Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorDuque Montoya, Álvaro Javier
dc.contributor.advisorLeón Peláez, Juan Diego
dc.contributor.authorCalderón Caro, Jennifer
dc.date.accessioned2020-09-09T20:51:45Z
dc.date.available2020-09-09T20:51:45Z
dc.date.issued2020-03-23
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78432
dc.description.abstractGlobally, soils represent the most important terrestrial carbon (C) stock of the planet and improving our understanding of how soil organic carbon (SOC) changes along elevational gradients can help us to inform the likely response of tropical SOC to climate change. In this study, we used field data and linear mixed effect models to assess the effects of temperature, soil fertility, root symbiont association, and aboveground biomass productivity on SOC alongside an elevational gradient in the northwestern region of Colombia. Samples were taken from nine permanent forest plots located in Antioquia, ranging from 167 to 2928 m asl. We found that SOC increased significantly with elevation, with highland forests (>2000 m asl) having approximately a twice of SOC stocks than their lowland counterparts. The best model explaining SOC stock retained mean annual temperature, soil nitrogen stock, soil N:P, and proportion of basal area of ectomycorrhizal tree in each plot. Our results demonstrate that current SOC stocks in tropical Andes forests are more strongly influenced by belowground and climatic effects rather than plant productivity, that did not change along elevation.
dc.description.abstractLos bosques tropicales representan globalmente un importante sumidero de carbono (C). Por lo tanto, mejorar nuestro entendimiento sobre la variación del carbono orgánico en el suelo (COS) a través de un gradiente de elevación puede ayudarnos a esclarecer la posible respuesta del COS tropical al cambio climático. En este estudio, nosotros evaluamos el efecto de la temperatura, la fertilidad del suelo, los microorganismos asociados a las raíces, y la productividad de la biomasa aérea sobre el COS a lo largo de un gradiente de elevación, entre 167 y 2928 msnm, en el noroccidente de Colombia. Nosotros encontramos que el COS incrementa significativamente con la elevación. Adicionalmente, hallamos que el mejor modelo que explica el stock de COS esta dado por la temperatura, el stock de N y la relación N:P en el suelo y la proporción del área basal de los árboles con ectomicorrizas. En general, nuestros resultados demuestran que el stock actual de COS en los bosques tropicales de los Andes está más fuertemente influenciado por los efectos del clima y del suelo que por la entrada de C, ya que la productividad de las plantas no cambió con la elevación
dc.format.extent40
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura
dc.titleDrivers of soil carbon stocks along an elevational gradient in the tropical Andes
dc.title.alternativeDeterminantes del almacenamiento del carbono orgánico en el suelo a lo largo de un gradiente de elevación en los Andes tropicales
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalResearch line: Biodiversity, use and conservation
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellín
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Ciencias Forestales
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAmundson, R. (2001). The Carbon Budget in Soils. Earth Planet, 29, 535–562.
dc.relation.referencesAverill, C., Turner, B. L., & Finzi, A. C. (2014). Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature, 505(7484), 543–545. https://doi.org/10.1038/nature12901
dc.relation.referencesBurnham, K. P., & Anderson, D. R. (2004). Model Selection and Multi-model Inference. Second. NY: Springer-Verlag, 63
dc.relation.referencesCamenzind, T., Hättenschwiler, S., Treseder, K. K., Lehmann, A., & Rillig, M. C. (2018). Nutrient limitation of soil microbial processes in tropical forests. Ecological Monographs, 88(1), 4–21. https://doi.org/10.1002/ecm.1279
dc.relation.referencesCao, M., & Woodward, F. I. (1998). Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biology, 4(2), 185–198. https://doi.org/10.1046/j.1365-2486.1998.00125.x
dc.relation.referencesChave, J., Réjou‐Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629
dc.relation.referencesCheeke, T. E., Phillips, R. P., Brzostek, E. R., Rosling, A., Bever, J. D., & Fransson, P. (2017). Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytologist, 214(1), 432–442. https://doi.org/10.1111/nph.14343
dc.relation.referencesChen, D., Yu, M., Gonz, G., Zou, X., & Gao, Q. (2017). Climate Impacts on Soil Carbon Processes along an Elevation Gradient in the Tropical Luquillo Experimental Forest. Forests, 8(90), 1–12. https://doi.org/10.3390/f8030090
dc.relation.referencesCorrales, A., Turner, B. L., Tedersoo, L., Anslan, S., & Dalling, J. W. (2017). Nitrogen addition alters ectomycorrhizal fungal communities and soil enzyme activities in a tropical montane forest. Fungal Ecology, 27, 14–23. https://doi.org/10.1016/j.funeco.2017.02.004
dc.relation.referencesCrowther, T. W., van den Hoogen, J., Wan, J., Mayes, M. A., Keiser, A. D., Mo, L., … Maynard, D. S. (2019). The global soil community and its influence on biogeochemistry. Science, 365(6455). https://doi.org/10.1126/science.aav0550
dc.relation.referencesDavidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–173. https://doi.org/10.1038/nature04514
dc.relation.referencesDieleman, W. I. J., Venter, M., Ramachandra, A., Krockenberger, A. K., & Bird, M. I. (2013). Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage. Geoderma, 204–205, 59–67. https://doi.org/10.1016/j.geoderma.2013.04.005
dc.relation.referencesDuque, A., Feeley, K. J., Cabrera, E., Callejas, R., & Idarraga, A. (2014). The dangers of carbon-centric conservation for biodiversity: A case study in the Andes. Tropical Conservation Science, 7(2), 178–191. https://doi.org/10.1177/194008291400700202
dc.relation.referencesGallo, M., Amonette, R., Lauber, C., Sinsabaugh, R. L., & Zak, D. R. (2004). Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils. Microbial Ecology, 48(2), 218–229. https://doi.org/10.1007/s00248-003-9001-x
dc.relation.referencesGirardin, C. A. J., Malhi, Y., Aragão, L. E. O. C., Mamani, M., Huaraca Huasco, W., Durand, L., … Whittaker, R. J. (2010). Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology, 16, 3176–3192. https://doi.org/10.1111/j.1365-2486.2010.02235.x
dc.relation.referencesGirardin, C. A. J., Espejob, J. E. S., Doughty, C. E., Huasco, W. H., Metcalfe, D. B., Durand-Baca, L., … Malhi, Y. (2014). Productivity and carbon allocation in a tropical montane cloud forest in the Peruvian Andes. Plant Ecology and Diversity, 7(1–2), 107–123. https://doi.org/10.1080/17550874.2013.820222
dc.relation.referencesKarger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., … Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4(170122), 1–20. https://doi.org/10.1038/sdata.2017.122
dc.relation.referencesKeiser, A. D., & Bradford, M. A. (2017). Climate masks decomposer influence in a cross-site litter decomposition study. Soil Biology and Biochemistry, 107, 180–187. https://doi.org/10.1016/j.soilbio.2016.12.022
dc.relation.referencesLi, L., Vogel, J., He, Z., Zou, X., Ruan, H., Huang, W., … Bianchi, T. S. (2016). Association of Soil Aggregation with the Distribution and Quality of Organic Carbon in Soil along an Elevation Gradient on Wuyi Mountain in China. Plos One, 1–13. https://doi.org/10.1371/journal.pone.0150898
dc.relation.referencesLi, P., Yang, Y., Han, W., & Fang, J. (2014). Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems. Global Ecology and Biogeography, 23, 979–987. https://doi.org/10.1111/geb.12190
dc.relation.referencesLiu, L., Gundersen, P., Zhang, W., Zhang, T., Chen, H., & Mo, J. (2015). Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests. Scientific Reports, 5, 1–10. https://doi.org/10.1038/srep14378
dc.relation.referencesLloyd, J., & Taylor, J. A. (1994). On the Temperature Dependence of Soil Respiration. Functional Ecology, 8(3), 315–323. https://doi.org/10.2307/2389824
dc.relation.referencesMalagón Castro, D. (2003). Ensayo sobre tipología de suelos colombianos-Énfasis en génesis y aspectos ambientales. Ciencias de La Tierra, 27(104), 319–341.
dc.relation.referencesMaherali, H., Oberle, B., Stevens, P. F., Cornwell, W. K., & McGlinn, D. J. (2016). Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. The American Naturalist, 188(5), E113–E125. https://doi.org/10.1086/688675
dc.relation.referencesMalhi, Y., Girardin, C. A. J., Goldsmith, G. R., Doughty, C. E., Salinas, N., Metcalfe, D. B., … Silman, M. (2017). The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytologist, 214(3), 1019–1032. https://doi.org/10.1111/nph.14189
dc.relation.referencesNakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x
dc.relation.referencesNottingham, A. T., Whitaker, J., Ostle, N. J., Bardgett, R. D., McNamara, N. P., Fierer, N., … Meir, P. (2019). Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecology Letters, 22(11), 1889–1899.
dc.relation.referencesPan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., … Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993. https://doi.org/10.1126/science.1201609
dc.relation.referencesPeña, M. A., Feeley, K. J., & Duque, A. (2018). Effects of endogenous and exogenous processes on aboveground biomass stocks and dynamics in Andean forests. Plant Ecology, 219(12), 1481–1492. https://doi.org/10.1007/s11258-018-0895-2
dc.relation.referencesPioli, S., Sarneel, J., Thomas, H. J. D., Domene, X., Andrés, P., Hefting, M., … Brusetti, L. (2020). Linking plant litter microbial diversity to microhabitat conditions, environmental gradients and litter mass loss: Insights from a European study using standard litter bags. Soil Biology and Biochemistry, 144, 107778. https://doi.org/10.1016/j.soilbio.2020.107778
dc.relation.referencesPhillips, J., Ramirez, S., Wayson, C., & Duque, A. (2019). Differences in carbon stocks along an elevational gradient in tropical mountain forests of Colombia. Biotropica, 51(4), 490–499. https://doi.org/10.1111/btp.12675
dc.relation.referencesPhillips, R. P., Brzostek, E., & Midgley, M. G. (2013). The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytologist, 199(1), 41–51.
dc.relation.referencesRaich, J. W., & Tufekcioglu, A. (2000). Vegetation and Soil Respiration: Correlations and Controls. Biogeochemistry, 48(1), 71–90.
dc.relation.referencesSierra, C. A., del Valle, J. I., Orrego, S. A., Moreno, F. H., Harmon, M. E., Zapata, M., … Benjumea, J. F. (2007). Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. Forest Ecology and Management, 243(2–3), 299–309. https://doi.org/10.1016/j.foreco.2007.03.026
dc.relation.referencesSokol, N. W., Kuebbing, S. E., Karlsen-Ayala, E., & Bradford, M. A. (2019). Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytologist, 221(1), 233–246. https://doi.org/10.1111/nph.15361
dc.relation.referencesSoudzilovskaia, N. A., van Bodegom, P. M., Terrer, C., Zelfde, M. van’t, McCallum, I., Luke McCormack, M., … Tedersoo, L. (2019). Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nature Communications, 10(1), 1–10. https://doi.org/10.1038/s41467-019-13019-2
dc.relation.referencesSteidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A., Reich, P. B., … Zo-Bi, I. C. (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 569(7756), 404–408. https://doi.org/10.1038/s41586-019-1128-0
dc.relation.referencesSterner, R. W., & Elser, J. J. (2002). Ecological stoichiometry: the biology of elements from molecules to the biosphere (Princeton University Press, ed.). Princeton.
dc.relation.referencesTashi, S., Singh, B., Keitel, C., & Adams, M. (2016). Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta-analysis of global data. Global Change Biology, 22(6), 2255–2268. https://doi.org/10.1111/gcb.13234
dc.relation.referencesTedersoo, L., & Bahram, M. (2019). Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biological Reviews, 94(5), 1857–1880.
dc.relation.referencesTreseder, K. K. (2008). Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecology Letters, 11(10), 1111–1120. https://doi.org/10.1111/j.1461-0248.2008.01230.x
dc.relation.referencesWaring, B. G., Adams, R., Branco, S., & Powers, J. S. (2016). Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests. New Phytologist, 209(2), 845–854. https://doi.org/10.1111/nph.13654
dc.relation.referencesZhu, K., McCormack, M. L., Lankau, R. A., Egan, J. F., & Wurzburger, N. (2018). Association of ectomycorrhizal trees with high carbon-to-nitrogen ratio soils across temperate forests is driven by smaller nitrogen not larger carbon stocks. Journal of Ecology, 106(2), 524–535. https://doi.org/10.1111/1365-2745.12918
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalCarbono orgánico en el suelo
dc.subject.proposalSoil organic carbon
dc.subject.proposaltemperatura
dc.subject.proposaltemperature
dc.subject.proposalmycorrhizal fungi
dc.subject.proposalhongos micorrizicos
dc.subject.proposalsoil nitrogen
dc.subject.proposalnitrógeno en el suelo
dc.subject.proposalrelación nitrógeno: fósforo
dc.subject.proposalnitrogen: phosphorus
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito