Eng. Sci., 460 (2046), 1597-1611 (2004).
dc.relation.referencesAhdesmäki, M., Lähdesmäki, H., Pearson, R., Huttunen, H., Yli-Harja, O. Robust detection of periodic time series measured from biological systems. BMC Bioinforma. DOI: 10.1186/1471-2105-6-117 (2005).
dc.relation.referencesCórdoba-Machado, S., Palomino-Lemus, R., Gámiz-Fortis, S. R., Castro-Díez, Y., Esteban-Parra, M. J. Assessing the impact of El Niño Modoki on seasonal precipitation in Colombia. Glob. Planet. Chang., DOI: 10.1016/j.gloplacha.2014.11.003 (2015).
dc.relation.referencesCórdoba-Machado, S., Palomino-Lemus, R., Gámiz-Fortis, S. R., Castro-Díez, Y., Esteban-Parra, M. J. Influence of tropical Pacific SST on seasonal precipitation in Colombia: prediction using El Niño and El Niño Modoki. Clim. Dyn., 44(5-6), 1293-1310 (2015).
dc.relation.referencesAmerican Meteorological Society. AMS glossary of meteorology. http://glossary.ametsoc.org/wiki (2018).
dc.relation.referencesNational Oceanic and Atmospheric Administration (NOAA). Climate indices. http://www.cpc.ncep.noaa.gov/data/indices/soi(2018).
dc.relation.referencesKawale, J. et al. Anomaly construction in climate data: Issues and challenges. NASA Conference on Intelligent Data Understanding (CIDU) (2011).
dc.relation.referencesArias, P.A., Martínez, Vieira, S.C. (2015) Moisture sources to the 2010-2012 anomalous wet season in northern South America, Clim. Dyn., DOI 10.1007/s00382-015-2511-7.
dc.relation.referencesBedoya-Soto, J.; Poveda, G. New insights on land surface-atmosphere feedbacks over tropical South America at interannual timescales. In Proceedings of the 1st Int. Electron. Conf. Hydrol. Cycle, 12-16 November 2017; Sciforum Electronic Conference Series, Vol. 1, 2017 ; doi:10.3390/CHyCle-2017-04875
dc.relation.referencesBedoya-Soto, J. M., Poveda, G., Trenberth, K. E., and Vélez-Upegui, J. J. (2018). Interannual hydroclimatic variability and the 2009-2011 extreme ENSO phases in Colombia: from Andean glaciers to Caribbean lowlands. Theoretical and Applied Climatology, pp. 1-14. https://doi.org/10.1007/s00704-018-2452-2
dc.relation.referencesBrown, R., Kocarev, L. (2000) A unifying definition of synchronization for dynamical systems, Chaos, 10(2), 344-349.
dc.relation.referencesChiang, J. C. H., and D. J. Vimont (2004 ) Analagous meridional modes of atmosphere-ocean variability in the tropical Pacific and tropical Atlantic. J. Climate, 17(21), 4143-4158.
dc.relation.referencesEnfield, D.B., A. M. Mestas-Nuñez and P.J. Trimble (2001) The Atlantic multidecadal oscillation and it's relation to rainfall and river flows in the continental U.S., Geophysical Research Letters, 28, 2077-2080.
dc.relation.referencesEnfield, D.B., Mestas-Nuñez, A. M., Mayer, D. A., and Cid-Serrano, L. (1999) How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures?, J. Geophys. Res. Ocean., 104, 7841-7848.
dc.relation.referencesGabor, D. (1946) Theory of communication, Proc IEE London, 93, 429-457.
dc.relation.referencesGershunov, A. and T.P. Barnett (1998) Interdecadal modulation of ENSO teleconnections. Bulletin of the American Meteorological Society, 79 (12), 2715-2725.
dc.relation.referencesGhil, M., Allen, M.R., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M. E., Robertson, A.W., Saunders, A., Tian, Y., Varadi, F., Yiou, P. (2002) Advanced spectral methods for climatic time series, Reviews of geophysics, 40(1), 1-41.
dc.relation.referencesHoyos, I. (2017) Transport of atmospheric humidity in Colombia: origin, variability and coupling with global climatic phenomena (in spanish). Ph.D. dissertation, Universidad de Antioquia.
dc.relation.referencesHuang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, E.H., Zheng, Q., Tung, C.C., Liu, H.H. (1998) The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis, Proc Roy Soc Lond, 454A, 903-995.
dc.relation.referencesHuang, N.E., Shen, Z., Long, S.R (1999) A new view of nonlinear water waves-the Hilbert spectrum, Ann Rev Fluid Mech, 31, 417-457.
dc.relation.referencesHuang, N.E., Wu, Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies, Reviews of Geophysics, 46, 1-23.
dc.relation.referencesHuang, N.E., Wu, Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies, Reviews of Geophysics, 46, 1-23.
dc.relation.referencesHurtado-Montoya, A. and Mesa, O.J. (2014) Reanalysis of monthly precipitation fields in Colombian territory, Dyna, 81(186), 251-258.
dc.relation.referencesMantua, N.J. (2001) The Pacific Decadal Oscillation. In: Encyclopedia of Global Environmental Change, John Wiley and Sons, Inc.
dc.relation.referencesMantua, N. J. and Hare, S. R. (2002) The Pacific Decadal Oscillation, J. Oceanogr., 58, 35-44.
dc.relation.referencesMartin, E. R., and Schumacher, C. (2011). The caribbean low-level jet and its relationship with precipitation in IPCC AR4 models. Journal of Climate, 24(22), 5935-5950. https://doi.org/10.1175/JCLI-D-11-00134.1
dc.relation.referencesMapes, B.E., Warner, T.T., Xu, M., Negri, A.J. (2003a). Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context, Monthly Weather Review, 131(5), 799-812.
dc.relation.referencesWarner, T.T., Mapes, B.E., Xu, M. (2003) Diurnal patterns of rainfall in northwestern South America. Part II: Model simulations, Monthly Weather Review, 131(5), 813-829.
dc.relation.referencesMapes, B.E., Warner, T.T., Xu, M. (2003b) Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore, Monthly Weather Review, 131(5), 830-844.
dc.relation.referencesMontoya, G., Pelkowski, J., Eslava, J.A. (2001) Sobre los alisios del nordeste y la existencia de una corriente en el Piedemonte Oriental Andino, Rev. Acad. Colomb. Cienc., 25 (96), 363-370.
dc.relation.referencesMuñoz, E., Busalacchi, A.J., Nigam, S. and Ruiz-Barradas, A. (2008) Winter and summer structure of the Caribbean low-level jet, J. Clim., 21, 1260-1276.
dc.relation.referencesPanter, P. (1965) Modulation, Noise, and Spectral Analysis, New York, McGraw-Hill.
dc.relation.referencesPoveda, G., Mesa OJ. (1997) Feedbacks between hydrological processes in tropical South America and large-scale ocean-atmospheric phenomena, Journal of climate, 10(10), 2690-2702.
dc.relation.referencesPoveda, G., Mesa O.J. (2000) On the existence of Lloro (the rainiest locality on earth): enhanced ocean-land-atmosphere interaction by a low-level jet, Geophysical research letters, 27 (11), 1675-1678.
dc.relation.referencesPoveda, G., Jaramillo, A., Gil, M.M., Quiceno, N., Mantilla, R.I. (2001) Seasonally in ENSO related precipitation, river discharges, soil moisture, and vegetation index in Colombia, Water resources research, 37 (8), 2169-2178.
dc.relation.referencesPoveda, G. (2004) The hydro-climatology of Colombia: A synthesis from inter-decadal to diurnal timescales (in spanish). Rev. Acad. Colomb. Cienc. 28(107): 201-222, 200. ISSN: 0370-3908.
dc.relation.referencesPoveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P.A., Toro, V.G., Alvarez, J. F. (2005). The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Monthly Weather Review, 133(1), 228-240. https://doi.org/10.1175/MWR-2853.1
dc.relation.referencesPoveda, G., Alvarez, D.M., Rueda, O.A. (2011) Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth's most important biodiversity hotspots, Clim Dyn, 36, 2233, doi:10.1007/s00382-010-0931-y.
dc.relation.referencesPoveda, G., Jaramillo, L., and Vallejo, L. F. (2014). Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resources Research, 50(1), 98-118. https://doi.org/10.1002/2013WR014087
dc.relation.referencesPoveda, G., Lopez, S., Isaza, A. (2015) Geographic delimitation of regions exhibiting bimodal, transitional and unimodal annual cycles of rainfall within the inter-tropics. International Conference on the Water and Energy cycles in the Tropics, 17-19 November 2015, Paris, France.
dc.relation.referencesLe Van Quyen, M., Foucher, J., Lachaux, J., Rodriguez, E., Lutz, a, Martinerie, J., and Varela, F. J. (2001). Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. Journal of Neuroscience Methods, 111(2), 83-98. https://doi.org/http://dx.doi.org/10.1016/S0165-0270(01)00372-7
dc.relation.referencesRato, R.T., Ortigueira, M.D., Batista, A.G. (2008) On the HHT, its problems, and some solutions, Mechanical Systems and Signal Processing, 22, 1374-1394.
dc.relation.referencesRasmusson, E., Carpenter, T. (1982) Variations in tropical sea surface temperature and surface winds fields associated with the Southern Oscillation El Niño, Mon Weather Rev, 110, 354-384.
dc.relation.referencesRosenblum, M., Pikovsky, A., Kurths, J., Schafer, C., Tass, P.A. (2001) Phase synchronization: from theory to data analysis, Handbook of biological physics, 4, 279-321.
dc.relation.referencesRueda, O. A., and G. Poveda (2006), Space-time variability of the CHOCO jet and its effect on the Colombian Pacific coast hydroclimatology [in Spanish], Meteorol. Colombiana, 10, 132-145.
dc.relation.referencesSarachik, E.S. and Cane, M.A. (2010) The El Niño - Sourthern Oscillation Phenomenon, Cambridge University Press.
dc.relation.referencesStein, K., Timmermann, A., Schneider (2011) Phase synchronization of the El Niño-Sourthern Oscillation with the annual cycle, Physical review letters, PRL 107, 128501.
dc.relation.referencesStein, K., Timmermann, A., Schneider, N., Jin, F.F., Stuecker, M.F. (2014) ENSO seasonal synchronization theory, Journal of Climate, 27(14), 5285-5310.
dc.relation.referencesSpracklen, D. V., S. R. Arnold, and C. M. Taylor (2012), Observations of increased tropical rainfall preceded by air passage over forests, Nature, 489, 282-285, doi:10.1038/nature11390.
dc.relation.referencesSchiff, S. J., So, P., Chang, T., Burke, R. E., and Sauer, T. (1996). Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 54(6), 6708-6724. https://doi.org/10.1103/PhysRevE.54.6708
dc.relation.referencesTorrealba, E., Amador, J. (2010) La corriente en chorro de bajo nivel de los Llanos Venezolanos de Sur America, Revista de climatologia, 10,1-20, ISSN 1578-8768.
dc.relation.referencesTass, P., Rosenblum, M., Weule, J., Kurths, J., Pikovsky, A., Volkmann, J., Schnitzler, A., Freund, H.-J. (1998) Phys. Rev. Lett. 81, 3291-3294.
dc.relation.referencesTroch, P. A., Carrillo, G., Sivapalan, M., Wagener, T., and Sawicz, K.(2013) Climate-vegetation-soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution, Hydrol. Earth Syst. Sci., 17, 2209-2217, doi:10.5194/hess-17-2209-2013.
dc.relation.referencesTrenberth, K., Stepaniak, D. (2001) Indices of El Niño evolution, J. Clim, 14, 1697-1701.
dc.relation.referencesUrrea, V., Ochoa, A., Mesa, O. Rainfall Seasonality in Colombia. Water Resources Research (submitted)
dc.relation.referencesVelez, J.I., Poveda, G., Mesa, O.J., (2000) Hydrological balances of Colombia (in Spanish). COLCIENCIAS-UPME, ISBN: 958-9352-25-1.
dc.relation.referencesVon Storch, H. Bürger, G., Schnur, R., Von Storch, J-S (1995) Principal oscillation patterns: A review, Journal of climate, 8, 377-399.
dc.relation.referencesWang, H., Fu, R. (2002). Cross-Equatorial Flow and Seasonal Cycle of Precipitation over South America, Journal of Climate, 15, 1591-1608.
dc.relation.referencesWang, C. (2007). Variability of the Caribbean Low-Level Jet and its relations to climate. Climate Dynamics, 29(4), 411-422. https://doi.org/10.1007/s00382-007-0243-z
dc.relation.referencesWang, W.C., Chau, K.W., Xu, D.M., Chen, X.Y. (2015) Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition, Water Resources Management, 29(8), 2655-2675.
dc.relation.referencesWaylen, P., Poveda, G. (2002) El Niño-Southern Oscillation and aspects of western South American hydro-climatology, Hydrological Processes, 16(6), 1247-1260.
dc.relation.referencesWu, Z., Huang, N.E. (2005) Ensemble empirical mode decomposition: a noise-assisted data analysis method, Center for Ocean-Land-Atmosphere Studies Technical Report 193, ftp://grads.iges.org/pub/ctr/ctr_193.pdf.
dc.relation.referencesWu, Z., Huang, N.E. (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method, Adv Adaptive Data Anal, 1, 1-41.
dc.relation.referencesWu, Z., Huang, N.E., Schneider, E.K., Kirtman, B.P., Sarachik, E.S., Huang, N.E., Tucker, C.J. (2008) The modulated annual cycle: an alternative reference frame for climate anomalies, Clim Dyn, 31, 823-841.
dc.relation.referencesZhang, Y., J.M. Wallace and D.S. Battisti (1997) ENSO-like Interdecadal Variability: 1900-93. Journal of Climate, Vol. 10, 1004-1020.
dc.relation.referencesJiménez-Sánchez, G., , Markowski, P. M., Jewtoukoff, V., Young, G. S. and Stensrud, D. J. (2019) The Orinoco Low-Level Jet: An Investigation of Its Characteristics and Evolution Using the WRF Model, J. Geophys. Res. Atmos., 124, 10696 -10711.
dc.relation.referencesBalanov, A., Janson, N., Postnov, D., Sosnovtseva, O., Synchronization: From simple to complex. Heidelberg, Springer-Verlag Berlin, pp. 435,ISBN 978-3-540-72127-7.
dc.relation.referencesBrown, R., Kocarev, L. (2000) A unifying definition of synchronization for dynamical systems, Chaos, 10(2), 344-349.
dc.relation.referencesRulkov, N.F., Sushchik, M. M., Tsimring, L. S. and Abarbanel, H. D. I. (1995) Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. Rev. E.
dc.relation.referencesSchiff, S. J., So, P., Chang, T., Burke, R. E., and Sauer, T. (1996) Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble, Phys. Rev. E, 54, 6708-6724, https://doi.org/10.1103/PhysRevE.54.6708.
dc.relation.referencesArnhold, J., Grassberger, P., Lehnertz, K., and Elger, C. E. (1999) A robust method for detecting interdependences: application to intracranially recorded EEG, Physica D, 134, 419-430.
dc.relation.referencesLe Van Quyen, M., Martinerie, J., Adam, C., and Varela, F. J. (1999) Non-linear analyses of interictal EEG map the brain interdependences in human focal epilepsy, Physica D, 127, 250-266.
dc.relation.referencesQuiroga, R. Q., Kraskov, A., Kreuz, T., and Grassberger, P. (2002) Performance of different synchronization measures in real data: a case study on electroencephalographic signals, Phys. Rev. E, 65,041903, https://doi.org/10.1103/PhysRevE.65.041903.
dc.relation.referencesZbilut, J. P., Webber, C. L. (2006) Recurrence Quantification Analysis, Wiley Encyclopedia of Biomedical Engineering, DOI: 10.1002/9780471740360.edb1355.
dc.relation.referencesMarwan, N., Romano, M.C., Thiel, M., \& Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports. https://doi.org/10.1016/j.physrep.2006.11.001
dc.relation.referencesRomano, M. C., Thiel, M., Kurths, J. (2004) Generalized Synchronization Indices based on Recurrence in Phase Space, 742, 330-336.
dc.relation.referencesRosenblum, M. G., Pikovsky, A. S., and Kurths, J. (1997) From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett., 78, 4193-4196, https://doi.org/10.1103/PhysRevLett.78.4193.
dc.relation.referencesTass, P., Rosenblum, M. G., Weule, J., Kurths, J., Pikovsky, A., Volkmann, J., Schnitzler, A., and Freund, H.J. (1998) Detection of n: m phase locking from noisy data: application to magnetoencephalography, Phys. Rev. Lett., 81, 3291-3294, https://doi.org/10.1103/PhysRevLett.81.329.
dc.relation.referencesRosenblum, M., Pikovsky, A., Kurths, J., Schäfer, C., Tass, P.A. (2001) Phase synchronization: from theory to data analysis, Handbook of biological physics, 4, 279-321.
dc.relation.referencesStolbova, V., Martin, P., Bookhagen, B., Marwan, N., and Kurths, J. (2014) Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka, Nonlinear Proc. Geoph., 21, 901-917.
dc.relation.referencesMalik, N., Bookhagen, B., Marwan, N., and Kurths, J. (2012) Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks, Clim. Dynam., 39, 971-987.
dc.relation.referencesRheinwalt, A., Boers, N., Marwan, N., Kurths, J., Hoffmann, P.,Gerstengarbe, F.-W., and Werner, P.(2016) Non-linear time series analysis of precipitation events using regional climate networks for Germany, Clim. Dynam., 46, 1065-1074.
dc.relation.referencesAgarwal, A., N. Marwan, M. Rathinasamy, B. Merz, and J. Kurths (2017) Multi-scale event synchronization analysis for unravelling climate processes: A wavelet-based approach, Nonlinear Process. Geophys.
dc.relation.referencesPoincaré, H. (1890) Sur la probleme des trois corps et les équations de la dynamique, Acta Mathematica, 13, 1–271.
dc.relation.referencesTakens, F. (1981), Detecting strange attractors in turbulence, D. Rand, L.-S. Young (Eds.), Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol. 898, Springer, Berlin, pp. 366–381.
dc.relation.referencesMarwan, N. A historical review of recurrence plots, European Physical Journal: Special Topics, 164: 3. https://doi.org/10.1140/epjst/e2008-00829-1.
dc.relation.referencesWebber, C.L., Marwan, N. (2014) Recurrence quantification analysis: Theory and best practices. Springer Cham Heidelberg New York Dordrecht London, pp. 421, DOI 10.1007/978-3-319-07155-8.
dc.relation.referencesFeldhoff, J. H. Donner, R. V. Donges, J.F., Marwan, N. Kurths, J. (2013) Geometric Signature of Complex Synchronisation Scenarios. EPL 102, 3, doi.org/10.1209/0295-5075/102/30007
dc.relation.referencesSenthilkumar, D. V., Suresh, R., Lakshmanan, N., Kurths, J. (2013) Global Generalized Synchronization in Networks of Different Time-Delay Systems. EPL 103.5, doi: 10.1209/0295-5075/103/50010
dc.relation.referencesSuresh, R., Senthilkumar, D.V., Lakshmanan, M., Kurths, J. (2016) Emergence of a Common Generalized Synchronization Manifold in Network Motifs of Structurally Different Time-Delay Systems. Chaos, Solitons and Fractals 93: 235–245.
dc.relation.referencesHobbs, B., Ord, A. (2018) Nonlinear Dynamical Analysis of GNSS Data: Quantification, Precursors and Synchronisation, Progress in Earth and Planetary Science (2018) 5:36,doi.org/10.1186/s40645-018-0193-6
dc.relation.referencesSullivan, A., J.-J. Luo, A. C. Hirst, D. Bi, W. Cai and He, J. (2016) Robust contribution of decadal anomalies to the frequency of central-Pacific El Niño. \textit{Scientific Reports}, 6, 38540; doi: 10.1038/srep38540
dc.relation.referencesAshok, K., Behera, S. K., Rao, S. A., Weng, H., Yamagata, T. (2007). El Niño Modoki and its possible teleconnection. Journal Of Geophysical Research. 112: 1-27.
dc.relation.referencesAshok, K., Yamagata, T. (2009). The El Niño with a difference. Nature. 461: 481-484.
dc.relation.referencesGill, A. E. (1980) Some simple solutions for heat-induced tropical circulation. Quart. J .R. Met. Soc., 106:447-462
dc.relation.referencesWeng, H., Behera, S. K. and Yamagata, T. (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events, Clim. Dyn. 32, doi:10.1007/s00382-008-0394-6 (2009).
dc.relation.referencesKalnay, E. et al. (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77.3: 437–471.
dc.relation.referencesTorrealba, E., Amador, J. (2010) La corriente en chorro de bajo nivel de los Llanos Venezolanos de Sur América, Revista de climatología, 10,1-20, ISSN 1578-8768.
dc.relation.referencesEckmann, J.-P., Kamphorst, S. O., Ruelle, D. (1987). Recurrence Plots of Dynamical Systems. Europhysics Letters, 4(9), 973–977. https://doi.org/10.1209/0295-5075/4/9/004
dc.relation.referencesPackard, N. H., Crutchfield, J. P., Farmer, J. D., Shaw, R. S. (1980). Geometry from a time series. Physical Review Letters, 45(9), 712–716. https://doi.org/10.1103/PhysRevLett.45.712
dc.relation.referencesFraser, A. M., Swinney, H. L. (1986). Independent coordinates for strange attractors from mutual information. Physical Review A, 33(2), 1134–1140. https://doi.org/10.1103/PhysRevA.33.1134
dc.relation.referencesKantz, H., Schreiber, T. (2004). Nonlinear Time Series Analysis. Nonlinear Time Series Analysis (Vol. 47). https://doi.org/10.1198/tech.2005.s306
dc.relation.referencesMarwan, N. (2011) How to avoid potential pitfalls in recurrence plot based data analysis. Int J Bifurc Chaos, 21:1003-1017.
dc.relation.referencesMindlin, G.M., Gilmore, R. (1992) Topological analysis and synthesis of chaotic time series. Physica D 58(1–4), 229–242.
dc.relation.referencesZbilut, J.P., Webber Jr., C.L. (1992) Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171(3-4), 199-203.
dc.relation.referencesRomano, M. C., Thiel, M., Kurths, J., Von Bloh, W. (2004). Multivariate recurrence plots. Physics Letters, Section A: General, Atomic and Solid State Physics, 330(3–4), 214–223. https://doi.org/10.1016/j.physleta.2004.07.066
dc.relation.referencesMarwan, N. Zou, Y., Wessel, N., Riedl, M. Kurths, J. (2013) Estimating coupling directions in the cardiorespiratory system using recurrence properties, Phil Trans R Soc A 371:20110624. http://dx.doi.org/10.1098/rsta.2011.0624
dc.relation.referencesArnhold, J., Grassberger, P., Lehnertz, K., Elger, C. E. (1999). A robust method for detecting interdependences: application to intracranially recorded EEG. Physica D: Nonlinear Phenomena, 134(4), 419–430. https://doi.org/10.1016/S0167-2789(99)00140-2
dc.relation.referencesThiel, M., Romano, M.C., Kurths, J. Rolfs, M., Kliegl, R. (2006) Twin surrogates to test for complex synchronisation. Europhys Lett, 75:535–541. doi:10.1209/epl/i2006-10147-0
dc.relation.referencesThiel, M., Romano, M.C., Kurths, J. Rolfs, M., Kliegl, R. (2008) Generating Surrogates from Recurrences. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. Vol. 366. N.p., 2008. 545–557. Web.
dc.relation.referencesHolm, S. (1979) A simple sequentially rejective multiple test procedure, Scand. J. Stat.
dc.relation.referencesAbdi, H. (2007) The Bonferonni and Šidák Corrections for Multiple Comparisons, Encyclopedia of Measurement and Statistics.
dc.relation.referencesDouglass, D. H. (2011). The Pacific sea surface temperature. Physics Letters, Section A: General, Atomic and Solid State Physics, 376(2), 128-135. https://doi.org/10.1016/j.physleta.2011.10.042
dc.relation.referencesDouglass, D. H., and, Knox, R. S. (2015). The Sun is the climate pacemaker I. Equatorial Pacific Ocean temperatures. Physics Letters, Section A: General, Atomic and Solid State Physics, 379(9), 823-829. https://doi.org/10.1016/j.physleta.2014.10.057
dc.relation.referencesAfyouni, S., Smith, S.M.,Nichols, T.E. (2019) Effective Degrees of Freedom of the Pearson’s Correlation Coefficient under Autocorrelation, NeuroImage, 199, 609-625.
dc.relation.referencesBonner, W.D. (1968) Climatology of the low level jet, Mon. Weather Rev. Vol. 96 (12), 833-850.
dc.relation.referencesStensrud, D. J. (1996) Importance of low-level jets to climate: A review, J. Clim., 9, 1698-1711.
dc.relation.referencesGimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C.J.C., Taschetto, A. S., Ramos, A.M., Kumar, R., Marengo, J. (2016) Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events, Annu. Rev. Environ. Resour., 41, 117-41.
dc.relation.referencesHoyos, I., Dominguez, F., Cañon-Barriga, J., Martínez, J.A., Nieto, R., Gimeno, L., Dirmeyer, P.A. (2017) Moisture origin and transport processes in Colombia, northern South America, Clim Dyn, DOI 10.1007/s00382-017-3653-6.
dc.relation.referencesPoveda, G., and Mesa, O. J. (1996) The extreme phases of ENSO (El Niño and La Niña) y its influence on the Colombian hydrology (in spanish), Ingeniería Hidráulica en México, Vol. XI,1, 21-37.
dc.relation.referencesTroch, P. A., Carrillo, G., Sivapalan, M., Wagener, T., and Sawicz, K.(2013) Climate-vegetation-soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution, Hydrol. Earth Syst. Sci., 17, 2209-2217, doi:10.5194/hess-17-2209-2013.
dc.relation.referencesAndrés-Doménech, I., García-Bartual, R., Montanari, A., and Marco, J. B. (2015). Climate and hydrological variability: The catchment filtering role. Hydrology and Earth System Sciences, 19(1), 379-387. http://doi.org/10.5194/hess-19-379-2015.
dc.relation.referencesMuñoz, E., Bussalacchi, A.J., Nigam, S., Ruiz-Barradas, A. (2007) Winter and Summer structure of the Caribbean Low-Level Jet, Journal of Climate, 21, 1260-1276.
dc.relation.referencesSakamoto, M.S., Ambrizzi, T., and Poveda, G. Moisture Sources and Life Cycle of Convective Systems over Western Colombia. Advances in Meteorology, 2011 (2012): 1–11.
dc.relation.referencesGarcía-Serrano, J., Cassou, C., Douville, H., Giannini, A. and Doblas-Reyes, F. J. (2017) Revisiting the ENSO teleconnection to the tropical North Atlantic, J. Clim.,30, 6945-6957.
dc.relation.referencesBuiles-Jaramillo, A., Ramos, A. M. T., Poveda, G. (2018) Atmosphere-Land Bridge between the Pacific and Tropical North Atlantic SST's through the Amazon River basin during the 2005 and 2010 droughts, Chaos, CHAOS 28, 085705.
dc.relation.referencesArango-Ruda, E., Poveda, G., (2018) Efectos de El Niño y La Niña sobre la hidrología de la Amazonia colombiana, Colombia Amazónica, No. 11, 2018, 33-58.
dc.relation.referencesHersbach, H., et al., The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 2020.
dc.relation.referencesStein, K., Timmermann, A., Schneider (2011) Phase synchronization of the El Niño-Sourthern Oscillation with the annual cycle, Physical review letters, PRL 107, 128501.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalHydrology
dc.subject.proposalHidrología
dc.subject.proposalClimatology
dc.subject.proposalClimatología
dc.subject.proposalFlow rates
dc.subject.proposalFenómeno del niño
dc.subject.proposalEl Niño - Oscilación del Sur
dc.subject.proposalEl Niño - Southern Oscillation (ENSO)
dc.subject.proposalCaudales
dc.title.translatedSincronización e interdependencia entre los ciclos de la hidroclimatología de Colombia y El Niño-Oscilación del Sur
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaÁrea Curricular de Medio Ambiente


Archivos en el documento

Thumbnail
Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito