Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorRodríguez Baracaldo, Rodolfo
dc.contributor.advisorArroyo Osorio, José Manuel
dc.contributor.authorParra Rodríguez, Yeison
dc.date.accessioned2020-09-22T21:11:42Z
dc.date.available2020-09-22T21:11:42Z
dc.date.issued2020-07-10
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78491
dc.description.abstractEl interés de los fabricantes de automóviles en reducir el peso en las partes estructurales del vehículo para satisfacer las políticas de consumo de combustible y mejorar la seguridad en colisiones, los han llevado a la búsqueda de nuevos materiales, hallando una gran oportunidad en los aceros avanzados de alta resistencia AHSS, como el acero de doble fase. Los procesos de conformado de varios componentes de chapa metálica de aceros de doble fase, exhiben una notable variación de la geometría después de la deformación plástica. Sin embargo, el fenómeno de la recuperación elástica y la influencia del cambio en su microestructura mediante tratamientos térmicos Intercríticos no han sido ampliamente estudiados. En el presente trabajo, se estudia la sensibilidad de la recuperación elástica bajo el efecto del cambio de propiedades mecánicas, por medio de tratamientos térmicos Intercríticos a través de ensayos experimentales de tracción uniaxial y anisotropía plástica con deformaciones entre 8 y 12%; para ello, se prepararon probetas a 0°, 45° y 90° respecto al sentido de laminación y ensayo de doblado en forma de V, midiendo el ángulo de doblado después de retirada la carga, utilizando un transportador de ángulos y verificando con mediciones en fotografías en un editor de gráficos. Bajo los resultados experimentales se implementó un modelo por elementos finitos que integra el modelo constitutivo de fluencia de anisotropía de Hill 1948, y endurecimiento isotrópico para la predicción de la recuperación elástica. Además, se investiga la capacidad de predicción de los modelos de Hill-48 y Barlat-89 de la variación del esfuerzo de fluencia y anisotropía plástica, con respecto al ángulo desde la dirección de laminación a las direcciones de 0°, 45° y 90°. Los resultados revelan un cambio en la recuperación elástica con relación al aumento de la proporción de la martensita en la microestructura del acero de doble fase, debido a la influencia de los tratamientos térmicos en el material y el aumento de su resistencia, así como la reducción de su ductilidad frente al material es su estado inicial. Adicionalmente, los valores de anisotropía y esfuerzo de fluencia a diferentes direcciones del material presentan cambios.
dc.description.abstractThe interest of car manufacturers in reducing the weight of the structural parts of the vehicle to satisfy fuel consumption policies and improve safety in collisions, have led them to search for new materials, finding a great opportunity in advanced high strength steels (AHSS), such as dual phase steel. The forming processes of various sheet metal components of dual phase steels exhibit a notable variation in geometry after plastic deformation. However, the phenomenon of springback and the influence of change on its microstructure through Intercritical heat treatments have not been widely studied. In the present work, the sensitivity of springback under the effect of the change of mechanical properties is studied, by means of Intercritical heat treatments through experimental tests of uniaxial traction and plastic anisotropy with strains between 8 and 12%; For this, specimens were prepared at 0 °, 45 ° and 90 ° with respect to the rolling direction and V-shaped bend test, measuring the bend angle after the load was removed, using an angle protractor and verifying with measurements on photographs in a graphics editor. Under the experimental results, a finite element model was implemented that integrates the constitutive model of Hill 1948's anisotropy and isotropic hardening for the prediction of springback. In addition, the predictive capacity of the Hill-48 and Barlat-89 models of the yield stress variation and plastic anisotropy, with respect to the angle from the rolling direction to the directions of 0 °, 45 ° and 90°, is investigated. The results reveal a change in the springback in relation to the increase in the proportion of martensite in the microstructure of double-phase steel, due to the influence of heat treatments on the material and the increase in its resistance, as well as the reduction of its ductility against the material is its initial state. Additionally, the values of anisotropy and yield stress in different directions of the material show changes.
dc.format.extent132
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc670 - Manufactura
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
dc.subject.ddc680 - Manufactura para usos específicos
dc.titleEstudio de la recuperación elástica en aceros avanzados de alta resistencia de doble fase
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupInnovación en Procesos de Manufactura e Ingeniería de Materiales
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesR. Lagneborg, “New steels and steel applications for vehicles”, Materials and Design, Volume 12, page 3-14. 1991.
dc.relation.referencesR.M. Cleveland, A.K. Ghosh, Inelastic effects on springback in metals. Int J Plast, Volumen 18, pp 769–785. 2002.
dc.relation.referencesD. Fei, P. Hodgson, Experimental and numerical studies of springback in air v-bending process for cold rolled TRIP steels, Nuclear Engineering and Design, Volume 236, pp. 1847–185. 2006.
dc.relation.referencesB. Chongthairungruang, V. Uthaisangsuk, S. Suranuntchai, S. Jirathearanat, “Springback prediction in sheet metal forming of high strength steels”, Marerial & Design, Volume 50, Pages 253–266. 2013.
dc.relation.referencesLankford WI, Snyder SC, Bauscher JA (1950) New criteria for predicting the press performance of deep-drawing sheets. Transaction ASM 42:1196–1232
dc.relation.referencesWilliam F. Hosford, Robert M. Caddell - Metal forming mechanics and metallurgy, Third edition, Cambridge University Press. Page 209-215. 2007
dc.relation.referencesOzturk, F., Toros, S., & Kilic, S. (2014). Effects of Anisotropic Yield Functions on Prediction of Forming Limit Diagrams of DP600 Advanced High Strength Steel. Procedia Engineering, 81, 760–765.
dc.relation.referencesC.A. Queener, R.J. De Angelis, Elastic springback and residual stresses in sheet metal formed by bending. Transactions of ASME, Volumen, pp 757-768. 1968.
dc.relation.referencesT.X. Yu, L.C. Zhang, Plastic Bending, Theory and Applications. World Scientific. 1996.
dc.relation.referencesA Baba, Y Tozawa, Effect of tensile force in stretch-forming process on the springback. Bulletin of the JSME, Volume 7, pp 835-843,1964.
dc.relation.referencesZhang, Z.T., Lee, D, Effect of process variables and material properties on the springback behavior of 2D-draw bending parts. In: Automotive Stamping Technology, SAE, pp 11–18. 1995.
dc.relation.referencesK.C. Chan, S.H. Wang, Theoretical analysis of springback in bending of integrated circuit lead frames, Journal of Materials Processing Technology, Volume 91 (1–3), pp. 111–115.1999.
dc.relation.referencesY. Tozawa, Forming technology for raising the accuracy of sheet-formed products, Journal of Materials Processing Technology, Volume 22, pp 343–351. 1990.
dc.relation.referencesD. Fei, P. Hodgson, Experimental and numerical studies of springback in air v-bending process for cold rolled TRIP steels, Nuclear Engineering and Design, Volume 236, pp. 1847–185. 2006.
dc.relation.referencesM. Banu, M. Takamura, T. Hama, O. Naidim, C. Teodosiu, A. Makinouchi, Simulation of springback and wrinkling in stamping of dual phase steel rail-shaped part, Journal of Materials Processing Technology, Volume 173, pp. 178–184. 2006.
dc.relation.referencesC. Gomes, O. Onipede, M. Lovell, Investigation of springback in high strength anisotropic steels, Journal of Materials Processing Technology, Volume 159 (1), pp. 91–98. 2005.
dc.relation.referencesS.A. Asgari, M. Pereira, B.F. Rolfe, M. Dingle, P.D. Hodgson, Statistical analysis of finite element modeling in sheet metal forming and springback analysis, Journal of Materials Processing Technology, Volume 203 , pp. 129–136. 2008.
dc.relation.referencesP. Chen, M. Koç, Simulation of springback variation in forming of advanced high strength steels, Journal of Materials Processing Technology, Volume 190 (1–3), pp. 189–198. 2007.
dc.relation.referencesB. Chongthairungruang V., “Experimental and numerical investigation of springback effect for advanced high strength dual phase steel”, Materials and Design, Volume 39, page 318-328. 2012.
dc.relation.referencesB. Chongthairungruang, V. Uthaisangsuk, S. Suranuntchai, S. Jirathearanat, “Springback prediction in sheet metal forming of high strength steels”, Marerial & Design, Volume 50, Pages 253–266. 2013.
dc.relation.referencesRobert H. Wagoner, Hojun Lim, Myoung-Gyu Lee, “Advanced Issues in springback”, International Journal of Plasticity, Volume 45, page 3–20; 2013.
dc.relation.referencesK. Mori, Y. Abe, Y. Suzui. Improvement of stretch flangeability of ultra high strength steel sheet by smoothing of sheared edge. Journal of Materials Processing Technology 210, 2010, 653–659.
dc.relation.referencesKeeler S., Kimchi M. Advanced High-Strenght steels aplication guidelines versión 5. World Auto Steel. 2014.
dc.relation.referencesWordAutoSteel. Dual Phase (DP) Steels. http://www.worldautosteel.org/steel-basics/steel-types/dual-phase-dp-steels/. Acceso Octubre del 2013.
dc.relation.referencesKang, P. ; Hou, Y. Q. ; Toms, D. ; Yan, N. D. ; Ding, B. Y. ; Gong, J., 2013. Effects of enzyme complex supplementation to a paddy-based diet on performance and nutrient digestibility of meat-type ducks. Asian-Aust. J. Anim. Sci., 26 (2): 253-259
dc.relation.referencesA. Konieczny, "Advanced High Strength Steels - Formability," Great Designs in Steel Seminar, February 2003, American Iron and Steel Institute, and AHSS Guidelines at www.WorldAutoSteel.org.
dc.relation.referencesWech PI, Radtke L, Bunge HJ (1983) Comparison of plastic anisotropy parameters. Sheet Metal Industries 60:594–597
dc.relation.referencesTresca H (1864) On the yield of solids at high pressures. Comptes Rendus Academie des Sciences 59:754 (in French)
dc.relation.referencesMises R (1913) Mechanics of solids in plastic state. Göttinger Nachrichten Mathematical Physics 4:582–592 (in German)
dc.relation.referencesHencky H (1924) On the theory of plastic deformations. Zeitschrift für Angewandte Mathematik und Mechanik 4:323–334 (in German)
dc.relation.referencesNorton FH (1929) The creep of steel at high temperatures. McGraw-Hill, New York, NY
dc.relation.referencesBailey RW (1929) Creep of steel under simple and compound stresses and the use of high initial temperature in steam power plants. Transmission in Tokyo Section Meeting World Power Conference, Konai-kai Publishing, Tokyo
dc.relation.referencesHershey AV (1954) The plasticity of an isotropic aggregate of anisotropic face centred cubic crystals. Journal of Applied Mechanics 21:241–249
dc.relation.referencesHosford WF (1972) A generalised isotropic yield criterion. Journal of Applied Mechanics 39:607–609
dc.relation.referencesWilliam F. Hosford, Robert M. Caddell - Metal forming mechanics and metallurgy, Third edition, Cambridge University Press. Page 209-215. 2007
dc.relation.referencesF. Barlat, J. Lian, “Plastic behaviour and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions”, Int J Plasticity, volume 5, pages 51–66. 1989.
dc.relation.referencesBanabic D., Balan T., Comsa D.S., A new yield criterion for orthotropic sheet metals under plane-stress condition, Proc. of the Conf. TPR2000(Ed. Banabic D.), Cluj-Napoca, pp.217-224, 2000
dc.relation.referencesS.L. Zang, C. Guo, S. Thuillier, M.G. Lee, A model of one-surface cyclic plasticity and its application to springback prediction, Int J Mechanical & Science, 53 (2011), pp. 425–435.
dc.relation.referencesBingtao Tang, Xiaoyang Lu, Zhaoqing Wang, Zhen Zhao, “Springback investigation of anisotropic aluminum alloy sheet with a mixed hardening rule and Barlat yield criteria in sheet metal forming”, Materials & Design, pages 2043-2050.2010.
dc.relation.referencesK. Mattiasson, M. Sigvant, “An evaluation of some recent yield criteria for industrial simulation of sheet forming processes”, Int J Mech Sci, volume 50, pages 774–787. 2008.
dc.relation.referencesF. Barlat, D.J. Lege, J.C. Brem, “A six-component yield function for anisotropic materials”, Int J Plast, 7 (1991), pp. 693–712
dc.relation.referencesA.P. Karafillis, M.C. Boyce, “A general anisotropic yield criterion using bounds and a transformation weighting tensor”, J Mech Phys Solids, 41 (1993), pp. 1859–1886
dc.relation.referencesF. Barlat, R.C. Becker, Y. Hayashida, Y. Maeda, M. Yanagawa, Chung et al., “Yielding description for solution strengthened aluminium alloys”, Int J Plast, 13 (1997), pp. 385–401
dc.relation.referencesF. Barlat, Y. Maeda, K. Chung, M. Yanagawa, J.C. Brem, Hayashida et al., “Yield function development for aluminium alloy sheets”, J Mech Phys Solids, 45 (1997), pp. 1727–1763 J.F. Wang, R.H. Wagoner, D.K. Matlock, F. Barlat, “Anticlastic curvature in draw-bend springback”, Int J Solids Struct, 42 (2005), pp. 1287–1307
dc.relation.referencesS.L. Zang, C. Guo, S. Thuillier, M.G. Lee, “A model of one-surface cyclic plasticity and its application to springback prediction”, Int J Mech Sci, 53 (2011), pp. 425–435
dc.relation.referencesJ. Kim, K.H. Chung, W. Lee, J. Kong, H. Ryu, Kim et al., “Optimization of boost condition and axial feeding on tube bending and hydro-forming process considering formability and spring-back”, Met Mater Int, 15 (2009), pp. 863–876
dc.relation.referencesM.O. Andar, T. Kuwabara, S. Yonemura, A. Uenishi, “Elastic–plastic and inelastic characteristics of high strength steel sheets under biaxial loading and unloading”, ISIJ Int, 50 (2010), pp. 613–619sme J.W. Yoon, S.H. Hong, “Modeling of aluminum alloy sheets based on new anisotropic yield functions”, J Mater Process Technol, 177 (2006), pp. 134–137 Jiang, S.: Springback investigations, Master thesis, The Ohio State University, 1997
dc.relation.referencesYoshida, F. and Uemori, T., A model of large-strain cyclic plasticity describing the Bauschinger effect and work hardening stagnation, International Journal of Plasticity, vol. 18, 2002, pp.661-686
dc.relation.referencesX.C. Li, Y.Y. Yang, Y.Z. Wang, J. Bao, S.P. Li, Effect of the material hardening mode on the springback simulation accuracy of V-free bending, J Mater Proc Technol, 123 (2002), pp. 209–211
dc.relation.referencesI.A. Burchitz, Improvement of Springback Prediction in Sheet Metal Forming, 2008.
dc.relation.referencesO.T. Sarikaya, Analysis of heat treatment effect on springback in v- bending, 2008
dc.relation.referencesSuchy, I., Handbook of Die Design, 2nd Ed., McGraw-Hill Book Company, Inc., 2006
dc.relation.references(Society of Manufacturing Engineers), Die Design Handbook, 3rd Ed., McGraw-Hill Book Company, Inc., 1990.
dc.relation.referencesBoljanovic, V., Sheet Metal Forming Processes and Die Design, 1st Ed, Industrial Press Inc., 2004.
dc.relation.referencesJ. Sala Serra, Caracterización y comparación de las propiedades mecánicas de dos chapas de acero avanzado de alta resistencia (AHSS): TRIP800 Y DP800, 2008.
dc.relation.referencesD.Y. Yang, S.I. Oh, H. Huh, and Y.H. Kim, editors. Proceedings of the 5th international conference and workshop on numerical simulation of 3D sheet metal forming processes, NUMISHEET 2002, Jeju Island, Korea, 2002.
dc.relation.referencesS.S. Han and K.C. Park, An investigation of the factors influencing springback by empirical and simulative techniques. In Proceedings of the 4th International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes, NUMISHEET 1999, pages 53–58, Besancon, France, 1999.
dc.relation.referencesZ. Tekiner, An experimental study on the examination of springback of sheet metals with several thicknesses and properties in bending dies. Journal of Materials Processing Technology, 145(1):109–117, 2004
dc.relation.referencesL.C. Zhang, G. Lu, and S.C. Leong. V-shaped sheet forming by deformable punches. Journal of Materials Processing Technology, 63(1-3):134–139, 1997.
dc.relation.referencesH. Livatyali and T. Altan. Prediction and elimination of springback in straight flanging using computer aided design methods: Part 1. Experimental investigations. Journal of Materials Processing Technology, 117(1-2):262–268, 2001.
dc.relation.referencesT. Kuwabara, Y. Asano, S. Ikeda, and H. Hayashi. An evaluation method for springback characteristics of sheet metals based on a stretch bending test. In Kergen R., Kebler L., Langerak N., Lenze F.-J., Janssen E., and Steinbeck G., editors, Proceedings of IDDRG 2004. Forming the Future. Global Trends in Sheet Metal Forming, pages 55 – 64, Sindelfingen, Germany, 2004.
dc.relation.referencesJ.-T. Gau and G.L. Kinzel. An experimental investigation of the influence of the bauschinger effect on springback predictions. Journal of Materials Processing Technology, 108(3):369–375, 2001.
dc.relation.referencesW.L. Xu, C.H. Ma, C.H. Li, and W.J. Feng. Sensitive factors in springback simulation for sheet metal forming. Journal of Materials Processing Technology, 151(1-3):217–222, 2004.
dc.relation.referencesF. Pourboghrat and E. Chu. Springback in plane strain stretch/draw sheet forming. International Journal of Mechanical Sciences, 37(3):327, 1995.
dc.relation.referencesG. Liu, Z. Lin, W. Xu, and Y. Bao. Variable blankholder force in u-shaped part forming for eliminating springback error. Journal of Materials Processing Technology, 120(1-3):259–264, 2002.
dc.relation.referencesAuto/steel partnership (A/SP), high-strength steel applications: design and stamping process guidelines, a special edition of in-depth advanced high-strength steel case studies, auto/steel partnership southfield, Michigan; June 2009. <http://www.a-sp.org/publications.htm>.
dc.relation.referencesShimizu N, Tanaka A, Oue A, Mori T, Ohtsuki T, Apichartpiyakul C, Uchiumi H, Nojima Y, Hoshino H. Broad usage spectrum of G protein-coupled receptors as coreceptors by primary isolates of HIV. AIDS. 23:761-769, 2009
dc.relation.referencesR.H. Wagoner. Fundamental aspects of springback in sheet metal forming. In D.-Y. Yang, S.I. Oh, H. Huh, and Y.H. Kim, editors, Proceedings of the 5th International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes, NUMISHEET 2002, pages 13 – 24, Jeju Island, Korea, 2002.
dc.relation.referencesK. Li, L. Geng, and R.H.Wagoner. Simulation of springback: Choice of element. In M. Geiger, editor, Advanced Technology of Plasticity 1999, volume 3, pages 2091 – 2099, Nuremberg, Germany, 1999. Springer-Verlag.
dc.relation.referencesW.D. Carden, L.M. Geng, D.K. Matlock, and R.H. Wagoner. Measurement of springback. International Journal of Mechanical Sciences, 44(1):79–101, 2002.
dc.relation.referencesRussell LD et al (1990) Staging for laboratory species. In: Russell LD, Ettlin RA, Hikim APS, Clegg ED (eds) Histological and histopathological evaluation of the testis. Cache River Press, Clearwater, FL, pp 62–194
dc.relation.referencesW, Lems, “The change of Young's modulus after deformational low temperature and its recovery”, Ph.D. Dissertation, Delft.1963. I. Iwata and M. Matsui. Numerical prediction of spring-back behavior of a stamped metal sheet by considering material non-linearity during unloading. In Ken ichiro Mori, editor, Proceedings of NUMIFORM 2001, pages 693–698, Toyohashi, Japan, 2001.
dc.relation.referencesF. Morestin and M. Boivin. On the necessity of taking into account the variation in the young modulus with plastic strain in elastic-plastic software. Nuclear Engineering and Design, 162(1):107–116, 1996.
dc.relation.referencesMarra, K. M. Aços dual phase da Usiminas: características e potencial de aplicação em veículos automotores. 2º Workshop sobre inovações para o desenvolvimento de aços de elevado valor agregado - Foco indústria automotiva, 2008.
dc.relation.referencesV. Uthaisangsuk, U. Prahl, W. Bleck, Modelling of damage and failure in multiphase high strength DP and TRIP steels, Engineering Fracture Mechanics, Volume 78, Issue 3, February 2011, Pages 469–486.
dc.relation.referencesAydin Hueseyin, Kazdal Zeytin Havva, Kubilay Ceylan, Effect of Intercritical Annealing Parameters on Dual Phase Behavior of Commercial Low-Alloyed Steels, Journal of Iron and Steel Research, International, Volume 17, Issue 4, April 2010, Pages 73–78
dc.relation.referencesSawitree Sodjit, Vitoon Uthaisangsuk, Micromechanical Flow Curve Model for Dual Phase Steels, Journal of Metals, Materials and Minerals, Vol.22 No.1 pp. 87-97, 2012
dc.relation.referencesO. Topcu, M. Uebeyli, On the microstructural and mechanical characterizations of a low carbon and micro-alloyed steel Mater Des, 30 (2009), pp. 3274–3278
dc.relation.referencesWei Gan, S. S. Babu, Nick Kapustka, Robert H. Wagoner, Microstructural effects on the springback of advanced high-strength steel, Metallurgical and Materials Transactions A, November 2006, Volume 37, Issue 11, pp 3221-3231
dc.relation.referencesAlharthi, H. (2016). Accurate descriptions of the ansiotropic plastic yielding behaviour of various metallic sheets.
dc.relation.referencesDasappa, P., Inal, K., & Mishra, R. (2012). The effects of anisotropic yield functions and their material parameters on prediction of forming limit diagrams. International Journal of Solids and Structures, 49(25), 3528–3550
dc.relation.referencesEggertsen, P.-A., & Mattiasson, K. (2010). On constitutive modeling for springback analysis. International Journal of Mechanical Sciences, 52(6), 804–818.
dc.relation.referencesGawad, J., van Bael, A., & van Houtte, P. (2016). Multiscale Modelling of Mechanical Anisotropy. En D. Banabic (Ed.), Multiscale Modelling in Sheet Metal Forming (pp. 79–134).
dc.relation.referencesHou, Y., Min, J., Guo, N., Lin, J., Carsley, J. E., Stoughton, T. B., … Tekkaya, A. E. (2019). Investigation of evolving yield surfaces of dual-phase steels. Journal of Materials Processing Technology, 116314.
dc.relation.referencesHou, Y., Min, J., Lin, J., Liu, Z., Carsley, J. E., & Stoughton, T. B. (2017). Springback prediction of sheet metals using improved material models. Procedia Engineering, 207, 173–178.
dc.relation.referencesKonzack, S., Radonjic, R., Liewald, M., & Altan, T. (2018). Prediction and reduction of springback in 3D hat shape forming of AHSS. Procedia Manufacturing, 15, 660–667.
dc.relation.referencesLogan, R. W., & Hosford, W. F. (1980). Upper-bound anisotropic yield locus calculations assuming 〈111〉-pencil glide. International Journal of Mechanical Sciences, 22(7), 419–430.
dc.relation.referencesMoayyedian, F., & Kadkhodayan, M. (2015). Combination of Modified Yld2000-2d and Yld2000-2d in Anisotropic Pressure Dependent Sheet Metals. Latin American Journal of Solids and Structures, 12, 92–114.
dc.relation.referencesNilsson, K. (2019). Material modeling in Sheet Metal Forming Simulations: Quality comparison between comonly used material models.
dc.relation.referencesOzsoy, M., Esener, E., Ercan, S., & Firat, M. (2014). Springback Predictions of a Dual-phase Steel Considering Elasticity Evolution in Stamping Process. Arabian Journal for Science and Engineering, 39(4), 3199–3207.
dc.relation.referencesOzturk, F., Toros, S., & Kilic, S. (2014). Effects of Anisotropic Yield Functions on Prediction of Forming Limit Diagrams of DP600 Advanced High Strength Steel. Procedia Engineering, 81, 760–765.
dc.relation.referencesPrates, P., Oliveira, M., Sakharova, N., & Fernandes, J. V. (2013). How to Combine the Parameters of the Yield Criteria and the Hardening Law. Key Engineering Materials, 554–557.
dc.relation.referencesAlharthi, H. (2016). Accurate descriptions of the ansiotropic plastic yielding behaviour of various metallic sheets.
dc.relation.referencesAndrews. (s/f). Empirical Formulae for the Calculation of Some Transformation Temperatures [J].
dc.relation.referencesASTM E-517. (2016). ASTM E-517:Test Method for Plastic Strain Ratio r for Sheet Metal.
dc.relation.referencesASTM E1245-03. (s/f). ASTM E1245—03: Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis.
dc.relation.referencesHance, B. (2017). Practical Application of the Hole Expansion Test. SAE International Journal of Engines, 10, 247–257.
dc.relation.referencesHashimoto, K., Kuwabara, T., Iizuka, E., & Yoon, J. W. (2010). Hole expansion simulation of high strength steel sheet. International Journal of Material Forming, 3(1), 259–262.
dc.relation.referencesHaus, S. A. (2011). Influencia do efeito bauschinger no retorno elástico em aços avançados de elevada resistência. CURITIBA.
dc.relation.referencesHayat, F., & Uzun, H. (2011). Effect of Heat Treatment on Microstructure, Mechanical Properties and Fracture Behaviour of Ship and Dual Phase Steels. Journal of Iron and Steel Research, International, 18(8), 65–72.
dc.relation.referencesHill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1033), 281–297.
dc.relation.referencesHill, R. (1998). The Mathematical Theory of Plasticity. Clarendon Press. Hosford, W. F. (1972). A Generalized Isotropic Yield Criterion. Journal of Applied Mechanics, 39(2), 607–609.
dc.relation.referencesHou, Y., Min, J., Guo, N., Lin, J., Carsley, J. E., Stoughton, T. B., … Tekkaya, A. E. (2019). Investigation of evolving yield surfaces of dual-phase steels. Journal of Materials Processing Technology, 116314.
dc.relation.referencesHou, Y., Min, J., Lin, J., Liu, Z., Carsley, J. E., & Stoughton, T. B. (2017). Springback prediction of sheet metals using improved material models. Procedia Engineering, 207, 173–178.
dc.relation.referencesJayahari, L., Gangadhar, J., Singh, S. K., & Balunaik, B. (2017). Investigation of high temperature forming of ASS 304 using BARLAT 3-Parameter Model. Materials Today: Proceedings, 4(2, Part A), 799–804.
dc.relation.referencesJr, O. O., & Gomes, C. J. (s/f). Springback in High Strength Anisotropic Steel. 10.
dc.relation.referencesKattimani, K., Kakamarim, P. K., & Tavildar, R. K. (2015). Springback Analysis of Wipe Bending Process by Ansys.
dc.relation.referencesKonzack, S., Radonjic, R., Liewald, M., & Altan, T. (2018). Prediction and reduction of springback in 3D hat shape forming of AHSS. Procedia Manufacturing, 15, 660–667. Lakshminarayanan, R. (2006, enero 1). CAE Simulation of Non-Linear Analysis—Modeling of Material Model using Isotropic Material Hardening Law.
dc.relation.referencesLi, H., Sun, G., Li, G., Gong, Z., Liu, D., & Li, Q. (2011). On twist springback in advanced high-strength steels. Materials & Design, 32(6), 3272–3279.
dc.relation.referencesLogan, R. W., & Hosford, W. F. (1980). Upper-bound anisotropic yield locus calculations assuming 〈111〉-pencil glide. International Journal of Mechanical Sciences, 22(7), 419–430.
dc.relation.referencesMoayyedian, F., & Kadkhodayan, M. (2015). Combination of Modified Yld2000-2d and Yld2000-2d in Anisotropic Pressure Dependent Sheet Metals. Latin American Journal of Solids and Structures, 12, 92–114.
dc.relation.referencesNilsson, K. (2019). Material modeling in Sheet Metal Forming Simulations: Quality comparison between comonly used material models.
dc.relation.referencesOuakdi, E. H., Louahdi, R., Khirani, D., & Tabourot, L. (2012). Evaluation of springback under the effect of holding force and die radius in a stretch bending test. Materials & Design, 35, 106–112
dc.relation.referencesOzsoy, M., Esener, E., Ercan, S., & Firat, M. (2014). Springback Predictions of a Dual-phase Steel Considering Elasticity Evolution in Stamping Process. Arabian Journal for Science and Engineering, 39(4), 3199–3207.
dc.relation.referencesOzturk, F., Toros, S., & Kilic, S. (2014). Effects of Anisotropic Yield Functions on Prediction of Forming Limit Diagrams of DP600 Advanced High Strength Steel. Procedia Engineering, 81, 760–765.
dc.relation.referencesPanich, S., Uthaisangsuk, V., Suranuntchai, S., & Jirathearanat, S. (2014). Investigation of anisotropic plastic deformation of advanced high strength steel. Materials Science and Engineering: A, 592, 207–220.
dc.relation.referencesPrates, P., Oliveira, M., Sakharova, N., & Fernandes, J. V. (2013). How to Combine the Parameters of the Yield Criteria and the Hardening Law. Key Engineering Materials, 554–557.
dc.relation.referencesSaito, N., Fukahori, M., Minote, T., Funakawa, Y., Hisano, D., Hamasaki, H., & Yoshida, F. (2018). Elasto-viscoplastic behavior of 980 MPa nano-precipitation strengthened steel sheet at elevated temperatures and springback in warm bending. International Journal of Mechanical Sciences, 146–147, 571–582.
dc.relation.referencesSarraf, I., & Green, D. (2018). Prediction of DP600 and TRIP780 yield loci using Yoshida anisotropic yield function. IOP Conference Series: Materials Science and Engineering, 418, 012089.
dc.relation.referencesSayed, A. A., & Kheirandish, Sh. (2012). Affect of the tempering temperature on the microstructure and mechanical properties of dual phase steels. Materials Science and Engineering: A, 532, 21–25.
dc.relation.referencesSlota, J., & Spišák, E. (2008). Determination of flow stress by the hydraulic bulge test. Metalurgija, 47.
dc.relation.referencesSun, S., & Pugh, M. (2002). Properties of thermomechanically processed dual-phase steels containing fibrous martensite. Materials Science and Engineering: A, 335(1), 298–308.
dc.relation.referencesTang, B., Lu, X., Wang, Z., & Zhao, Z. (2010). Springback investigation of anisotropic aluminum alloy sheet with a mixed hardening rule and Barlat yield criteria in sheet metal forming. Materials & Design, 31(4), 2043–2050.
dc.relation.referencesToros, S., Polat, A., & Ozturk, F. (2012). Formability and springback characterization of TRIP800 advanced high strength steel. Materials & Design, 41, 298–305. Uemori, T., Sumikawa, S., Naka, T., Ma, N., & Yoshida, F. (2017). Influence of Bauschinger
dc.relation.referencesEffect and Anisotropy on Springback of Aluminum Alloy Sheets. Materials Transactions, 58(6), 921–926.
dc.relation.referencesWilliam, F. S., & Hashemi, J. (2004). Fundamentos De La Ciencia E Ingenieria De Materiales Edicion 4 William F. Smith, Javad Hashemi.
dc.relation.referencesXu, L., Barlat, F., Lee, M.-G., Choi, K. S., & Sun, X. (2012). Hole Expansion Of Dual Phase Steels.
dc.relation.referencesXue, X., Liao, J., Vincze, G., Pereira, A. B., & Barlat, F. (2016). Experimental assessment of nonlinear elastic behaviour of dual-phase steels and application to springback prediction. International Journal of Mechanical Sciences, 117, 1–15.
dc.relation.referencesYuan, W., Wan, M., Wu, X., Ma, B., Lu, X., & Yang, B. (2019). Influence of uniaxial tensile pre-strain on forming limit curve by using biaxial tensile test. Chinese Journal of Aeronautics.
dc.relation.referencesS. Allain, Comportment mécanique des aciers: des mécanismes fondamentaux à la deformation macroscopique, thesis to obtain the academic accreditation to supervise research, HDR, Lorraine University, 2012.
dc.relation.referencesDual Phase steels, ArcelorMittal, United Kingdom, 2015 , report report. Zhu, X., Wang, L. (2003): "Effect of continuous annealing parameters on the mechanical properties of cold rolled Si-Mn DP steel." Special Steel, 684-688.
dc.relation.referencesM.S . Niazi, Plasticity induced anisotro pic damage modeling for forming processesprocesses, University of Twente, Netherlands, 2012 , PhD Thesis Thesis.
dc.relation.referencesNeil, T. (2011). Mechanical properties and microstructures of dual phase steels containing silicon, aluminum and. Lawrence Berkeley National Laboratory.
dc.relation.referencesGutiérrez, A. L. (2013). Análisis microestructural y de propiedades mecánicas a temperaturas elevadas de aceros avanzados de alta resistencia para el conformado en caliente. Universidad Autónoma De Nuevo León.
dc.relation.referencesLai Q., Brassart L., Bouaziz O., Gouné M., Verdier M., Parry G., Perlade A., Bréchet Yves y Pardoen T. (2015). Influence of martensite volume fraction and hardness on theplastic behavior of dual-phase steels: Experiments andmicromechanical modelin. International Journal of Plasticity.
dc.relation.referencesVásquez, Angie Tatiana. (2018). influencia del tiempo de permanencia en el tamaño de grano de la martensita en un acero tratado a temperaturas intercríticas. universidad distrital francisco josé de caldas.
dc.relation.referencesNeil, T. (2011). Mechanical properties and microstructures of dual phase steels containing silicon, aluminum and. Lawrence Berkeley National Laboratory.
dc.relation.referencesFallahi, A. (2002). Microestructure-Properties Correlation of Dual Phase Steels Produced by Controleed Rolling Process.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalRecuperación elástica
dc.subject.proposalSpringback
dc.subject.proposalAdvanced High strength steels
dc.subject.proposalAceros Avanzados de Alta resistencia
dc.subject.proposalDual Phase
dc.subject.proposalAcero Doble Fase
dc.subject.proposalModelo Constitutivo
dc.subject.proposalConstitutive model
dc.subject.proposalHill-48
dc.subject.proposalHill-48
dc.subject.proposalBarlat-89
dc.subject.proposalBarlat-89
dc.subject.proposalTratamientos térmicos
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito