Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorAraque Quijano, Javier Leonardo
dc.contributor.authorRamírez Arroyave, Germán Augusto
dc.date.accessioned2020-10-01T15:47:04Z
dc.date.available2020-10-01T15:47:04Z
dc.date.issued2018-12-07
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78517
dc.description.abstractThis thesis tackles the design, manufacture and validation of multi-port and frequency reconfigurable antennas intended for advanced communications applications. The main accomplishments of this thesis are: Extension of the AMDSR© optimize package to efficiently deal with multiobjective and 3D structures. Broadband and nonlinear switch characterization. Study of novel planar multi-port antennas. Manufacturing of 3D antennas involving validation of a low cost material characterization technique at RF frequencies, techniques to control dielectric permittivity of 3D printed materials, and validation of alternatives for manufacturing 3D antennas. Design, validation, and manufacturing of a 3D pixellated antenna concept. Calculation of the currents on the switches of a parasitic layer antenna, design of a broadband antenna based on parasitic layer concept, development of a low complexity beam-steerable sub-array for millimeter waves, non-linear characterization of a parasitic layer based antenna element. Implementation of software defined radio based tests for antenna validation.
dc.description.abstractEsta tesis aborda el diseño, fabricación y validación de antenas multipuerto reconfigurables en frecuencia para aplicaciones en sistemas de comunicaciones avanzados. Los principales logros de esta tesis son: Extensión del paquete de optimización de AMDSR© para tratar eficientemente con problemas de optimización multiobjetivo y estructuras 3D. Caracterización de interruptores en banda ancha y de sus parámetros no lineales. Estudio de antenas planares multipuerto. Fabricación de antenas 3D incluyendo la validación de una técnica de bajo costo para la caracterización de materiales en RF, estudio de técnicas para controlar la permitividad relativa de materiales impresos en 3D, y la validación de alternativas para la construcción de antenas 3D. Diseño, validación y manufactura de un concepto de antena 3D pixelada. Cálculo de las corrientes en los interruptores de una capa parásita para antenas, diseño de una antena de banda ancha basada en capa parásita, desarrollo de un sub-arreglo con haz dirigible de baja complejidad para ondas milimétricas. Implementación de pruebas de validación de antenas en plataformas de radio definida por software.
dc.description.sponsorshipUniversidad Nacional de Colombia, Colciencias
dc.format.extent197
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.titleDesign of a multiport frequency reconfigurable antenna suitable for IMT-advanced communications systems
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectConvocatoria 727 de 2015 - Doctorados nacionales
dc.description.additionalLínea de Investigación: Computación aplicada
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y Computación
dc.contributor.researchgroupGrupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (CMUN)
dc.description.degreelevelDoctorado
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesGermán Augusto Ramírez Arroyave, Javier Leonardo Araque, “Optimization and Additive Manufacture of a Miniature 3-D Pixel Antenna for Dual-Band Operation”, Progress in Electromagnetics Research B, Vol. 85, 163-180, 2019.
dc.relation.referencesG. A. Ramírez, J. L. Araque, C. Ballesteros, S. Blanch, J. Romeu, B. Cetiner, and L. Jofre, “Study of interconnecting switch currents in reconfigurable parasitic layer antennas,” in 2019 IEEE AP-S International Symposium (APS), pp.313-314, Atlanta, Georgia, July 2019, doi: 10.1109/APUSNCURSINRSM.2019.8888313
dc.relation.referencesG.A. Ramírez, C.R. Peñafiel, J. L. Araque, M. Cabedo, J. Romeu, M.Ferrando-Bataller, L. Jofre, "Characteristic Mode Analysis of Planar Dual-Port Static and Reconfigurable Antennas", XXXIV Simposium URSI Spain, pp.–, Sept 2019
dc.relation.referencesChristian Ballesteros, Germán Ramírez, Jordi Romeu, Esteban Egea-Lopez, Juan Pascual-García, Jose María Molina, Lluìs Jofre, "V2I Millimeter-Wave MIMO vs Beamforming Capacity Analysis", XXXIV Simposium URSI Spain, pp.–, Sept 2019
dc.relation.referencesG. A. Ramirez Arroyave and J. L. Araque Quijano, "Evaluation of Additive Manufacturing Processes for 3-D Multiband Antennas," 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), Cartagena des Indias, 2018, pp. 589-592. doi: 10.1109/ICEAA.2018.8520514
dc.relation.referencesG. A. Ramírez Arroyave and J. L. Araque Quijano, "Broadband Characterization of 3D Printed Samples with Graded Permittivity," 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), Cartagena de Indias, 2018, pp. 584-588. doi: 10.1109/ICEAA.2018.8520349
dc.relation.referencesG. A. Ramírez, M. A. Saavedra and J. L. Araque, "Analysis of an Energy Detection Algorithm for Spectrum Sensing," 2018 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Cartagena des Indias, 2018, pp. 924-927. doi: 10.1109/APWC.2018.8503754
dc.relation.referencesM. A. Saavedra Melo, G. A. Ramírez Arroyave and J. L. Araque Quijano, "Spectrum Occupation Assessment in Bogotá and opportunities for cognitive radio systems," 2018 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Cartagena des Indias, 2018, pp. 932-935. doi: 10.1109/APWC.2018.8503802
dc.relation.referencesG. A. R. Arroyave and J. L. A. Quijano, “Dual-port reconfigurable planar antennas for diversity and duplexing applications,” in 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), pp. 1247–1248, June 2016.
dc.relation.referencesE. G. Sierra and G. A. R. Arroyave, "Low cost SDR spectrum analyzer and analog radio receiver using GNU radio, raspberry Pi2 and SDR-RTL dongle," 2015 7th IEEE Latin-American Conference on Communications (LATINCOM), Arequipa, 2015, pp. 1-6. doi: 10.1109/LATINCOM.2015.7430125
dc.relation.referencesD. O. Rodríguez, M. A. Saavedra, G. A. Ramírez, and J. L. Araque, “Realization of a compact reconfigurable antenna for mobile communications,” in 2014 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC),pp. 284–287, Aug 2014.
dc.relation.referencesJ. L. Araque and G. Vecchi, “A compact antenna reconfigurable in the band 1.7ghz -2.7ghz,” in2006 IEEE Antennas and Propagation Society International Symposium,pp. 2333–2336, July 2006.
dc.relation.referencesJ. L. Araque-Quijano and G. Vecchi, “Optimization of an innovative type of compactfrequency-reconfigurable antenna,”IEEE Transactions on Antennas and Propagation,vol. 57, pp. 9–18, Jan 2009
dc.relation.referencesJ. Quijano and G. Vecchi, “Multi-port frequency-reconfigurable antenna optimization,”inAntennas and Propagation (EuCAP), 2010 Proceedings of the Fourth European Con-ference on, pp. 1–4, April 2010.
dc.relation.referencesJ. Araque and G. Vecchi, “Optimization of compact multi-functional antennas,” inAntennas and Propagation Society International Symposium (APSURSI), 2010 IEEE,pp. 1–4, July 2010.
dc.relation.referencesJ. Araque Quijano and G. Vecchi, “Optimization of a compact frequency- andenvironment-reconfigurable antenna,”Antennas and Propagation, IEEE Transactionson, vol. 60, pp. 2682–2689, June 2012.
dc.relation.references[1] T. D. B. B. of the International Telecommunications Union (ITU), Measuring the Information Society Report, vol. 1. ITU Publications, 2018.
dc.relation.references[2] G. Association, \About GSMA," 2019. [Online; accessed 2019-04-24].
dc.relation.references[3] 3rd Generation Partnership Project (3GPP), \About 3GPP," 2009. [Online; accessed 2019-04-24].
dc.relation.references[4] I. T. U. ITU, \International mobile telecommunications-2000 (IMT-2000)," Recommendation ITU-R M.687-2, International Telecommunications Union - ITU, 1997.
dc.relation.references[5] I. T. U. ITU, \Vocabulary of terms for international mobile telecommunications (IMT)," Recommendation ITU-R M.1224-1, International Telecommunications Union - ITU, 03 2012.
dc.relation.references[6] I. T. U. ITU, \Framework for services supported by IMT," Recommendation ITU-R M.1822, International Telecommunications Union - ITU, 2007.
dc.relation.references[7] I. T. U. ITU, \Framework and overall objectives of the future development of IMT- 2000 and systems beyond IMT-2000," Recommendation ITU-R M.1645, International Telecommunications Union - ITU, 06 2003.
dc.relation.references[8] I. T. U. ITU, \Requirements related to technical performance for IMT-advanced radio interface(s)," Report ITU-R M.2134, International Telecommunications Union - ITU, 2008.
dc.relation.references[9] I. T. U. ITU, \Guidelines for evaluation of radio interface technologies for IMTadvanced," Recommendation ITU-R M.2135-1, International Telecommunications Union - ITU, 12 2009.
dc.relation.references[10] I. T. U. ITU, \Detailed speci cations of the terrestrial radio interfaces of international mobile telecommunications-advanced (IMT-advanced)," Recommendation ITU-R M.2012-3, International Telecommunications Union - ITU, 01 2018.
dc.relation.references[11] 3rd Generation Partnership Project (3GPP), \Release 10, LTE-adanced," 2011. [Online; accessed 2019-05-01].
dc.relation.references[12] f. G. Jeanette Wannstrom, \LTE-advanced," 2013. [Online; accessed 2019-05-01].
dc.relation.references[13] IEEE, \IEEE standard for local and metropolitan area networks part 16: Air interface for broadband wireless access systems amendment 3: Advanced air interface," IEEE Std 802.16m-2011(Amendment to IEEE Std 802.16-2009), pp. 1{1112, May 2011.
dc.relation.references[14] IEEE, \IEEE standard for air interface for broadband wireless access systems," IEEE Std 802.16-2017 (Revision of IEEE Std 802.16-2012), pp. 1{2726, March 2018.
dc.relation.references[15] I. T. U. ITU, \Frequency arrangements for implementation of the terrestrial component of international mobile telecommunications (IMT) in the bands identi ed for IMT in the radio regulations (RR)," Recommendation ITU-R M.1036-5, International Telecommunications Union - ITU, 10 2015.
dc.relation.references[16] I. T. U. ITU, \IMT vision { framework and overall objectives of the future development of IMT for 2020 and beyond," Recommendation ITU-R M.2083-0, International Telecommunications Union - ITU, 09 2015.
dc.relation.references[17] 3GPP, \Technical speci cation group services and system aspects; release 15 description; summary of rel-15 work items (release 15)," technical report, 3rd Generation Partnership Project, 03 2019.
dc.relation.references[18] G. Foschini and M. Gans, \On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Communications, vol. 6, pp. 311{335, Mar 1998.
dc.relation.references[19] E. Telatar, \Capacity of multi-antenna gaussian channels," European Transactions on Telecommunications, vol. 10, no. 6, pp. 585{595, 1999.
dc.relation.references[20] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bolcskei, \An overview of MIMO communications - a key to gigabit wireless," Proceedings of the IEEE, vol. 92, pp. 198{ 218, Feb 2004.
dc.relation.references[21] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, \Scaling up MIMO: Opportunities and challenges with very large arrays," IEEE Signal Processing Magazine, vol. 30, pp. 40{60, Jan 2013.
dc.relation.references[22] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, \Massive MIMO for next generation wireless systems," IEEE Communications Magazine, vol. 52, pp. 186{195, February 2014.
dc.relation.references[23] V. Tarokh, N. Seshadri, and A. R. Calderbank, \Space-time codes for high data rate wireless communication: performance criterion and code construction," IEEE Transac- tions on Information Theory, vol. 44, pp. 744{765, March 1998.
dc.relation.references[24] H. El Gamal and M. O. Damen, \Universal space-time coding," IEEE Transactions on Information Theory, vol. 49, pp. 1097{1119, May 2003.
dc.relation.references[25] J. Mitola and G. Q. Maguire, \Cognitive radio: making software radios more personal," IEEE Personal Communications, vol. 6, pp. 13{18, Aug 1999.
dc.relation.references[26] S. Haykin, \Cognitive radio: brain-empowered wireless communications," IEEE Jour- nal on Selected Areas in Communications, vol. 23, pp. 201{220, Feb 2005.
dc.relation.references[27] Z. Ying, \Antennas in cellular phones for mobile communications," Proceedings of the IEEE, vol. 100, pp. 2286{2296, July 2012.
dc.relation.references[28] F. M. Caimi, \Antenna design challenges for 4G," IEEE Wireless Communications, vol. 18, pp. 4{5, December 2011.
dc.relation.references[29] B. K. Lau and Z. Ying, \Antenna design challenges and solutions for compact MIMO terminals," in 2011 International Workshop on Antenna Technology (iWAT), pp. 70{ 73, March 2011.
dc.relation.references[30] D. Bai, C. Park, J. Lee, H. Nguyen, J. Singh, A. Gupta, Z. Pi, T. Kim, C. Lim, M. Kim, and I. Kang, \LTE-advanced modem design: challenges and perspectives," IEEE Communications Magazine, vol. 50, pp. 178{186, February 2012.
dc.relation.references[31] R. C. Hansen and R. E. Collin, Small Antenna Handbook. Wiley-IEEE Press, 2012.
dc.relation.references[32] J. S. McLean, \A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Transactions on Antennas and Propagation, vol. 44, pp. 672{, May 1996.
dc.relation.references[33] P. S. Hall, P. Gardner, J. Kelly, E. Ebrahimi, M. R. Hamid, F. Ghanem, F. J. Herraiz- Martinez, and D. Segovia-Vargas, \Recon gurable antenna challenges for future radio systems," in 2009 3rd European Conference on Antennas and Propagation, pp. 949{ 955, March 2009.
dc.relation.references[34] Songnan Yang, Chunna Zhang, H. K. Pan, A. E. Fathy, and V. K. Nair, \Frequencyrecon gurable antennas for multiradio wireless platforms," IEEE Microwave Magazine, vol. 10, pp. 66{83, February 2009.
dc.relation.references[35] C. M. Coleman, E. J. Rothwell, and J. E. Ross, \Investigation of simulated annealing, ant-colony optimization, and genetic algorithms for self-structuring antennas," IEEE Transactions on Antennas and Propagation, vol. 52, pp. 1007{1014, April 2004.
dc.relation.references[36] J. L. Araque and G. Vecchi, \A compact antenna recon gurable in the band 1.7ghz - 2.7ghz," in 2006 IEEE Antennas and Propagation Society International Symposium, pp. 2333{2336, July 2006.
dc.relation.references[37] J. L. Araque-Quijano and G. Vecchi, \Optimization of an innovative type of compact frequency-recon gurable antenna," IEEE Transactions on Antennas and Propagation, vol. 57, pp. 9{18, Jan 2009.
dc.relation.references[38] J. Quijano and G. Vecchi, \Multi-port frequency-recon gurable antenna optimization," in Antennas and Propagation (EuCAP), 2010 Proceedings of the Fourth European Con- ference on, pp. 1{4, April 2010.
dc.relation.references[39] J. Araque and G. Vecchi, \Optimization of compact multi-functional antennas," in Antennas and Propagation Society International Symposium (APSURSI), 2010 IEEE, pp. 1{4, July 2010.
dc.relation.references[40] J. Araque Quijano and G. Vecchi, \Optimization of a compact frequency- and environment-recon gurable antenna," Antennas and Propagation, IEEE Transactions on, vol. 60, pp. 2682{2689, June 2012.
dc.relation.references[41] R. L. Haupt and M. Lanagan, \Recon gurable antennas," IEEE Antennas and Pro- pagation Magazine, vol. 55, pp. 49{61, Feb 2013.
dc.relation.references[42] E. W. Matthews, C. L. Cuccia, and M. D. Rubin, \Technology considerations for the use of multiple beam antenna systems in communication satellites," IEEE Transactions on Microwave Theory and Techniques, vol. 27, pp. 998{1004, Dec 1979.
dc.relation.references[43] C. G. Christodoulou, Y. Tawk, S. A. Lane, and S. R. Erwin, \Recon gurable antennas for wireless and space applications," Proceedings of the IEEE, vol. 100, pp. 2250{2261, July 2012.
dc.relation.references[44] Z. Jiajie, W. Anguo, and W. Peng, \A survey on recon gurable antennas," in 2008 International Conference on Microwave and Millimeter Wave Technology, vol. 3, pp. 1156{1159, April 2008.
dc.relation.references[45] D. Schaubert, F. Farrar, A. Sindoris, and S. Hayes, \Microstrip antennas with frequency agility and polarization diversity," IEEE Transactions on Antennas and Pro- pagation, vol. 29, pp. 118{123, January 1981.
dc.relation.references[46] D. Schaubert, F. Farrar;, S. Hayes, and A. Sindoris, \Frequency-agile, polarization diverse microstrip antennas and frequency scanned arrays," January 1983.
dc.relation.references[47] L. N. Pringle, P. H. Harms, S. P. Blalock, G. N. Kiesel, E. J. Kuster, P. G. Friederich, R. J. Prado, J. M. Morris, and G. S. Smith, \A recon gurable aperture antenna based on switched links between electrically small metallic patches," IEEE Transactions on Antennas and Propagation, vol. 52, pp. 1434{1445, June 2004.
dc.relation.references[48] J. Costantine, Y. Tawk, S. Barbin, and C. Christodoulou, \Recon gurable antennas: Design and applications," Proceedings of the IEEE, vol. 103, pp. 424{437, March 2015.
dc.relation.references[49] E. Del Re, S. Morosi, D. Marabissi, L. Mucchi, L. Pierucci, and L. S. Ronga, \Recon gurable antenna for future wireless communication systems," Wireless Personal Communications, vol. 42, pp. 405{430, Aug 2007.
dc.relation.references[50] J. T. Bernhard, \Recon gurable multifunction antennas: Next steps for the future," in 2007 International Symposium on Microwave, Antenna, Propagation and EMC Tech- nologies for Wireless Communications, pp. K2{ 1{K2{ 4, Aug 2007.
dc.relation.references[51] Y. M. Yashchyshyn, \Recon gurable antennas - invited paper," in 18-th INTERNA- TIONAL CONFERENCE ON MICROWAVES, RADAR AND WIRELESS COMMU- NICATIONS, pp. 1{9, June 2010.
dc.relation.references[52] J. Dong, Y. Li, and B. Zhang, \A survey on radiation pattern recon gurable antennas," in 2011 7th International Conference on Wireless Communications, Networking and Mobile Computing, pp. 1{4, Sep. 2011.
dc.relation.references[53] C. G. Christodoulou, L. F. Feldner, V. Zachou, and D. Anagnostou, \Planar recon - gurable antennas," in 2006 First European Conference on Antennas and Propagation, pp. 1{7, Nov 2006.
dc.relation.references[54] C. Rowell and E. Y. Lam, \Mobile-phone antenna design," IEEE Antennas and Pro- pagation Magazine, vol. 54, pp. 14{34, Aug 2012.
dc.relation.references[55] A. Byndas, R. Hossa, M. E. Bialkowski, and P. Kabacik, \Investigations into operation of single- and multi-layer con gurations of planar inverted-F antenna," IEEE Antennas and Propagation Magazine, vol. 49, pp. 22{33, Aug 2007.
dc.relation.references[56] I. J. G. Zuazola and J. C. Batchelor, \Compact multiband PIFA type antenna," Elec- tronics Letters, vol. 45, pp. 768{769, July 2009.
dc.relation.references[57] P. Nepa, G. Manara, A. A. Serra, and G. Nenna, \Multiband PIFA for WLAN mobile terminals," IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 349{350, 2005.
dc.relation.references[58] M. K. Karkkainen, \Meandered multiband PIFA with coplanar parasitic patches," IEEE Microwave and Wireless Components Letters, vol. 15, pp. 630{632, Oct 2005.
dc.relation.references[59] N. C. Karmakar, \Shorting strap tunable single feed dual-band stacked patch PIFA," IEEE Antennas and Wireless Propagation Letters, vol. 2, pp. 68{71, 2003.
dc.relation.references[60] N. C. Karmakar, \Shorting strap tunable stacked patch PIFA," IEEE Transactions on Antennas and Propagation, vol. 52, pp. 2877{2884, Nov 2004.
dc.relation.references[61] P. Pana a, C. Luxey, G. Jacquemod, R. Staraj, L. Petit, and L. Dussopt, \Multistandard recon gurable PIFA antenna," Microwave and Optical Technology Letters, vol. 48, no. 10, pp. 1975{1977, 2006.
dc.relation.references[62] K. L. Melde, H. Park, H. Yeh, B. Fankem, Z. Zhou, and W. R. Eisenstadt, \Software de ned match control circuit integrated with a planar inverted f antenna," IEEE Transactions on Antennas and Propagation, vol. 58, pp. 3884{3890, Dec 2010.
dc.relation.references[63] Y. Yashchyshyn, J. Marczewski, K. Derzakowski, J. W. Modelski, and P. B. Grabiec, \Development and investigation of an antenna system with recon gurable aperture," IEEE Transactions on Antennas and Propagation, vol. 57, pp. 2{8, Jan 2009.
dc.relation.references[64] L. Wu, A. J. Farrall, and P. R. Young, \Substrate integrated waveguide switched beam antenna," IEEE Transactions on Antennas and Propagation, vol. 63, pp. 2301{2305, May 2015.
dc.relation.references[65] J. M. Johnson and Y. Rahmat-Samii, \Genetic algorithms and method of moments (GA/MoM): A novel integration for antenna design," in IEEE Antennas and Propaga- tion Society International Symposium 1997. Digest, vol. 3, pp. 1664{1667 vol.3, July 1997.
dc.relation.references[66] D. S. Linden, \In-situ evolution of a recon gurable antenna," in 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542), vol. 5, pp. 2333{2338 vol.5, March 2001.
dc.relation.references[67] J. S. Herd;, M. Davidovitz;, and H. Steyskal, \Recon gurable microstrip antenna array geometry which utilizes micro-electro-mechanical system (MEMS) switches," March 2001.
dc.relation.references[68] S. Caporal Del Barrio, M. Pelosi, G. F. Pedersen, and A. Morris, \Challenges for frequency-recon gurable antennas in small terminals," in 2012 IEEE Vehicular Tech- nology Conference (VTC Fall), pp. 1{5, Sep. 2012.
dc.relation.references[69] S. J. Mazlouman, A. Mahanfar, C. Menon, and R. G. Vaughan, \A review of mechanically recon gurable antennas using smart material actuators," in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), pp. 1076{1079, April 2011.
dc.relation.references[70] G. Ruvio, M. J. Ammann, and Z. N. Chen, \Wideband recon gurable rolled planar monopole antenna," IEEE Transactions on Antennas and Propagation, vol. 55, pp. 1760{1767, June 2007.
dc.relation.references[71] M. A. Tow q, I. Bahceci, S. Blanch, J. Romeu, L. Jofre, and B. A. Cetiner, \A recon- gurable antenna with beam steering and beamwidth variability for wireless communications," IEEE Transactions on Antennas and Propagation, vol. 66, pp. 5052{5063, Oct 2018.
dc.relation.references[72] J. Lim, G. Back, Y. Ko, C. Song, and T. Yun, \A recon gurable PIFA using a switchable PIN-diode and a ne-tuning varactor for USPCS/WCDMA/m-WiMAX/WLAN," IEEE Transactions on Antennas and Propagation, vol. 58, pp. 2404{2411, July 2010.
dc.relation.references[73] M. T. Ali, N. Ramli, M. K. M. Salleh, and M. N. M. Tan, \A design of recon gurable rectangular microstrip slot patch antennas," in 2011 IEEE International Conference on System Engineering and Technology, pp. 111{115, June 2011.
dc.relation.references[74] R. Harrington, \Reactively controlled directive arrays," IEEE Transactions on Anten- nas and Propagation, vol. 26, pp. 390{395, May 1978.
dc.relation.references[75] R. Dinger, \Reactively steered adaptive array using microstrip patch elements at 4 GHz," IEEE Transactions on Antennas and Propagation, vol. 32, pp. 848{856, August 1984.
dc.relation.references[76] S. Zhang, G. H. Hu , J. Feng, and J. T. Bernhard, \A pattern recon gurable microstrip parasitic array," IEEE Transactions on Antennas and Propagation, vol. 52, pp. 2773{ 2776, Oct 2004.
dc.relation.references[77] M. Jusoh, T. Aboufoul, T. Sabapathy, A. Alomainy, and M. R. Kamarudin, \Patternrecon gurable microstrip patch antenna with multidirectional beam for WiMAX application," IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 860{863, 2014.
dc.relation.references[78] T. Sabapathy, M. Jusoh, R. B. Ahmad, and M. R. Kamarudin, \Wide angle scanning recon gurable beam steering antenna," in 2015 European Microwave Conference (EuMC), pp. 1451{1454, Sep. 2015.
dc.relation.references[79] T. Ohira and K. Iigusa, \Electronically steerable parasitic array radiator antenna," Electronics and Communications in Japan (Part II: Electronics), vol. 87, no. 10, pp. 25{ 45, 2004.
dc.relation.references[80] H. Liu, S. Gao, and T. H. Loh, \Compact MIMO antenna with frequency recon gurability and adaptive radiation patterns," IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 269{272, 2013.
dc.relation.references[81] K. A. Obeidat, B. D. Raines, R. G. Rojas, and B. T. Strojny, \Design of frequency recon gurable antennas using the theory of network characteristic modes," IEEE Transactions on Antennas and Propagation, vol. 58, pp. 3106{3113, Oct 2010.
dc.relation.references[82] F. A. Dicandia, S. Genovesi, and A. Monorchio, \Design guidelines for pattern recon gurable antennas by exploiting the characteristic modes analysis," in 2016 46th European Microwave Conference (EuMC), pp. 441{444, Oct 2016.
dc.relation.references[83] K. Li and Y. Shi, \A pattern recon gurable MIMO antenna design using characteristic modes," IEEE Access, vol. 6, pp. 43526{43534, 2018.
dc.relation.references[84] Z. Mahlaoui, E. Antonino-Daviu, A. Latif, and M. Ferrando-Bataller, \Radiation pattern recon gurable antenna design using characteristic modes," in 12th European Con- ference on Antennas and Propagation (EuCAP 2018), pp. 1{4, April 2018.
dc.relation.references[85] D. Rodrigo, J. Romeu, B. A. Cetiner, and L. Jofre, \Pixel recon gurable antennas: Towards low-complexity full recon guration," in 2016 10th European Conference on Antennas and Propagation (EuCAP), pp. 1{5, April 2016.
dc.relation.references[86] C. Wu, Z. Yang, Y. Li, Y. Zhang, and Y. Yashchyshyn, \Methodology to reduce the number of switches in frequency recon gurable antennas with massive switches," IEEE Access, vol. 6, pp. 12187{12196, 2018.
dc.relation.references[87] J. Costantine, Y. Tawk, C. G. Christodoulou, and C. T. Abdallah, \Reducing complexity and improving the reliability of frequency recon gurable antennas," in Proceedings of the Fourth European Conference on Antennas and Propagation, pp. 1{4, April 2010.
dc.relation.references[88] S. Song and R. D. Murch, \An e cient approach for optimizing frequency recon gurable pixel antennas using genetic algorithms," IEEE Transactions on Antennas and Propagation, vol. 62, pp. 609{620, Feb 2014.
dc.relation.references[89] J. C. Myers, P. Chahal, E. Rothwell, and L. Kempel, \A multilayered metamaterialinspired miniaturized dynamically tunable antenna," IEEE Transactions on Antennas and Propagation, vol. 63, pp. 1546{1553, April 2015.
dc.relation.references[90] C. Onol, B. Karaosmanoglu, and O. Ergul, \E cient and accurate electromagnetic optimizations based on approximate forms of the multilevel fast multipole algorithm," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1113{1115, 2016.
dc.relation.references[91] X. Yuan, Z. Li, D. Rodrigo, H. S. Mopidevi, O. Kaynar, L. Jofre, and B. A. Cetiner, \A parasitic layer-based recon gurable antenna design by multi-objective optimization," IEEE Transactions on Antennas and Propagation, vol. 60, pp. 2690{2701, June 2012.
dc.relation.references[92] B. A. Cetiner, H. Jafarkhani, , , A. Grau, and F. De Flaviis, \Multifunctional recon gurable MEMS integrated antennas for adaptive MIMO systems," IEEE Communications Magazine, vol. 42, pp. 62{70, Dec 2004.
dc.relation.references[93] M. P. Karaboikis, V. C. Papamichael, G. F. Tsachtsiris, C. F. Soras, and V. T. Makios, \Integrating compact printed antennas onto small diversity/MIMO terminals," IEEE Transactions on Antennas and Propagation, vol. 56, pp. 2067{2078, July 2008.
dc.relation.references[94] Y. Xu, Z. Zeng, C. Feng, and H. Huang, \Recon gurable antenna array for IMTadvanced MIMO systems," in 2009 IEEE International Conference on Communica- tions Technology and Applications, pp. 626{628, Oct 2009.
dc.relation.references[95] G. Le Fur, C. Lach, L. Rudant, and C. Delaveaud, \Miniature recon gurable multiantenna system for IMT-advanced band," in 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), pp. 1207{1210, July 2011.
dc.relation.references[96] R. Liu, F. Meng, and K. Feng, \Recon gurable multiband antenna for mobile terminals," in Proceedings of 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, vol. 1, pp. 527{529, July 2011.
dc.relation.references[97] J. Kountouriotis, D. Piazza, P. Mookiah, M. D'Amico, and K. R. Dandekar, \Recon- gurable antennas for MIMO ad-hoc networks," in 2008 IEEE Radio and Wireless Symposium, pp. 563{566, Jan 2008.
dc.relation.references[98] Y. Tawk and C. G. Christodoulou, \A new recon gurable antenna design for cognitive radio," IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 1378{1381, 2009.
dc.relation.references[99] C. G. Christodoulou, \Recon gurable antennas in cognitive radio that can think for themselves?," in 2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, pp. k{1{k{3, Oct 2009.
dc.relation.references[100] N. Gulati, D. Gonzalez, and K. R. Dandekar, \Learning algorithm for recon gurable antenna state selection," in 2012 IEEE Radio and Wireless Symposium, pp. 31{34, Jan 2012.
dc.relation.references[101] J. L. Araque Quijano, S. Arianos, F. Vipiana, G. Dassano, G. Vecchi, and M. Ore - ce, \Design of recon gurable compact antennas for automotive communications," in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), pp. 3675{3677, April 2011.
dc.relation.references[102] S. Arianos, J. L. A. Quijano, F. Vipiana, G. Dassano, G. Vecchi, and M. Ore ce, \Optimization procedures for the design of recon gurable compact multi-band antennas," in 2012 6th European Conference on Antennas and Propagation (EUCAP), pp. 2964{ 2966, March 2012.
dc.relation.references[103] J. L. A. Quijano, Analysis and design of compact recon gurable antennas for mobile terminals. PhD thesis, Politecnico di Torino, 2007.
dc.relation.references[104] J. L. Araque, \AMDS: Advanced metal-dielectric solver." No public release, 2005-2020.
dc.relation.references[105] R. F. Harrington, Field Computation by Moment Methods. Wiley-IEEE Press, 1993.
dc.relation.references[106] W. C. Gibson, The Method of Moments in Electromagnetics. Chapman and Hall/CRC, 2nd ed., 2014.
dc.relation.references[107] S. Rao, D. Wilton, and A. Glisson, \Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, vol. 30, pp. 409{418, May 1982.
dc.relation.references[108] K. A. De Jong, An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, University of Michigan, Ann Arbor, MI, USA, 1975. AAI7609381.
dc.relation.references[109] J. H. Holland, Adaptation in Natural and Arti cial Systems. MIT press, April 1992.
dc.relation.references[110] A. John and R. H. Jansen, \Evolutionary generation of (M)MIC component shapes using 2.5 D EM simulation and discrete genetic optimization," in 1996 IEEE MTT-S International Microwave Symposium Digest, vol. 2, pp. 745{748 vol.2, June 1996.
dc.relation.references[111] E. E. Altshuler and D. S. Linden, \Wire-antenna designs using genetic algorithms," IEEE Antennas and Propagation Magazine, vol. 39, pp. 33{43, April 1997.
dc.relation.references[112] J. M. Johnson and V. Rahmat-Samii, \Genetic algorithms in engineering electromagnetics," IEEE Antennas and Propagation Magazine, vol. 39, pp. 7{21, Aug 1997.
dc.relation.references[113] J. M. Johnson and Y. Rahmat-Samii, \Genetic algorithms and method of moments (GA/MOM) for the design of integrated antennas," IEEE Transactions on Antennas and Propagation, vol. 47, pp. 1606{1614, Oct 1999.
dc.relation.references[114] E. Zitzler, M. Laumanns, and L. Thiele, \SPEA2: Improving the strength pareto evolutionary algorithm.," Technical Report 103, Swiss Federal Institute of Technology (ETH) Zurich, Computer Engineering and Networks Laboratory(TIK), May 2001.
dc.relation.references[115] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, \A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, vol. 6, pp. 182{197, April 2002.
dc.relation.references[116] J. C. Pedro and S. A. Maas, \A comparative overview of microwave and wireless powerampli er behavioral modeling approaches," IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 1150{1163, April 2005.
dc.relation.references[117] M. Golio, L. Dunleavy, and T. Gneiting, \History and state-of-the-art in large signal modeling for RF/microwave power ampli er development," in 2015 IEEE MTT-S International Microwave Symposium, pp. 1{4, May 2015.
dc.relation.references[118] J. Verspecht, D. Schreurs, A. Barel, and B. Nauwelaers, \Black box modelling of hard nonlinear behavior in the frequency domain," in 1996 IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 1735{1738 vol.3, June 1996.
dc.relation.references[119] D. E. Root, J. Verspecht, D. Sharrit, J. Wood, and A. Cognata, \Broad-band poly-harmonic distortion (PHD) behavioral models from fast automated simulations and large-signal vectorial network measurements," IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 3656{3664, Nov 2005.
dc.relation.references[120] J. Verspecht, \Large-signal network analysis," IEEE Microwave Magazine, vol. 6, pp. 82{92, Dec 2005.
dc.relation.references[121] J. Verspecht and D. E. Root, \Polyharmonic distortion modeling," IEEE Microwave Magazine, vol. 7, pp. 44{57, June 2006.
dc.relation.references[122] J. Cai, J. B. King, B. M. Merrick, and T. J. Brazil, \Pad e-approximation-based behavioral modeling," IEEE Transactions on Microwave Theory and Techniques, vol. 61, pp. 4418{4427, Dec 2013.
dc.relation.references[123] J. Cai and T. J. Brazil, \Reduced-complexity polynomial based nonlinear behavioral modeling," IEEE Microwave and Wireless Components Letters, vol. 24, pp. 496{498, July 2014.
dc.relation.references[124] J. Cai, J. King, C. Yu, J. Liu, and L. Sun, \Support vector regression-based behavioral modeling technique for RF power transistors," IEEE Microwave and Wireless Components Letters, vol. 28, pp. 428{430, May 2018.
dc.relation.references[125] J. Xu, R. Jones, S. A. Harris, T. Nielsen, and D. E. Root, \Dynamic FET model - DynaFET - for GaN transistors from NVNA active source injection measurements," in 2014 IEEE MTT-S International Microwave Symposium (IMS2014), pp. 1{3, June 2014.
dc.relation.references[126] R. H. Caverly and G. Hiller, \The frequency-dependent impedance of p-i-n diodes," IEEE Transactions on Microwave Theory and Techniques, vol. 37, pp. 787{790, April 1989.
dc.relation.references[127] R. H. Caverly and G. Hiller, \Distortion in p-i-n diode control circuits," IEEE Transac- tions on Microwave Theory and Techniques, vol. 35, pp. 492{501, May 1987.
dc.relation.references[128] R. H. Caverly and G. Hiller, \The frequency-dependent impedance of p-i-n diodes," IEEE Transactions on Microwave Theory and Techniques, vol. 37, pp. 787{790, April 1989.
dc.relation.references[129] Keysight, \In- xture microstrip device measurements using TRL calibration," application note, Keysight, 2014.
dc.relation.references[130] C. Onol, B. Karaosmanoglu, and O. Ergul, \Antenna switch optimizations using genetic algorithms accelerated with the multilevel fast multipole algorithm," in Antennas and Propagation USNC/URSI National Radio Science Meeting, 2015 IEEE Interna- tional Symposium on, pp. 1338{1339, July 2015.
dc.relation.references[131] S. Shen and R. Murch, \Designing dual-port pixel antenna for ambient rf energy harvesting using genetic algorithm," in Antennas and Propagation USNC/URSI National Radio Science Meeting, 2015 IEEE International Symposium on, pp. 1286{1287, July 2015.
dc.relation.references[132] M. Cabedo-Fabres, E. Antonino-Daviu, A. Valero-Nogueira, and M. Ferrando-Bataller, \The theory of characteristic modes revisited: A contribution to the design of antennas for modern applications," IEEE Antennas and Propagation Magazine, vol. 49, no. 5, pp. 52{68, 2007.
dc.relation.references[133] S. Blanch, J. Romeu, and I. Corbella, \Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, vol. 39, pp. 705{ 707, May 2003.
dc.relation.references[134] R. Harrington and J. Mautz, \Theory of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, vol. 19, pp. 622{628, Sep. 1971.
dc.relation.references[135] R. Harrington and J. Mautz, \Computation of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, vol. 19, pp. 629{639, Sep. 1971.
dc.relation.references[136] E. Antonino-Daviu, M. Cabedo-Fabres, M. Sonkki, N. Mohamed Mohamed-Hicho, and M. Ferrando-Bataller, \Design guidelines for the excitation of characteristic modes in slotted planar structures," IEEE Transactions on Antennas and Propagation, vol. 64, pp. 5020{5029, Dec 2016.
dc.relation.references[137] W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. B. Williams, C. C. Wang, Y. C. Shin, S. Zhang, and P. D. Zavattieri, \The status, challenges, and future of additive manufacturing in engineering," Computer-Aided Design, vol. 69, pp. 65 { 89, 2015.
dc.relation.references[138] S. A. Tofail, E. P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O'Donoghue, and C. Charitidis, \Additive manufacturing: scienti c and technological challenges, market uptake and opportunities," Materials Today, vol. 21, no. 1, pp. 22 { 37, 2018.
dc.relation.references[139] T. DebRoy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang, \Additive manufacturing of metallic components { process, structure and properties," Progress in Materials Science, vol. 92, pp. 112 { 224, 2018.
dc.relation.references[140] F. Castles, D. Isakov, A. Lui, Q. Lei, C. E. J. Dancer, Y.Wang, J. M. Janurudin, S. C. Speller, C. R. M. Grovenor, and P. S. Grant, \Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites," Scienti c Reports, no. march, pp. 1{8, 2016.
dc.relation.references[141] S. Zhang, C. C. Njoku, W. G. Whittow, and J. C. Vardaxoglou, \Novel 3D printed synthetic dielectric substrates," Microwave and Optical Technology Letters, vol. 57, no. 10, pp. 2344{2346, 2015.
dc.relation.references[142] S. Zhang, \3D printed dielectric fresnel lens," in 2016 10th European Conference on Antennas and Propagation (EuCAP), pp. 1{3, April 2016.
dc.relation.references[143] A. Patri and J. Mukherjee, \Fish-eye shaped dielectric at lens design utilizing 3-D printing technology," in 2016 IEEE International Symposium on Antennas and Pro- pagation (APSURSI), pp. 1843{1844, June 2016.
dc.relation.references[144] J. Yi, G.-P. Piau, A. de Lustrac, and S. N. Burokur, \Electromagnetic eld tapering using all-dielectric gradient index materials," Scienti c Reports, no. July, 2016.
dc.relation.references[145] H. Looyenga, \Dielectric constants of heterogeneous mixtures," Physica, vol. 31, no. 3, pp. 401 { 406, 1965.
dc.relation.references[146] B. Biernacki, S. Zhang, and W. Whittow, \3D printed substrates with graded dielectric properties and their application to patch antennas," in 2016 Loughborough Antennas Propagation Conference (LAPC), pp. 1{5, Nov 2016.
dc.relation.references[147] L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Planar-Circuit Methods, ch. 7, pp. 288{322. Wiley-Blackwell, 2005.
dc.relation.references[148] J. Baker-Jarvis, M. D. Janezic, and D. C. Degroot, \High-frequency dielectric measurements," IEEE Instrumentation Measurement Magazine, vol. 13, pp. 24{31, April 2010.
dc.relation.references[149] S. Moscato, R. Bahr, T. Le, M. Pasian, M. Bozzi, L. Perregrini, and M. M. Tentzeris, \In ll-dependent 3-D-printed material based on ninja ex lament for antenna applications," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1506{1509, 2016.
dc.relation.references[150] L. Catarinucci, R. Colella, P. Coppola, and L. Tarricone, \Microwave characterisation of polylactic acid for 3D-printed dielectrically controlled substrates," IET Microwaves, Antennas Propagation, vol. 11, no. 14, pp. 1970{1976, 2017.
dc.relation.references[151] P. I. De enbaugh, R. C. Rumpf, and K. H. Church, \Broadband microwave frequency characterization of 3-D printed materials," IEEE Transactions on Components, Pac- kaging and Manufacturing Technology, vol. 3, pp. 2147{2155, Dec 2013.
dc.relation.references[152] W. B. Weir, \Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proceedings of the IEEE, vol. 62, pp. 33{36, Jan 1974.
dc.relation.references[153] R. B. Keam and W. S. Holmes, \Uncertainty analysis of measurement of complex dielectric permittivity using microstrip transmission line," in Proceedings of 1995 SB- MO/IEEE MTT-S International Microwave and Optoelectronics Conference, vol. 1, pp. 137{142 vol.1, Jul 1995.
dc.relation.references[154] P. Que elec, P. Gelin, J. Gieraltowski, and J. Loaec, \A microstrip device for the broad band simultaneous measurement of complex permeability and permittivity," IEEE Transactions on Magnetics, vol. 30, pp. 224{231, Mar 1994.
dc.relation.references[155] T. Itoh and R. Mittra, \A technique for computing dispersion characteristics of shielded microstrip lines (short papers)," IEEE Transactions on Microwave Theory and Techniques, vol. 22, pp. 896{898, Oct 1974.
dc.relation.references[156] N. K. Das and D. M. Pozar, \A generalized spectral-domain green's function for multilayer dielectric substrates with application to multilayer transmission lines," IEEE Transactions on Microwave Theory and Techniques, vol. 35, pp. 326{335, Mar 1987.
dc.relation.references[157] E. Hammerstad and O. Jensen, \Accurate models for microstrip computer-aided design," in 1980 IEEE MTT-S International Microwave symposium Digest, pp. 407{409, May 1980.
dc.relation.references[158] M. Barbuto, A. Al u, F. Bilotti, A. Toscano, and L. Vegni, \Characteristic impedance of a microstrip line with a dielectric overlay," COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32, no. 6, pp. 1855{1867, 2013.
dc.relation.references[159] M. A. Couker and L. J. Kushner, \A microstrip phase-trim device using a dielectric overlay," IEEE Transactions on Microwave Theory and Techniques, vol. 42, pp. 2023{ 2026, Nov 1994.
dc.relation.references[160] P. Que elec, M. L. Floc'h, and P. Gelin, \Broad-band characterization of magnetic and dielectric thin lms using a microstrip line," IEEE Transactions on Instrumentation and Measurement, vol. 47, pp. 956{963, Aug 1998.
dc.relation.references[161] R. C. Callarotti and A. Gallo, \On the solution of a microstripline with two dielectrics," IEEE Transactions on Microwave Theory and Techniques, vol. 32, pp. 333{339, Apr 1984.
dc.relation.references[162] V. Zachou, C. G. Christodoulou, M. T. Chryssomallis, D. Anagnostou, and S. Barbin, \Planar monopole antenna with attached sleeves," IEEE Antennas and Wireless Propagation Letters, vol. 5, pp. 286{289, 2006.
dc.relation.references[163] S. K. Mishra, R. K. Gupta, A. Vaidya, and J. Mukherjee, \A compact dual-band forkshaped monopole antenna for bluetooth and UWB applications," IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 627{630, 2011.
dc.relation.references[164] S. Nikolaou and M. A. B. Abbasi, \Design and development of a compact UWB monopole antenna with easily-controllable return loss," IEEE Transactions on Antennas and Propagation, vol. 65, pp. 2063{2067, April 2017.
dc.relation.references[165] C. Pan, C. Huang, and T. Horng, \A new printed G-shaped monopole antenna for dual-band WLAN applications," Microwave and Optical Technology Letters, vol. 45, no. 4, pp. 295{297, 2005.
dc.relation.references[166] S. Nikolaou, G. E. Ponchak, M. M. Tentzeris, and J. Papapolymerou, \Compact cactusshaped ultra wide-band (UWB) monopole on organic substrate," in 2007 IEEE An- tennas and Propagation Society International Symposium, pp. 4637{4640, June 2007.
dc.relation.references[167] M. I. M. Ghazali, E. Gutierrez, J. C. Myers, A. Kaur, B. Wright, and P. Chahal, \Affordable 3D printed microwave antennas," in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), pp. 240{246, May 2015.
dc.relation.references[168] M. van der Vorst and J. Gumpinger, \Applicability of 3D printing techniques for compact Ku-band medium/high-gain antennas," in 2016 10th European Conference on Antennas and Propagation (EuCAP), pp. 1{4, April 2016.
dc.relation.references[169] J. Maas, B. Liu, S. Hajela, Y. Huang, X. Gong, and W. J. Chappell, \Laser-based layer-by-layer polymer stereolithography for high-frequency applications," Proceedings of the IEEE, vol. 105, pp. 645{654, April 2017.
dc.relation.references[170] D. O. Rodr guez, M. A. Saavedra, G. A. Ram rez, and J. L. Araque, \Realization of a compact recon gurable antenna for mobile communications," in 2014 IEEE-APS To- pical Conference on Antennas and Propagation in Wireless Communications (APWC), pp. 284{287, Aug 2014.
dc.relation.references[171] I. F. Ituarte, E. Coatanea, M. Salmi, J. Tuomi, and J. Partanen, \Additive manufacturing in production: A study case applying technical requirements," Physics Procedia, vol. 78, pp. 357 { 366, 2015. 15th Nordic Laser Materials Processing Conference, Nolamp 15.
dc.relation.references[172] B. S. Ian Gibson, David Rosen, Additive Manufacturing Technologies. Springer-Verlag New York, 2015.
dc.relation.references[173] M. Attaran, \The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing," Business Horizons, vol. 60, no. 5, pp. 677 { 688, 2017.
dc.relation.references[174] W. E. Frazier, \Metal additive manufacturing: A review," Journal of Materials Engi- neering and Performance, vol. 23, pp. 1917{1928, Jun 2014.
dc.relation.references[175] D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, \Additive manufacturing of metals," Acta Materialia, vol. 117, pp. 371 { 392, 2016.
dc.relation.references[176] E. Atzeni and A. Salmi, \Economics of additive manufacturing for end-usable metal parts," The International Journal of Advanced Manufacturing Technology, vol. 62, pp. 1147{1155, Oct 2012.
dc.relation.references[177] Y. Huang, X. Gong, S. Hajela, and W. J. Chappell, \Layer-by-layer stereolithography of three-dimensional antennas," in 2005 IEEE Antennas and Propagation Society In- ternational Symposium, vol. 1A, pp. 276{279 Vol. 1A, July 2005.
dc.relation.references[178] J. J. Adams, E. B. Duoss, T. F. Malkowski, M. J. Motala, B. Y. Ahn, R. G. Nuzzo, J. T. Bernhard, and J. A. Lewis, \Conformal printing of electrically small antennas on three-dimensional surfaces," Advanced Materials, vol. 23, no. 11, pp. 1335{1340, 2011.
dc.relation.references[179] O. Tech, \Metal 3D printed custom antennas," 2018. [Online; accessed 2018-03-30].
dc.relation.references[180] L. J. Foged, A. Giacomini, R. Morbidini, F. Saccardi, V. Schirosi, M. Boumans, B. Gerg, and D. Melachrinos, \Investigation of additive manufacturing for broadband choked horns at X/Ku band," IEEE Antennas and Wireless Propagation Letters, vol. 17, pp. 2003{2007, Nov 2018.
dc.relation.references[181] H. A. Wheeler, \Fundamental limitations of small antennas," Proceedings of the IRE, vol. 35, pp. 1479{1484, Dec 1947.
dc.relation.references[182] L. J. Chu, \Physical limitations of omni-directional antennas," Journal of Applied Physics, vol. 19, no. 12, pp. 1163{1175, 1948.
dc.relation.references[183] A. D. Yaghjian and H. R. Stuart, \Lower bounds on the Q of electrically small dipole antennas," IEEE Transactions on Antennas and Propagation, vol. 58, pp. 3114{3121, Oct 2010.
dc.relation.references[184] O. S. Kim, \Rapid prototyping of electrically small spherical wire antennas," IEEE Transactions on Antennas and Propagation, vol. 62, pp. 3839{3842, July 2014.
dc.relation.references[185] H. Wong, K. Luk, C. H. Chan, Q. Xue, K. K. So, and H. W. Lai, \Small antennas in wireless communications," Proceedings of the IEEE, vol. 100, pp. 2109{2121, July 2012.
dc.relation.references[186] F. Croq and D. M. Pozar, \Millimeter-wave design of wide-band aperture-coupled stacked microstrip antennas," IEEE Transactions on Antennas and Propagation, vol. 39, pp. 1770{1776, Dec 1991.
dc.relation.references[187] S. D. Targonski, R. B. Waterhouse, and D. M. Pozar, \Design of wide-band aperturestacked patch microstrip antennas," IEEE Transactions on Antennas and Propagation, vol. 46, pp. 1245{1251, Sep. 1998.
dc.relation.references[189] G. A. R. Arroyave and J. L. A. Quijano, \Dual-port recon gurable planar antennas for diversity and duplexing applications," in 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), pp. 1247{1248, June 2016.
dc.relation.references[190] M. . Huynh and W. Stutzman, \Ground plane e ects on planar inverted-f antenna (PIFA) performance," IEE Proceedings - Microwaves, Antennas and Propagation, vol. 150, pp. 209{213, Aug 2003.
dc.relation.references[191] S. R. Best, \The signi cance of ground-plane size and antenna location in establishing the performance of ground-plane-dependent antennas," IEEE Antennas and Propaga- tion Magazine, vol. 51, pp. 29{43, Dec 2009.
dc.relation.references[192] J. Anguera, A. Andujar, M.-C. Huynh, C. Orlenius, C. Picher, and C. Puente, \Advances in antenna technology for wireless handheld devices," International Journal of Antennas and Propagation, vol. 2013, no. 1, pp. 1{25, 2013.
dc.relation.references[193] J. Anguera, C. Picher, A. Bujalance, and A. Andujar, \Ground plane booster antenna technology for smartphones and tablets," Microwave and Optical Technology Letters, vol. 58, no. 6, pp. 1289{1294, 2016.
dc.relation.references[194] H. S. Yoon and S. O. Park, \A dual-band internal antenna of PIFA type for bluetooth/ WLAN in mobile handsets," in 2007 IEEE Antennas and Propagation Society International Symposium, pp. 665{668, June 2007.
dc.relation.references[195] A. A. Serra, P. Nepa, G. Manara, and R. Massini, \A low-pro le linearly polarized 3D PIFA for handheld GPS terminals," IEEE Transactions on Antennas and Propagation, vol. 58, pp. 1060{1066, April 2010.
dc.relation.references[196] R. Khan, A. Abdullah Al-Hadi, P. J. Soh, M. T. Ali, S. S. Al-Bawri, and Owais, \Design and optimization of a dual-band sub-6 GHz four port mobile terminal antenna performance in the vicinity of user's hand," Progress In Electromagnetics Research C, pp. 141{153, 2018.
dc.relation.references[197] N. Nguyen-Trong, A. Piotrowski, and C. Fumeaux, \A frequency-recon gurable dualband low-pro le monopolar antenna," IEEE Transactions on Antennas and Propaga- tion, vol. 65, pp. 3336{3343, July 2017.
dc.relation.references[198] D. Wang, G. Wen, Q. Rao, and M. Pecen, \A 3D compact pent- band antenna for wireless mobile communication," in 2008 IEEE Antennas and Propagation Society International Symposium, pp. 1{4, July 2008.
dc.relation.references[199] G. Li, H. Zhai, T. Li, X. Y. Ma, and C.-H. Liang, \Design of a compact UWB antenna integrated with GSM/WCDMA/WLAN bands," Progress In Electromagnetics Research, vol. 136, pp. 409{419, 2013.
dc.relation.references[200] M. Alibakhshikenari, B. S. Virdee, and E. Limiti, \Triple-band planar dipole antenna for omnidirectional radiation," Microwave and Optical Technology Letters, vol. 60, no. 4, pp. 1048{1051, 2018.
dc.relation.references[201] M. Alibakhshikenari, B. S. Virdee, A. Ali, and E. Limiti, \Miniaturised planar-patch antenna based on metamaterial L-shaped unit-cells for broadband portable microwave devices and multiband wireless communication systems," IET Microwaves, Antennas Propagation, vol. 12, no. 7, pp. 1080{1086, 2018.
dc.relation.references[202] M. Alibakhshikenari, E. Limiti, M. Naser-Moghadasi, B. S. Virdee, and R. Sadeghzadeh, \A new wideband planar antenna with band-notch functionality at GPS, bluetooth and wi bands for integration in portable wireless systems," AEU - International Journal of Electronics and Communications, vol. 72, pp. 79 { 85, 2017.
dc.relation.references[203] P. Sravani and M. Rao, \Design of 3D antennas for 24 GHz ISM band applications," in 2015 28th International Conference on VLSI Design, pp. 470{474, Jan 2015.
dc.relation.references[204] L. G. Men endez, O. S. Kim, F. Persson, M. Nielsen, and O. Breinbjerg, \3D printed 20/30-GHz dual-band o set stepped-re ector antenna," in 2015 9th European Confe- rence on Antennas and Propagation (EuCAP), pp. 1{2, April 2015.
dc.relation.references[205] V. Gjokaj, P. Chahal, J. Papapolymerou, and J. D. Albrecht, \A novel 3D printed vivaldi antenna utilizing a substrate integrated waveguide transition," in 2017 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, pp. 1253{1254, July 2017.
dc.relation.references[206] L. Jofre, B. A. Cetiner, and F. D. Flaviis, \Miniature multi-element antenna for wireless communications," IEEE Transactions on Antennas and Propagation, vol. 50, pp. 658{ 669, May 2002.
dc.relation.references[207] R. Harrington, \On the gain and beamwidth of directional antennas," IRE Transac- tions on Antennas and Propagation, vol. 6, pp. 219{225, July 1958.
dc.relation.references[208] G. A. Ram rez Arroyave and J. L. Araque Quijano, \Broadband characterization of 3d printed samples with graded permittivity," in 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 584{588, Sep. 2018.
dc.relation.references[209] G. A. R. Arroyave and J. L. A. Quijano, \Evaluation of additive manufacturing processes for 3-D multiband antennas," in 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 589{592, Sept 2018.
dc.relation.references[210] Z. Li, D. Rodrigo, L. Jofre, and B. A. Cetiner, \A new class of antenna array with a recon gurable element factor," IEEE Transactions on Antennas and Propagation, vol. 61, pp. 1947{1955, April 2013.
dc.relation.references[211] D. Rodrigo, Y. Damgaci, M. Unlu, B. A. Cetiner, J. Romeu, and L. Jofre, \Antenna recon gurability based on a novel parasitic pixel layer," in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), pp. 3497{3500, April 2011.
dc.relation.references[212] R. K. Mongia, I. J. Bahl, P. Bhartia, and J. Hong, RF and Microwave Coupled-Line Circuits, Second Edition. Artech House, 2007.
dc.relation.references[213] R. Mehmood and J. W. Wallace, \Diminishing returns with increasing complexity in recon gurable aperture antennas," IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 299{302, 2010.
dc.relation.references[214] J. Perruisseau-Carrier, F. Bongard, R. Golubovic-Niciforovic, R. Torres-Sanchez, and J. R. Mosig, \Contributions to the modeling and design of recon gurable re ecting cells embedding discrete control elements," IEEE Transactions on Microwave Theory and Techniques, vol. 58, pp. 1621{1628, June 2010.
dc.relation.references[215] E. Gatard, R. Sommet, P. Bouysse, and R. Quere, \An improved physics-based formulation of the microwave p-i-n diode impedance," IEEE Microwave and Wireless Components Letters, vol. 17, pp. 211{213, March 2007.
dc.relation.references[216] R. H. Caverly and N. Quinn, \A spice model for simulating the impedance-frequency characteristics of high frequency pin switching diodes," in 1999 IEEE International Symposium on Circuits and Systems (ISCAS), vol. 6, pp. 282{285 vol.6, 1999.
dc.relation.references[217] R. H. Caverly, N. V. Drozdovski, L. M. Drozdovskaia, and M. J. Quinn, \Spice modeling of microwave and rf control diodes," in Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144), vol. 1, pp. 28{31 vol.1, 2000.
dc.relation.references[218] M. A. Tow q, A. Khalat, S. Blanch, J. Romeu, L. Jofre, and B. A. Cetiner, \Error vector magnitude, intermodulation, and radiation characteristics of a bandwidth- and pattern-recon gurable antenna," IEEE Antennas and Wireless Propagation Letters, vol. 18, pp. 1956{1960, Oct 2019.
dc.relation.references[219] G. A. Ram rez, J. L. Araque, C. Ballesteros, S. Blanch, J. Romeu, B. Cetiner, and L. Jofre, \Study of interconnecting switch currents in recon gurable parasitic layer antennas," in 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, pp. 313{314, July 2019.
dc.relation.references[220] D. E. Root, J. Verspecht, J. Horn, and M. Marcu, X-Parameters. Characterization, Modeling, and Design of Nonlinear RF and Microwave Components. Cambridge University Press, 2013.
dc.relation.references[221] I. Uchendu and J. R. Kelly, \"survey of beam steering techniques available for millimeter wave applications"," Progress In Electromagnetics Research B, vol. 68, pp. 35{54, 2016.
dc.relation.references[222] 3GPP TS 38.104 V15.5.0, \Base station (BS) radio transmission and reception (release 15)," technical speci cation, 3rd Generation Partnership Project, March 2019.
dc.relation.references[223] Z. Li, E. Ahmed, A. M. Eltawil, and B. A. Cetiner, \A beam-steering recon gurable antenna for wlan applications," IEEE Transactions on Antennas and Propagation, vol. 63, pp. 24{32, Jan 2015.
dc.relation.references[224] D. Rodrigo, B. A. Cetiner, and L. Jofre, \Frequency, radiation pattern and polarization recon gurable antenna using a parasitic pixel layer," IEEE Transactions on Antennas and Propagation, vol. 62, pp. 3422{3427, June 2014.
dc.relation.references[225] G. H. Brown and O. M. Woodward, \Experimentally determined radiation characteristics of conical and triangular antennas," RCA Review, vol. 13, no. 4, pp. 425{452, 1952.
dc.relation.references[226] Shi-Chang Gao, Le-Wei Li, Mook-Seng Leong, and Tat-Soon Yeo, \Dual-polarized slotcoupled planar antenna with wide bandwidth," IEEE Transactions on Antennas and Propagation, vol. 51, pp. 441{448, March 2003.
dc.relation.references[227] S. Gao, L. W. Li, M. S. Leong, and T. S. Yeo, \A broad-band dual-polarized microstrip patch antenna with aperture coupling," IEEE Transactions on Antennas and Propagation, vol. 51, pp. 898{900, April 2003.
dc.relation.references[229] I. Zhou, G. A. Ram rez, L. Montero, S. Blanch, J. Romeu, and L. Jofre, \Threedimensional beamsteering low-complexity recon gurable multilevel antenna," IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 6, pp. 1017{1021, 2020.
dc.relation.references[230] Z. Li, I. Bahceci, and B. A. Cetiner, \Broadband beam-steering recon gurable antenna," Microwave and Optical Technology Letters, vol. 59, no. 1, pp. 63{65, 2017.
dc.relation.references[231] W. Deng, X. Yang, C. Shen, J. Zhao, and B. Wang, \A dual-polarized pattern recon- gurable yagi patch antenna for microbase stations," IEEE Transactions on Antennas and Propagation, vol. 65, pp. 5095{5102, Oct 2017.
dc.relation.references[232] Guo-Lin Li, X. Yang, and Cong-Song Shen, \A dual-polarized patch antenna with pattern recon gurable characteristics," in 2014 IEEE International Conference on Com- muniction Problem-solving, pp. 194{196, Dec 2014.
dc.relation.references[233] W. Roh, J. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, \Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results," IEEE Communications Magazine, vol. 52, pp. 106{113, February 2014.
dc.relation.references[234] I. Ahmed, H. Khammari, A. Shahid, A. Musa, K. S. Kim, E. De Poorter, and I. Moerman, \A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives," IEEE Communications Surveys Tutorials, vol. 20, pp. 3060{3097, Fourthquarter 2018.
dc.relation.references[235] Y. P. Zhang and D. Liu, \Antenna-on-chip and antenna-in-package solutions to highly integrated millimeter-wave devices for wireless communications," IEEE Transactions on Antennas and Propagation, vol. 57, pp. 2830{2841, Oct 2009.
dc.relation.references[236] F. Foglia Manzillo, M. Ettorre, M. S. Lahti, K. T. Kautio, D. Lelaidier, E. Seguenot, and R. Sauleau, \A multilayer LTCC solution for integrating 5G access point antenna modules," IEEE Transactions on Microwave Theory and Techniques, vol. 64, pp. 2272{ 2283, July 2016.
dc.relation.references[237] W. Zhai, M. Repeta, D. Wessel, and W. Tong, \mm-Wave large-scale phased array based on randomly tiled rectangular sub-arrays for 5G communications," in 2017 IEEE MTT-S International Microwave Symposium (IMS), pp. 1895{1898, June 2017.
dc.relation.references[238] Wenyao Zhai, V. Miraftab, M. Repeta, D. Wessel, and Wen Tong, \Dual-band millimeter-wave interleaved antenna array exploiting low-cost PCB technology for high speed 5G communication," in 2016 IEEE MTT-S International Microwave Symposium (IMS), pp. 1{4, May 2016.
dc.relation.references[239] M. A. Al-Tari , M. S. Sharawi, and A. Shamim, \Massive MIMO antenna system for 5G base stations with directive ports and switched beamsteering capabilities," IET Microwaves, Antennas Propagation, vol. 12, no. 10, pp. 1709{1718, 2018.
dc.relation.references[240] C. Mao, S. Gao, and Y. Wang, \Broadband high-gain beam-scanning antenna array for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, vol. 65, pp. 4864{4868, Sep. 2017.
dc.relation.references[241] S. Mumtaz, J. Rodriguez, and L. Dai, \Chapter 1 - introduction to mmWave massive MIMO," in mmWave Massive MIMO (S. Mumtaz, J. Rodriguez, and L. Dai, eds.), pp. 1 { 18, Academic Press, 2017.
dc.relation.references[242] A. Khalat, M. A. Tow q, B. A. Cetiner, O. Ceylan, and N. Biyikli, \A 60 GHz beamsteering recon gurable antenna," in 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), pp. 1279{1280, June 2016.
dc.relation.references[243] D. M. Pozar, \Microstrip antenna aperture-coupled to a microstripline," Electronics Letters, vol. 21, pp. 49{50, January 1985.
dc.relation.references[244] S. Mestdagh, , and G. A. E. Vandenbosch, \CPW-fed stacked microstrip antennas," IEEE Transactions on Antennas and Propagation, vol. 52, pp. 74{83, Jan 2004.
dc.relation.references[245] P. Hannan, \The element-gain paradox for a phased-array antenna," IEEE Transac- tions on Antennas and Propagation, vol. 12, pp. 423{433, July 1964.
dc.relation.references[246] J. Mitola, \Cognitive radio architecture evolution," Proceedings of the IEEE, vol. 97, pp. 626{641, April 2009.
dc.relation.references[247] T. Yucek and H. Arslan, \A survey of spectrum sensing algorithms for cognitive radio applications," IEEE Communications Surveys Tutorials, vol. 11, pp. 116{130, First 2009.
dc.relation.references[248] E. Axell, G. Leus, E. G. Larsson, and H. V. Poor, \Spectrum sensing for cognitive radio : State-of-the-art and recent advances," IEEE Signal Processing Magazine, vol. 29, pp. 101{116, May 2012.
dc.relation.references[249] A. Ali and W. Hamouda, \Advances on spectrum sensing for cognitive radio networks: Theory and applications," IEEE Communications Surveys Tutorials, vol. 19, pp. 1277{ 1304, Secondquarter 2017.
dc.relation.references[250] D. Cabric, A. Tkachenko, and R. W. Brodersen, \Experimental study of spectrum sensing based on energy detection and network cooperation," in Proceedings of the First International Workshop on Technology and Policy for Accessing Spectrum, TAPAS '06, (New York, NY, USA), ACM, 2006.
dc.relation.references[251] H. Arslan, Cognitive radio, software de ned radio, and adaptive wireless systems, vol. 10. Springer, 2007.
dc.relation.references[252] H. J. Saman Atapattu, Chintha Tellambura, Energy Detection for Spectrum Sensing in Cognitive Radio. Springer-Verlag New York, 2014.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalComunicaciones móviles
dc.subject.proposalMobile communication
dc.subject.proposalAntennas
dc.subject.proposalAntennas
dc.subject.proposalAntennas para móviles
dc.subject.proposalMobile antennas
dc.subject.proposalAntennas reconfigurables
dc.subject.proposalReconfigurable antennas
dc.subject.proposalAlgoritmos genéticos
dc.subject.proposalGenetic algorithms
dc.subject.proposalMIMO communication
dc.subject.proposalComunicaciones MIMO
dc.subject.proposalThree-dimensional printing
dc.subject.proposalImpresión Tri-dimensional
dc.subject.proposalAntenas 3D
dc.subject.proposal3D antennas
dc.subject.proposalMicrowave technology
dc.subject.proposalTecnología de microondas
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito