Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRojas, Néstor Yesid
dc.contributor.authorBurbano Ardila, Kelly Johana
dc.date.accessioned2020-10-08T21:26:39Z
dc.date.available2020-10-08T21:26:39Z
dc.date.issued2017-08-02
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78532
dc.description.abstractEl material particulado es el contaminante que más afecta la calidad del aire en las ciudades colombianas, debido a que es el contaminante que más frecuentemente excede las normas establecidas para proteger la salud de la población. Algunas investigaciones han determinado la contribución de diversas fuentes al PM10 en algunos puntos de la ciudad de Bogotá. Sin embargo, no se conocen estudios locales de especiación química para la determinación de la contribución de fuentes en diversos tamaños de partícula de manera simultánea. El propósito del presente trabajo es hacer esta determinación. Se utilizó un impactador de cascada Andersen de ocho etapas en un punto de la ciudad en dos periodos comprendidos entre marzo hasta junio y el otro periodo entre noviembre y diciembre del año 2018, con el fin de obtener la distribución de tamaño del material particulado y captar masa suficiente para determinar su composición química en diferentes intervalos de tamaño. Posteriormente, se estimó la contribución de diversas fuentes al material particulado en dichos intervalos de tamaño. Para la caracterización química fueron cuantificados OC, EC y algunos iones solubles en agua: Cl-, NO3-, SO42-, C2O42-, NO2-, Br-, F-, CHOO-, MSA-, PO43-, Na+, NH4+, K+, Mg+2, Ca2+. La distribución del tamaño de la masa de partículas fue bimodal, con un modo grueso entre 5.1± 1.4µm de diámetro aerodinámico y un modo de acumulación entre 0.9± 2.7µm. Aproximadamente, el 60% de la masa de las partículas finas (PM2.1) consiste en especies carbonáceas, siendo el EC el principal constituyente. La mayor parte de las especies medidas tienen una distribución bimodal, con un pico prominente en el modo grueso, excepto el nitrato, nitrito, metanosulfonato y el amonio, que presentaron un modo dominante de acumulación. Los iones bromuro y fluoruro se presentaron en concentraciones no detectables. En general el anión predominante fue el sulfato para todas las etapas. Para los cationes fueron el calcio y el sodio. Las principales fuentes de la zona para la fracción gruesa son el polvo o abrasión mecánica > combustión de carbón. En el caso del modo acumulación y PM2.5 las principales fuentes son: combustión de carbón > emisiones vehiculares a diésel > combustión de biomasa > emisiones vehiculares a gasolina.
dc.description.abstractParticulate matter is the most harmful pollutant to air quality in Colombian cities since it is the one that most frequently exceeds the limit values established to protect the health of population. Some research studies have determined the contribution of various sources to PM10 and PM2.5 in some parts of the city. However, there have been no local chemical speciation studies for the determination of the contribution of sources in various particle sizes simultaneously. This work aims to better understand the distribution of ambient aerosols in Bogota by characterizing particles in several size fractions. Particulate matter samples were collected using an eight-stage cascade impactor in two sampling periods in the year 2018. The size distribution of the particulate material was obtained, and enough mass was collected to determine its chemical composition in different size ranges. Subsequently, the contribution of various sources to the particulate matter in these size ranges was estimated. The chemical composition was quantified OC, EC and ions (Cl-, NO3-, SO42-, C2O42-, NO2-, Br-, F-, CHOO-, MSA-, PO43-, Na+, NH4+, K+, Mg+2, Ca2+). The mean mass size distribution was bimodal, with the coarse mode at 5.1± 1.4µm and the accumulation mode at 0.9± 2.7µm and its largest fraction was in the coarse mode >2.1 μm (52% of total particle mass). Most of the mass (60%) of fine particles (PM2.1) consists of carbonaceous species, with EC being the main constituent. Most species measured have a bimodal distribution, with a prominent peak in the coarse mode, except for nitrate, nitrite, methanesulphonate and ammonium, which showed a dominant accumulation mode. Bromide and fluoride ions were present in undetectable concentrations. The main source in the area for the coarse fraction is dust or mechanical abrasion. In the case of the fine fraction they are associated with a primary origin, specifically fresh and local vehicle sources that use diesel fuel and gasoline, coal burning, and biomass combustion.
dc.description.sponsorshipUniversidad Nacional de Colombia
dc.format.extent197
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc660 - Ingeniería química
dc.titleEvaluación del aporte de fuentes al material particulado en la zona urbana de la localidad de Fontibón, Bogotá teniendo en cuenta la caracterización química en diferentes distribuciones de tamaño
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectDeterminación de las fuentes de emisión de material particulado a partir de la caracterización química y distribución de tamaño
dc.description.additionalLínea de Investigación: Calidad del Aire
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental
dc.contributor.researchgroupCalidad del Aire
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAgency for Toxic Substances and Disease Registry. (2012). Standards and regulations for polycyclic aromatic hydrocarbons (PAH). Retrieved from https://www.atsdr.cdc.gov/csem/csem.%0Aasp?csem=13&po=8
dc.relation.referencesAguiar Gil, D., Gómez Peláez, L. M., Álvarez Jaramillo, T., Correa Ohoa, M. A., & Saldarriaga Molina, J. C. (2020). Evaluating the impact of PM2.5 atmospheric pollution on population mortality in an urbanized valley in the American tropics. Atmospheric Environment, 117343. https://doi.org/10.1016/j.atmosenv.2020.117343
dc.relation.referencesAlvarado, G. M. (2006). Estimación del aporte de diferentes fuentes a la contaminación atmosférica por partículas en Santiago, mediante un modelo de balance de masas de elementos químicos. Universidad de Chile.
dc.relation.referencesAlves, C. A., Oliveira, C., Martins, N., Mirante, F., Caseiro, A., Pio, C., … Camões, F. (2016). Road tunnel, roadside, and urban background measurements of aliphatic compounds in size-segregated particulate matter. Atmospheric Research, 168, 139–148. https://doi.org/10.1016/j.atmosres.2015.09.007
dc.relation.referencesAnlauf, K., Li, S.-M., Leaitch, R., Brook, J., Hayden, K., Toom-Sauntry, D., & Wiebe, A. (2006). Ionic composition and size characteristics of particles in the Lower Fraser Valley: Pacific 2001 field study. Atmospheric Environment, 40(15), 2662–2675. https://doi.org/https://doi.org/10.1016/j.atmosenv.2005.12.027
dc.relation.referencesBaklanov, A., Molina, L. T., & Gauss, M. (2016). Megacities, air quality and climate. Atmospheric Environment, 126, 235–249. https://doi.org/10.1016/j.atmosenv.2015.11.059
dc.relation.referencesBelis, C. A., Larsen, B. R., Amato, F., El Haddad, I., Favez, O., Harrison, R. M., … Viana, M. (2014). European guide on air pollution source apportionment with receptor models. https://doi.org/10.2788/9307
dc.relation.referencesBell, M. L., Cifuentes, L. A., Davis, D. L., Cushing, E., Gusman Telles, A., & Gouveia, N. (2011). Environmental health indicators and a case study of air pollution in latin american cities. Environmental Resarch, 111, 57–66.
dc.relation.referencesBourotte, C., Forti, M. C., Taniguchi, S., Bícego, M. C., & Lotufo, P. A. (2005). A wintertime study of PAHs in fine and coarse aerosols in São Paulo city, Brazil. Atmospheric Environment, 39(21), 3799–3811. https://doi.org/10.1016/j.atmosenv.2005.02.054
dc.relation.referencesByambaa, B., Yang, L., Matsuki, A., Nagato, E. G., Gankhuyag, K., Chuluunpurev, B., & Banzragch, L. (2019). Sources and Characteristics of Polycyclic Aromatic Hydrocarbons in Ambient Total Suspended Particles in Ulaanbaatar City , Mongolia. Environmental Research and Public Health, 16. https://doi.org/10.3390/ijerph16030442
dc.relation.referencesCao, J. J., Lee, S. C., Ho, K. F., Fung, K., Chow, J. C., & Watson, J. G. (2006). Characterization of Roadside Fine Particulate Carbon and its Eight Fractions in Hong Kong. Aerosol and Air Quality Research, 6(2),
dc.relation.referencesCastañeda, D., & Mendez, J. (2018). Estimación De La Relación Entre Material Particulado Pm10 Atmosférico Y El Susceptible De Resuspensión En Algunas Vías De Bogotá. (Universidad de la Salle). Retrieved from https://pdfs.semanticscholar.org/782b/c6d17926deba7e0c70c94c2ee879abcfbe5a.pdf
dc.relation.referencesCastro, L. M., Pio, C. A., Harrison, R. M., & Smith, D. J. T. (1999). Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations. Atmospheric Environment, 33(17), 2771–2781. https://doi.org/10.1016/S1352-2310(98)00331-8
dc.relation.referencesCheng, S., Lang, J., Zhou, Y., Wang, G., & Chen, D. (2013). A new monitoring-simulation-source apportionment approach for investigating the vehicular emission contribution to the PM2.5 pollution in Beijing, China. Atmospheric Environment, 79, 308–316. https://doi.org/https://doi.org/10.1016/j.atmosenv.2013.06.043
dc.relation.referencesCheng, Z., Luo, L., Wang, S., Wang, Y., Sharma, S., Shimadera, H., … Hao, J. (2016). Status and characteristics of ambient PM2.5 pollution in global megacities. Environment International, 89–90, 212–221.
dc.relation.referencesChiang, H. L., & Lin, Y. H. (2005). Mass-size distributions of particulate sulfate, nitrate, and ammonium in a particulate matter nonattainment region in southern Taiwan. Journal of the Air and Waste Management Association, 55(4), 502–509. https://doi.org/10.1080/10473289.2005.10464640
dc.relation.referencesChow, J.C., Watson, J. G., Lu, Z., Lowenthal, D. H., Frazier, C. A., Solomon, P. A., … and Magliano, K. (1996). Descriptive Analysis of PM2.5 and PM10 at Regionally representative locations during SJVAQS/AUSPEX. Atmospheric Environment, 30(2079–2112).
dc.relation.referencesChow, Judith C., Lowenthal, D. H., Chen, L. W. A., Wang, X., & Watson, J. G. (2015). Mass reconstruction methods for PM2.5: a review. Air Quality, Atmosphere and Health, 8(3), 243–263. https://doi.org/10.1007/s11869-015-0338-3
dc.relation.referencesChow, Judith C, Watson, J. G., Frank, N., & Homolya, J. (1998). Guideline on speciated particulate monitoring. Desert Research Institute, (August), 291. Retrieved from epa.gov/ttnamti1/files/ambient/pm25/spec/drispec.pdf
dc.relation.referencesCortés, J., Cobo, M., González, C. M., Gómez, C. D., Abalos, M., & Aristizábal, B. H. (2016). Environmental variation of PCDD/Fs and dl-PCBs in two tropical Andean Colombian cities using passive samplers. Science of the Total Environment, 568, 614–623. https://doi.org/10.1016/j.scitotenv.2016.02.094
dc.relation.referencesCrilley, L. R., Lucarelli, F., Bloss, W. J., Harrison, R. M., Beddows, D. C., Calzolai, G., … Vecchi, R. (2017). Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign. Environmental Pollution, 220, 766–778. https://doi.org/10.1016/j.envpol.2016.06.002
dc.relation.referencesCuellar, Y., Buitrago-Tello, R., & Belalcazar-Ceron, L. C. (2016). Life cycle emissions from a bus rapid transit system and comparison with other modes of passenger transportation. Ciencia, Tecnología y Futuro., 6(3), 123–134.
dc.relation.referencesDao, X., Wang, Z., Lv, Y., Teng, E., Zhang, L., & Wang, C. (2014). Chemical characteristics of water-soluble ions in particulate matter in three metropolitan areas in the North China Plain. PLoS ONE, 9(12), 1–16. https://doi.org/10.1371/journal.pone.0113831
dc.relation.referencesDeng, Q., Ou, C., Chen, J., & Xiang, Y. (2018). Particle deposition in tracheobronchial airways of an infant, child and adult. Science of the Total Environment, 612, 339–346. https://doi.org/10.1016/j.scitotenv.2017.08.240
dc.relation.referencesDepartamento Nacional de Planeación. (2018). Calidad del aire una prioridad de politica pública en Colombia. Retrieved from https://colaboracion.dnp.gov.co/CDT/Prensa/Presentación Calidad del Aire 15_02_2018.pdf
dc.relation.referencesDeshmukh, D. K., Deb, M. K., Tsai, Y. I., & Mkoma, S. L. (2010). Atmospheric ionic species in PM2.5 and PM1 aerosols in the ambient air of eastern central India. Journal of Atmospheric Chemistry, 66(1–2), 81–100. https://doi.org/10.1007/s10874-011-9194-1
dc.relation.referencesDeshmukh, D. K., Kawamura, K., & Deb, M. K. (2016). Dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, WSOC, OC, EC, and inorganic ions in wintertime size-segregated aerosols from central India: Sources and formation processes. Chemosphere, 161, 27–42. https://doi.org/10.1016/j.chemosphere.2016.06.107
dc.relation.referencesDeutsch, F., Vankerkom, J., Janssen, L., Lefebre, F., Mensink, C., Fierens, F., … Roekens, E. (2008). Extension of the EUROS integrated air quality model to fine particulate matter by coupling to CACM/MADRID 2. Environmental Modeling and Assessment, 13(3), 431–437. https://doi.org/10.1007/s10666-007-9100-z
dc.relation.referencesDing, L., Chan, T. W., Ke, F., & Wang, D. K. W. (2014). Characterization of chemical composition and concentration of fine particulate matter during a transit strike in Ottawa, Canada. Atmospheric Environment, 89, 433–442. https://doi.org/10.1016/j.atmosenv.2014.02.013
dc.relation.referencesDing, X. X., Kong, L. D., Du, C. T., Zhanzakova, A., Fu, H. B., Tang, X. F., … Cheng, T. T.(2017). Characteristics of size-resolved atmospheric inorganic and carbonaceous aerosols in urban Shanghai. Atmospheric Environment, 167, 625–641. https://doi.org/10.1016/j.atmosenv.2017.08.043
dc.relation.referencesElmes, M., & Gasparon, M. (2017). Sampling and single particle analysis for the chemical characterisation of fine atmospheric particulates: A review. Journal of Environmental Management, 202, 137–150. https://doi.org/10.1016/j.jenvman.2017.06.067
dc.relation.referencesEngel-cox, J., Thi, N., Oanh, K., Donkelaar, A. Van, Martin, R. V, & Zell, E. (2013). Toward the next generation of air quality monitoring : Particulate Matter. Atmospheric Environment, 80, 584–590. https://doi.org/http://dx.doi.org/10.1016/j.atmosenv.2013.08.016
dc.relation.referencesFlynn, S. J., Tong, Z. B., Yang, R. Y., Kamiya, H., Yu, A. B., & Chan, H. K. (2015). Computational fluid dynamics (CFD) investigation of the gas-solid flow and performance of Andersen cascade impactor. Powder Technology, 285, 128–137. https://doi.org/10.1016/j.powtec.2015.03.039
dc.relation.referencesFomba, K. W., Müller, K., Van Pinxteren, D., Poulain, L., Van Pinxteren, M., & Herrmann, H. (2014). Long-term chemical characterization of tropical and marine aerosols at the Cape Verde Atmospheric Observatory (CVAO) from 2007 to 2011. Atmospheric Chemistry and Physics, 14(17), 8883–8904. https://doi.org/10.5194/acp-14-8883-2014
dc.relation.referencesFomba, Khanneh Wadinga, van Pinxteren, D., Müller, K., Spindler, G., & Herrmann, H. (2018). Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig. Atmospheric Environment, 176(December 2017), 60–70. https://doi.org/10.1016/j.atmosenv.2017.12.024
dc.relation.referencesFranco, J. F., Gidhagen, L., Morales, R., & Behrentz, E. (2019). Towards a better understanding of urban air quality management capabilities in Latin America. 102(April), 43–53.
dc.relation.referencesGao, Y., Lee, S. C., Huang, Y., Chow, J. C., & Watson, J. G. (2016). Chemical characterization and source apportionment of size-resolved particles in Hong Kong sub-urban area. Atmospheric Research, 170, 112–122. https://doi.org/10.1016/j.atmosres.2015.11.015
dc.relation.referencesGarcía-Avila, P., & Rojas, N. Y. (2016). Análisis del origen de PM 10 y PM 2.5 en Bogotá usando gráficos polares. Mutis. Editorial UTADEO, 6(2), 47–58. https://doi.org/10.21789/22561498.1150
dc.relation.referencesGarcía Lozada, H. M. (2009). EVALUACIÓN DEL RIESGO POR EMISIONES DE PARTÍCULAS EN FUENTES ESTACIONARIAS DE COMBUSTIÓN. ESTUDIO DE CASO: BOGOTÁ: 2006. Ingeniería e Investigación, 29, 153–154. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-56092009000300028&lng=en&tlng=es.
dc.relation.referencesGarcia Villgas, N., & Parra Garcés, D. M. (2017). ANÁLISIS PRELIMINAR DE LA CARACTERIZACIÓN Y CONTRIBUCIÓN DE FUENTES DE MATERIAL PARTICULADO -PM10 EN EL AIRE AMBIENTE DE BOGOTÁ. Mutis.
dc.relation.referencesGenga, A., Ielpo, P., Siciliano, T., & Siciliano, M. (2017). Carbonaceous particles and aerosol mass closure in PM2.5 collected in a port city. Atmospheric Research, 183, 245–254. https://doi.org/10.1016/j.atmosres.2016.08.022
dc.relation.referencesGolly, B., Waked, A., Weber, S., Samake, A., Jacob, V., Conil, S., … Jaffrezo, J. L. (2018). Organic markers and OC source apportionment for seasonal variations of PM2.5 at 5 rural sites in France. Atmospheric Environment, 198, 142–157. https://doi.org/10.1016/j.atmosenv.2018.10.027
dc.relation.referencesGuerrero, F., Alvarez-Ospina, H., Retama, A., López-Medina, A., Castro, T., & Salcedo, D. (2017). Seasonal changes in the PM 1 chemical composition north of Mexico City. Atmosfera, 30(3), 243–258. https://doi.org/10.20937/ATM.2017.30.03.05
dc.relation.referencesHan, Y. M., Chen, L. W. A., Huang, R. J., Chow, J. C., Watson, J. G., Ni, H. Y., … Cao, J. J. (2016). Carbonaceous aerosols in megacity Xi’an, China: Implications of thermal/optical protocols comparison. Atmospheric Environment, 132, 58–68. https://doi.org/10.1016/j.atmosenv.2016.02.023
dc.relation.referencesHarrison, R. M., Smith, D. J. T., & Luhana, L. (1996). Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in. Environmental Science & Technology, 30(3), 825–832. https://doi.org/10.1021/es950252d
dc.relation.referencesHassanien, M. A., & Abdel-Latif, N. M. (2008). Polycyclic aromatic hydrocarbons in road dust over Greater Cairo, Egypt. Journal of Hazardous Materials, 151(1), 247–254. https://doi.org/10.1016/j.jhazmat.2007.05.079
dc.relation.referencesHernandez, L. A., & Jimenez, R. (2016). Caracterización de la Contaminación por Material Particulado en Bogotá mediante Fotometría Solar (Universidad Nacional de Colombia.Sede Bogotá). Retrieved from http://www.bdigital.unal.edu.co/56063/1/80164122.2017.pdf
dc.relation.referencesHerner, J. D., Ying, Q., Aw, J., Gao, O., Chang, D. P. Y., & Kleeman, M. J. (2006). Dominant Mechanisms that Shape the Airborne Particle Size and Composition Distribution in Central California. Aerosol Science and Technology, 40(10), 827–844. https://doi.org/https://doi.org/10.1080/02786820600728668
dc.relation.referencesHuang, X.-F., & Yu, J. Z. (2008). Size distributions of elemental carbon in a coastal urban atmosphere in South China: characteristics, evolution processes, and implications for the mixing state. Atmospheric Chemistry and Physics Discussions, 7(4), 10743–10766. https://doi.org/10.5194/acpd-7-10743-2007
dc.relation.referencesHuang, X., Yu, J. Z., He, L., & Yuan, Z. (2006). Water-soluble organic carbon and oxalate in aerosols at a coastal urban site in China : Size distribution characteristics , sources , and formation mechanisms. Geophysical Research, 111, 1–11. https://doi.org/10.1029/2006JD007408
dc.relation.referencesIPCC. (2014). Climate change 2014. Synthesis report. Versión inglés. In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental
dc.relation.referencesIQAir. (2018). 2018 World Air Quality Report PM2.5 Ranking. 22.
dc.relation.referencesJacobson, M. Z. (2001). Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409(6821), 695–697. https://doi.org/10.1038/35055518
dc.relation.referencesJaved, W., Wexler, A. S., Murtaza, G., Ahmad, H. R., & Basra, S. M. A. (2015). Spatial, temporal and size distribution of particulate matter and its chemical constituents in Faisalabad, Pakistan. Atmosfera. https://doi.org/10.20937/ATM.2015.28.02.03
dc.relation.referencesJia, S., Zhang, Q., Sarkar, S., Mao, J., Hang, J., Chen, W., … Zhou, S. (2020). Size-segregated deposition of atmospheric elemental carbon (EC) in the human respiratory system: A case study of the Pearl River Delta, China. Science of the Total Environment, 708, 134932. https://doi.org/10.1016/j.scitotenv.2019.134932
dc.relation.referencesJohansson, L. S., Tullin, C., Leckner, B., & Sjövall, P. (2003). Particle emissions from biomass combustion in small combustors. Biomass and Bioenergy, 25(4), 435–446. https://doi.org/10.1016/S0961-9534(03)00036-9
dc.relation.referencesJohn, W., Wall, S. M., Ondo, J. L., & Winklmayr, W. (1990). Modes in the size distributions of atmospheric inorganic aerosol. Atmospheric Environment, 24(9), 2349–2359. https://doi.org/https://doi.org/10.1016/0960-1686(90)90327-J
dc.relation.referencesKaneyasu, N., Yoshikado, H., Mizuno, T., Sakamoto, K., & Soufuku, M. (1999). Chemical forms and sources of extremely high nitrate and chloride in winter aerosol pollution in the Kanto Plain of Japan. Atmospheric Environment, 33(11), 1754–1756.
dc.relation.referencesKaragulian, F., Belis, C. A., Francisco, C., Dora, C., Prüss-ustün, A. M., Bonjour, S., … Amann, M. (2015). Contributions to cities ’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 120, 475–483. https://doi.org/http://dx.doi.org/10.1016/j.atmosenv.2015.08.087
dc.relation.referencesKaranasiou, A. A., Sitaras, I. E., Siskos, P. A., & Eleftheriadis, K. (2007). Size distribution and sources of trace metals and n-alkanes in the Athens urban aerosol during summer. Atmospheric Environment, 41(11), 2368–2381. https://doi.org/10.1016/j.atmosenv.2006.11.006
dc.relation.referencesKaupp, H., & McLachlan, M. S. (2000). Distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAH) within the full size range of atmospheric particles. Atmospheric Environment, 34(1), 73–83. https://doi.org/10.1016/S1352-2310(99)00298-8
dc.relation.referencesKelly, F. J., & Fussell, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 60, 504–526. https://doi.org/10.1016/j.atmosenv.2012.06.039
dc.relation.referencesKeshtkar, H., & Ashbaugh, L. L. (2007). Size distribution of polycyclic aromatic hydrocarbon particulate emission factors from agricultural burning. Atmospheric Environment, 41(13), 2729–2739. https://doi.org/10.1016/j.atmosenv.2006.11.043
dc.relation.referencesKim, K. H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143. https://doi.org/10.1016/j.envint.2014.10.005
dc.relation.referencesLan, Z. J., Chen, D. L., Li, X., Huang, X. F., He, L. Y., Deng, Y. G., … Hu, M. (2011). Modal characteristics of carbonaceous aerosol size distribution in an urban atmosphere of South China. Atmospheric Research, 100(1), 51–60. https://doi.org/10.1016/j.atmosres.2010.12.022
dc.relation.referencesLee, J. Y., Lane, D. A., Heo, J. B., Yi, S. M., & Kim, Y. P. (2012). Quantification and seasonal pattern of atmospheric reaction products of gas phase PAHs in PM2.5. Atmospheric Environment, 55, 17–25. https://doi.org/10.1016/j.atmosenv.2012.03.007
dc.relation.referencesLeoni, C., Pokorná, P., Hovorka, J., Masiol, M., Topinka, J., Zhao, Y., … Hopke, P. K. (2018). Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition. Environmental Pollution, 234, 145–154. https://doi.org/10.1016/j.envpol.2017.10.097
dc.relation.referencesLi, J., Chen, H., Li, X., Wang, M., Zhang, X., Cao, J., … Yao, M. (2019). Differing toxicity of ambient particulate matter ( PM ) in global cities. 212(October 2018), 305–315.
dc.relation.referencesLi, Q., Yang, Z., Li, X., Ding, S., & Du, F. (2019). Seasonal characteristics of sulfate and nitrate in size-segregated particles in ammonia-poor and-rich atmospheres in Chengdu, Southwest China. Aerosol and Air Quality Research, 19(12), 2697–2706. https://doi.org/10.4209/aaqr.2019.07.0368
dc.relation.referencesLippmann, M., Chen, L.-C., Gordon, T., Ito, K., & Thurston, G. D. (2013). National Particle Component Toxicity (NPACT) Initiative: integrated epidemiologic and toxicologic studies of the health effects of particulate matter components. In Research report (Health Effects Institute). Boston, Massachusetts
dc.relation.referencesLiu, Z., Xie, Y., Hu, B., Wen, T., Xin, J., Li, X., & Wang, Y. (2017). Size-resolved aerosol water-soluble ions during the summer and winter seasons in Beijing: Formation mechanisms of secondary inorganic aerosols. Chemosphere, 183, 119–131. https://doi.org/10.1016/j.chemosphere.2017.05.095
dc.relation.referencesLong, S., Zeng, J., Li, Y., Bao, L., Cao, L., Liu, K., … Zhao, Y. (2014). Characteristics of secondary inorganic aerosol and sulfate species in size-fractionated aerosol particles in Shanghai. Journal of Environmental Sciences (China), 26(5), 1040–1051. https://doi.org/10.1016/S1001-0742(13)60521-5
dc.relation.referencesMajoral, C., Le Pape, A., Diot, P., & Vecellio, L. (2006). Comparison of various methods for processing cascade impactor data. Aerosol Science and Technology, 40(9), 672–682. https://doi.org/10.1080/02786820600796582
dc.relation.referencesMalandrino, M., Casazza, M., Abollino, O., Minero, C., & Maurino, V. (2016). Size resolved metal distribution in the PM matter of the city of Turin (Italy). Chemosphere, 147, 477–489. https://doi.org/10.1016/j.chemosphere.2015.12.089
dc.relation.referencesMinisterio de Ambiente y Desarrollo sostenible. Resolución No 2254 (2017). , (2017).
dc.relation.referencesMohamed, G. E. T. (2012). Physical and Chemical Composition of Particulate Pollutants in an Urban Area of Cardiff , Wales. Retrieved from https://repository.cardiffmet.ac.uk/handle/10369/4738
dc.relation.referencesMontoya Zubiria, A. F., & Moreno Melo, J. A. (2009). EVALUACIÓN DE LA COMPOSICIÓN DE METALES PESADOS EN DIFERENTES FUENTES EN LA CIUDAD DE BOGOTÁ Y SU ASOCIACIÓN FRENTE A LA CALIDAD DE AIRE. Universidad de la Salle
dc.relation.referencesMoreno Melo, J. A., & Montoya Zubiria, A. F. (2009). EVALUACIÓN DE LA COMPOSICIÓN DE METALES PESADOS EN DIFERENTES FUENTES EN LA CIUDAD DE BOGOTÁ Y SU ASOCIACIÓN FRENTE A LA CALIDAD DE AIRE. Universidad de la Salle.
dc.relation.referencesMoustafa, M., Mohamed, A., Ahmed, A. R., & Nazmy, H. (2014). Mass size distributions of elemental aerosols in industrial area. Journal of Advanced Research, 6(6), 827–832. https://doi.org/10.1016/j.jare.2014.06.006
dc.relation.referencesMüller, K., Spindler, G., Van Pinxteren, D., Gnauk, T., Iinuma, Y., Brüggemann, E., & Herrmann, H. (2012). Ultrafine and fine particles in the atmosphere - Sampling, chemical characterization and sources. Chemie-Ingenieur-Technik, 84(7), 1130–1136. https://doi.org/10.1002/cite.201100208
dc.relation.referencesMuránszky, G., Ovari, M., Virág, I., Csiba, P., Dobai, R., & Záray, G. (2011). Chemical characterization of PM10 fractions of urban aerosol. Microchemical Journal, 98(1), 1–10. https://doi.org/10.1016/j.microc.2010.10.002
dc.relation.referencesMurillo-Tovar, M., Barradas-Gimate, A., Arias-Montoya, M., & Saldarriaga-Noreña, H. (2018). Polycyclic Aromatic Hydrocarbons (PAHs) Associated with PM2.5 in Guadalajara, Mexico: Environmental Levels, Health Risks and Possible Sources. Environments, 5(5), 62. https://doi.org/10.3390/environments5050062
dc.relation.referencesNeusiiss, C., Pelzing, M., Plewka, A., & Herrmann, H. (2000). A new analytical approach for size-resolved speciation of organic compounds in atmospheric aerosol particles : results. 105, 4513–4527
dc.relation.referencesNy, M. T., & Lee, B. K. (2011). Size distribution of airborne particulate matter and associated metallic elements in an urban area of an industrial city in Korea. Aerosol and Air Quality Research, 11(6), 643–653. https://doi.org/10.4209/aaqr.2010.10.0090
dc.relation.referencesOberdörster, G., Stone, V., & Donaldson, K. (2007). Toxicology of nanoparticles: A historical perspective. Nanotoxicology, 1(1), 2–25. https://doi.org/10.1080/17435390701314761
dc.relation.referencesONU. (2015). Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible. Asamblea General, 15900, 40. Retrieved from http://www.un.org/ga/search/view_doc.asp?symbol=A/70/L.1&Lang=S
dc.relation.referencesPachon, J. E. (2017). Medición y predicción de emisiones de especies contaminantes y sus impactos en la atmósfera. 80. Retrieved from https://escuela-ids.itm.edu.co/calidad-del-aire/Memorias-EIDS/4-Presentacion-profesor-JORGE-EDUARDO-PACHON-QUINCHE.pdf
dc.relation.referencesPachon, J. E., Behrentz, E., & Rojas, N. Y. (2007). Challenges in Bogota air quality: Policies and technology. 100th Annual Conference and Exhibition of the Air and Waste Management Association 2007, ACE 2007, 1, 325–329. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0 44649117423&partnerID=40&md5=23c32c879728fe1e7df7c48f9242de3
dc.relation.referencesPachon, J. E., & Fundación Gas Natural Fenosa (Naturgy). (2018). Caso 7. La experiencia en Bogotá. In F. G. N. Fenosa (Ed.), La calidad del aire en las ciudades (Primera Ed, pp. 267–288). Madrid, España: Naturgy Energy Group S.A
dc.relation.referencesPachon, J. E., Russell, A. G., Sarmiento, H., & Galvis, B. R. (2008). Identification of secondary aerosol formation in Bogota: a preliminary study. Proceedings of 101st AWMA Annual Conference. Portland, USA.
dc.relation.referencesPachón, J. E., & Vela, H. S. (2008). Análisis espacio-temporal de la concentración de metales pesados en la localidad de Puente Aranda de Bogotá-Colombia Heavy metal determination and source emission identification in an industrial location of Bogotá-Colombia. Marzo Rev. Fac. Ing. Univ. Antioquia N.°, 43, 120–133.
dc.relation.referencesPachon, J., Weber, R. J., Zhang, X., Mulholland, J. A., & Russell, A. G. (2013). Revising the use of potassium (K) in the source apportionment of PM 2.5. Atmospheric Pollution Research, 4(1), 14–21. https://doi.org/10.5094/APR.2013.002
dc.relation.referencesPark, M., Joo, H. S., Lee, K., Jang, M., Kim, S. D., Kim, I., … Park, K. (2018). Differential toxicities of fine particulate matters from various sources. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-35398-0
dc.relation.referencesPaw-Armart, I., & Yoshizumi, K. (2013). Size Distributions of Atmospheric Aerosol Compositions in Saitama, Japan. Open Journal of Air Pollution, 02(01), 1–6. https://doi.org/10.4236/ojap.2013.21001
dc.relation.referencesPeñaloza P, N. E., & Rojas, N. Y. (2010). DISTRIBUCIÓN ESPACIAL Y TEMPORAL DEL INVENTARIO DE EMISIONES PROVENIENTES DE LAS FUENTES MÓVILES Y FIJAS DE LA CIUDAD DE BOGOTÁ, D.C. Universidad Nacional de Colombia.
dc.relation.referencesPennanen, A. S., Sillanpää, M., Hillamo, R., Quass, U., John, A. C., Branis, M., … Salonen, R. O. (2007). Performance of a high-volume cascade impactor in six European urban environments: Mass measurement and chemical characterization of size-segregated particulate samples. Science of the Total Environment, 374(2–3), 297–310. https://doi.org/10.1016/j.scitotenv.2007.01.002
dc.relation.referencesPereira, G. M., De Oliveira Alves, N., Caumo, S. E. S., Soares, S., Teinilä, K., Custódio, D., … Vasconcellos, P. C. (2017). Chemical composition of aerosol in São Paulo, Brazil: influence of the transport of pollutants. Air Quality, Atmosphere and Health, 10(4), 457–468. https://doi.org/10.1007/s11869-016-0437-9
dc.relation.referencesPio, C., Cerqueira, M., Harrison, R. M., Nunes, T., Mirante, F., Alves, C., … Matos, M. (2011). OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon. Atmospheric Environment, 45(34), 6121–6132. https://doi.org/10.1016/j.atmosenv.2011.08.045
dc.relation.referencesPokorná, P., Hovorka, J., Klán, M., & Hopke, P. K. (2015). Source apportionment of size resolved particulate matter at a European air pollution hot spot. Science of the Total Environment, 502, 172–183. https://doi.org/10.1016/j.scitotenv.2014.09.021
dc.relation.referencesPooltawee, J., Pimpunchat, B., & Junyapoon, S. (2017). Size distribution, characterization and risk assessment of particle-bound polycyclic aromatic hydrocarbons during haze periods in Phayao Province, northern Thailand. Air Quality, Atmosphere and Health, 10(9), 1097–1112. https://doi.org/10.1007/s11869-017-0497-5
dc.relation.referencesQuerol, X. (2018). Contaminación y calidad del aire urbano. Unas primeras cuestiones de partida. In Fundación Gas Natural Fenosa (Ed.), La calidad del aire en las ciudades (Fundación, pp. 15–28).
dc.relation.referencesQuerol, X., Alastuey, A., Ruiz, C. R., Artiñano, B., Hansson, H. C., Harrison, R. M., … Schneider, J. (2004). Speciation and origin of PM10 and PM2.5 in selected European cities. Atmospheric Environment, 38(38), 6547–6555. https://doi.org/10.1016/j.atmosenv.2004.08.037
dc.relation.referencesRamírez, O., Sánchez de la Campa, A. M., Amato, F., Catacolí, R. A., Rojas, N. Y., & de la Rosa, J. (2018). Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia). Environmental Pollution, 233, 142–155. https://doi.org/10.1016/j.envpol.2017.10.045
dc.relation.referencesRamírez, O., Sánchez de la Campa, A. M., & de la Rosa, J. (2018). Characteristics and temporal variations of organic and elemental carbon aerosols in a high–altitude, tropical Latin American megacity. Atmospheric Research, 210(April), 110–122. https://doi.org/10.1016/j.atmosres.2018.04.006
dc.relation.referencesRivera, J., & Behrentz, E. (2009). Identificación de fuentes de contaminación por material partuclado en Bogotá. Universidad de los Andes.
dc.relation.referencesRobinson, A. L., Subramanian, R., Donahue, N. M., Bernando - Bricker, A., & Rogge, W. F. (2006). Source Apportionment of Molecular Markers and Organic Aerosols. 1 . Polycyclic Aromatic Hydrocarbons and Methodology for Data Visualization. Environmental Science & Technology, 40, 7803–7810.
dc.relation.referencesRojas, N. Y. (2007). Aire y problemas ambientales en Bogotá. Observatorio Ambeintal de Bogotá, 98–124.
dc.relation.referencesRuiz, C. F. (2006). Caracterización Del Material Particulado En Las Principales Vías Del Transporte Público Las Principales Vías Del Transporte Público.
dc.relation.referencesSaffari, A., Daher, N., Shafer, M. M., Schauer, J. J., & Sioutas, C. (2013). Seasonal and spatial variation of trace elements and metals in quasi-ultrafine (PM0.25) particles in the Los Angeles metropolitan area and characterization of their sources. Environmental Pollution, 181, 14–23. https://doi.org/10.1016/j.envpol.2013.06.001
dc.relation.referencesSecretaria de Ambiente Quito. (2011). Informe Anual 2011. Calidad del aire Quito.
dc.relation.referencesSecretaría del Medio Ambiente de la Ciudad México. (2017). Calidad del aire en la Ciudad de México
dc.relation.referencesSecretaría Distrital de Ambiente Bogotá. (2019). Informe Anual de Calidad de Aire 2018.
dc.relation.referencesSecretaria Distrital de Ambiente de Bogotá. (2010). Plan decenal de descontaminación del aire de Bogotá. Retrieved from http://ambientebogota.gov.co/plan-decenal-dedescontaminacion-%0Adel-aire-para-bogota.
dc.relation.referencesSecretaria Distrital de Ambiente de Bogotá. (2017). Red de monitoreo de calidad del aire de Bogotá. Retrieved from http://ambientebogota.gov.co/red-de-calidad-delaire.
dc.relation.referencesSecretaria Distritral de Ambiente. (2018a). Informe Mensual de Calidad del Aire de Bogotá. Marzo 2018
dc.relation.referencesSecretaria Distritral de Ambiente. (2018b). Informe Mensual de Calidad del Aire de Bogotá. Mayo 2018.
dc.relation.referencesSefair, J. A., Espinosa, M., Behrentz, E., & Medaglia, A. L. (2019). Optimization model for urban air quality policy design: A case study in Latin America. Computers, Environment and Urban Systems, 78(March), 101385. https://doi.org/10.1016/j.compenvurbsys.2019.101385
dc.relation.referencesSeinfeld, J. H., & Pandis, S. N. (2006). Atmospheric chemistry and physics: From air pollution to climate change (Willey, Ed.).
dc.relation.referencesShah, S. D., Cocker, D. R., Miller, J. W., & Norbeck, J. M. (2004). Emission Rates of Particulate Matter and Elemental and Organic Carbon from In-Use Diesel Engines. Environmental Science & Technology, 38(9). https://doi.org/10.1021/es0350583
dc.relation.referencesSicre, M. ., J.C, M., Saliot, A., Aparicio, X., Grimalt, J., & Albaiges, J. (1987). ALIPHATIC AND AROMATIC HYDROCARBONS IN DIFFERENT SIZED AEROSOLS OVER THE MEDITERRANEAN SEA: OCCURRENCE AND ORIGIN. Atmospheric Environment (1967), 21(10), 2247–2259. https://doi.org/https://doi.org/10.1016/0004-6981(87)90356-8
dc.relation.referencesSingh, A., Rastogi, N., Patel, A., & Singh, D. (2016). Seasonality in size-segregated ionic composition of ambient particulate pollutants over the Indo-Gangetic Plain: Source apportionment using PMF. Environmental Pollution, 219, 906–915. https://doi.org/10.1016/j.envpol.2016.09.010
dc.relation.referencesSpindler, G., Brüggemann, E., Gnauk, T., Grüner, A., Müller, K., & Herrmann, H. (2010). A four-year size-segregated characterization study of particles PM10, PM2.5 and PM1 depending on air mass origin at Melpitz. Atmospheric Environment, 44(2), 164–173. https://doi.org/10.1016/j.atmosenv.2009.10.015
dc.relation.referencesSpindler, Gerald, Rodger, A., Poulain, L., Muller, K., Birmili, W., Tuch, T., … Herrmann, H. (2014). OC and EC analyzed in PM by thermographic or thermo-optical method : A two year comparison for the central European site. Retrieved February 23, 2020, from Soot Aerosols- Workshop on Measurement methods and Perspectives. website: https://www.wmo-gaw-wcc-aerosol-physics.org/files/Spindler.pd
dc.relation.referencesStröher, G. L., Poppi, N. R., Raposo, J. L., & Gomes de Souza, J. B. (2007). Determination of polycyclic aromatic hydrocarbons by gas chromatography - ion trap tandem mass spectrometry and source identifications by methods of diagnostic ratio in the ambient air of Campo Grande, Brazil. Microchemical Journal, 86(1), 112–118. https://doi.org/10.1016/j.microc.2006.12.003
dc.relation.referencesTao, Y., Yin, Z., Ye, X., Ma, Z., & Chen, J. (2014). Size distribution of water-soluble inorganic ions in urban aerosols in Shanghai. Atmospheric Pollution Research, 5(4), 639–647. https://doi.org/10.5094/APR.2014.073
dc.relation.referencesTian, S. L., Pan, Y. P., & Wang, Y. S. (2016). Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes. Atmospheric Chemistry and Physics, 16(1), 1–19. https://doi.org/10.5194/acp-16-1-2016
dc.relation.referencesTisch Environmental, I. (1999). OPERATIONS MANUAL. Model 20-800 Ambient Cascade Impactor. 7610(877), 26.
dc.relation.referencesTurpin, B. J., & Lim, H. (2001). Species Contributions to PM2 . 5 Mass Concentrations : Revisiting Common Assumptions for Estimating Organic Mass Species Contributions to PM2 . 5 Mass Concentrations : Revisiting Common Assumptions for Estimating Organic Mass. 6826.
dc.relation.referencesVan Drooge, B. L., Prats, R. M., Reche, C., Minguillón, M. C., Querol, X., Grimalt, J. O., & Moreno, T. (2018). Origin of polycyclic aromatic hydrocarbons and other organic pollutants in the air particles of subway stations in Barcelona. Science of the Total Environment, 642, 148–154. https://doi.org/10.1016/j.scitotenv.2018.06.032
dc.relation.referencesVan Pinxteren, D., Brüggemann, E., Gnauk, T., Iinuma, Y., Müller, K., Nowak, A., … Herrmann, H. (2009). Size and time resolved chemical particle characterization during carebeijing-2006: Different pollution regimes and diurnal profiles. Journal of Geophysical Research Atmospheres, 114(9). https://doi.org/10.1029/2008JD010890
dc.relation.referencesVargas, F. A., & Rojas, N. Y. (2010, August). Composición química y reconstrucción másica del material particulado suspendido en el aire de Bogotá Chemical composition and mass closure for airborne particulate matter in Bogotá. Ingeniería E Investigación. Repositorio Institucional Universidad Nacional de Colombia. Bdigital., 30(2), 105–115.
dc.relation.referencesVargas, F. A., Rojas, N. Y., Pachon, J. E., & Russell, A. G. (2012). PM10 characterization and source apportionment at two residential areas in Bogota. Atmospheric Pollution Research, 3(1), 72–80. https://doi.org/10.5094/APR.2012.006
dc.relation.referencesVasconcellos, P. C., Souza, D. Z., Ávila, S. G., Araújo, M. P., Naoto, E., Nascimento, K. H., … Behrentz, E. (2011). Comparative study of the atmospheric chemical composition of three South American cities. Atmospheric Environment, 45(32), 5770–5777. https://doi.org/10.1016/j.atmosenv.2011.07.018
dc.relation.referencesVecchi, R., Bernardoni, V., Valentini, S., Piazzalunga, A., Fermo, P., & Valli, G. (2018). Assessment of light extinction at a European polluted urban area during wintertime: Impact of PM1 composition and sources. Environmental Pollution, 233, 679–689. https://doi.org/10.1016/j.envpol.2017.10.059
dc.relation.referencesViana Rodriguez, M. del M. (2003). NIVELES, COMPOSICIÓN Y ORIGEN DEL MATERIAL PARTICULADO ATMOSFÉRICO EN LOS SECTORES NORTE Y ESTE DE LA PENÍNSULA IBÉRICA Y CANARIAS (Universitat de Barcelona). Retrieved from http://digital.csic.es/bitstream/10261/27476/1/Viana_Rodriguez_1.pdf
dc.relation.referencesVillalobos, A. M., Barraza, F., Jorquera, H., & Schauer, J. J. (2015). Science of the Total Environment Chemical speciation and source apportionment of fi ne particulate matter. Science of the Total Environment, The, 512–513, 133–142. https://doi.org/10.1016/j.scitotenv.2015.01.006
dc.relation.referencesVillalobos, A. M., Barraza, F., & Schauer, J. J. (2017). Wood burning pollution in southern Chile : PM 2.5 source apportionment using CMB and molecular markers *. Environmental Pollution, 225, 514–523. https://doi.org/10.1016/j.envpol.2017.02.069
dc.relation.referencesWan, X., Kang, S., Xin, J., Liu, B., Wen, T., Wang, P., … Cong, Z. (2016). Chemical composition of size-segregated aerosols in Lhasa city, Tibetan Plateau. Atmospheric Research, 174–175, 142–150. https://doi.org/10.1016/j.atmosres.2016.02.005
dc.relation.referencesWang, H. L., Zhu, B., An, J. L., Duan, Q., Zou, J. N., & Shen, L. J. (2014). Size distribution and characterization of OC and EC in atmospheric aerosols during the Asian youth games of Nanjing, China. Environmental Science, 35.
dc.relation.referencesWang, H., Zhu, B., Shen, L., Xu, H., An, J., Xue, G., & Cao, J. (2015). Water-soluble ions in atmospheric aerosols measured in five sites in the Yangtze River Delta, China: Size-fractionated, seasonal variations and sources. Atmospheric Environment, 123, 370–379. https://doi.org/10.1016/j.atmosenv.2015.05.070
dc.relation.referencesWang, Jiao, Zhang, J. sheng, Liu, Z. jun, Wu, J. hui, Zhang, Y. fen, Feng, Y. chang, … Zhou, L. dong. (2017). Characterization of chemical compositions in size-segregated atmospheric particles during severe haze episodes in three mega-cities of China. Atmospheric Research, 187, 138–146. https://doi.org/10.1016/j.atmosres.2016.12.004
dc.relation.referencesWang, Jiao, Zhou, M., Liu, B. shuang, Wu, J. hui, Peng, X., Zhang, Y. fen, … Zhu, T. (2016). Characterization and source apportionment of size-segregated atmospheric particulate matter collected at ground level and from the urban canopy in Tianjin. Environmental Pollution, 219, 982–992. https://doi.org/10.1016/j.envpol.2016.10.069
dc.relation.referencesWang, Jingzhi, Hang Ho, S. S., Huang, R., Gao, M., Liu, S., Zhao, S., … Han, Y. (2016). Characterization of parent and oxygenated-polycyclic aromatic hydrocarbons (PAHs) in Xi’an, China during heating period: An investigation of spatial distribution and transformation. Chemosphere, 159(97), 367–377. https://doi.org/10.1016/j.chemosphere.2016.06.033
dc.relation.referencesWatson, J. G., Chow, J. C., & Houck, J. E. (2001). PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere, 43(8), 1141–1151. https://doi.org/https://doi.org/10.1016/S0045-6535(00)00171-5
dc.relation.referencesWedding, J. B., McFarland, A. R., & Cermak, J. E. (1977). Large Particle Collection Characteristics of Ambient Aerosol Samplers. Environmental Science and Technology, 11(4), 387–390. https://doi.org/10.1021/es60127a005
dc.relation.referencesWhitby, K. T. (1978). The physical characteristics of sulfur aerosols. Atmospheric Environment, 12, 153–159. https://doi.org/https://doi.org/10.1016/0004-6981(78)90196-8
dc.relation.referencesWorld Health Organization (WHO). (2000). Air Quality Guidelines for Europe. Second Edition. Copenhagen.
dc.relation.referencesWorld Health Organization (WHO). (2005). Air quality guidelines for particles matter, ozone, nitrogen dioxide and sulfur dioxide. Air Quality Guidelines. https://doi.org/https://doi.org/10.1016/j.atmosenv.2
dc.relation.referencesWorld Health Organization (WHO). (2007). Health Effects of Ambient Particulate Matter. Journal of the Korean Medical Association, 50(2), 175. https://doi.org/10.5124/jkma.2007.50.2.175
dc.relation.referencesWorld Health Organization (WHO). (2014). Health relevance of particulate matter from various sources. Beilstein Journal of Nanotechnology, 5(1), 1590–1602. https://doi.org/EUR/07/5067587
dc.relation.referencesWorld Health Organization (WHO). (2016). Ambient air pollution: A global assessment of exposure and burden of disease.
dc.relation.referencesWorld Health Organization (WHO). (2018a). Air pollution and child health: Prescribing clean air. Retrieved from https://www.who.int/ceh/publications/air-pollution-child-health/en/
dc.relation.referencesWorld Health Organization (WHO). (2018b). Ambient (outdoor) air quality database, by country and city. Retrieved from https://www.who.int/airpollution/data/cities/en/
dc.relation.referencesWu, T., & Boor, B. E. (2020). Urban Aerosol Size Distributions: A Global Perspective. Atmospheric Chemistry and Physics, (March). https://doi.org/10.5194/acp-2020-92
dc.relation.referencesWu, X., Vu, T. V., Shi, Z., Harrison, R. M., Liu, D., & Cen, K. (2018). Characterization and source apportionment of carbonaceous PM2.5 particles in China - A review. Atmospheric Environment, 189(January), 187–212. https://doi.org/10.1016/j.atmosenv.2018.06.025
dc.relation.referencesYamasoe, M., Artaxo, P., Miguel, A. H., & Allen, A. G. (2000). Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmospheric Environment, 34(10). https://doi.org/https://doi.org/10.1016/S1352-2310(99)00329-5
dc.relation.referencesYang, M., Chu, C., Bloom, M. S., Li, S., Chen, G., Heinrich, J., … Dong, G. H. (2018). Is smaller worse? New insights about associations of PM 1 and respiratory health in children and adolescents. Environment International, 120(May), 516–524. https://doi.org/10.1016/j.envint.2018.08.027
dc.relation.referencesYang, Y., Zhou, R., Yu, Y., Yan, Y., Liu, Y., Di, Y., … Zhang, W. (2017). Size-resolved aerosol water-soluble ions at a regional background station of Beijing, Tianjin, and Hebei, North China. Journal of Environmental Sciences (China), 55, 146–156. https://doi.org/10.1016/j.jes.2016.07.012
dc.relation.referencesYassaa, N., Meklati, B. Y., Cecinato, A., & Marino, F. (2001). Particulate n -alkanes , n -alkanoic acids and polycyclic aromatic hydrocarbons in the atmosphere of Algiers City Area. 35.
dc.relation.referencesZapata Mora, C. (2020). Hidrocarburos aromáticos policíclicos en el aire ambiente de manizales. Universidad Nacional de Colombia. Sede Manizales.
dc.relation.referencesZarate, E., Belalcazar, L. C., Clappier, A., & Manzi, V. (2007). Air quality modelling over Bogota , Colombia : Combined techniques to estimate and evaluate emission inventories. 41, 6302–6318. https://doi.org/10.1016/j.atmosenv.2007.03.011
dc.relation.referencesZhang, L., Yang, L., Zhou, Q., Zhang, X., Xing, W., Wei, Y., … Tang, N. (2020). Size distribution of particulate polycyclic aromatic hydrocarbons in fresh combustion smoke and ambient air: A review. Journal of Environmental Sciences (China), 88, 370–384. https://doi.org/10.1016/j.jes.2019.09.007
dc.relation.referencesZhang, Y., Lang, J., Cheng, S., Li, S., Zhou, Y., Chen, D., … Wang, H. (2018). Chemical composition and sources of PM1 and PM2.5 in Beijing in autumn. Science of the Total Environment, 630, 72–82. https://doi.org/10.1016/j.scitotenv.2018.02.151
dc.relation.referencesZhao, J., Zhang, F., Chen, J., & Xu, Y. (2010). Characterization of polycyclic aromatic hydrocarbons and gas/particle partitioning in a coastal city, Xiamen, southeast China. Environmental Sciences, 22(7), 1014–1022.
dc.relation.referencesZhao, J., Zhang, F., Xu, Y., & Chen, J. (2011). Characterization of water-soluble inorganic ions in size-segregated aerosols in coastal city, Xiamen. Atmospheric Research, 99(3–4), 546–562. https://doi.org/10.1016/j.atmosres.2010.12.017
dc.relation.referencesZhao, T., Yang, L., Huang, Q., Zhang, Y., Bie, S., Li, J., … Wang, W. (2020). PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and their derivatives (nitrated-PAHs and oxygenated-PAHs) in a road tunnel located in Qingdao, China: Characteristics, sources and emission factors. Science of the Total Environment, 720, 137521. https://doi.org/10.1016/j.scitotenv.2020.137521
dc.relation.referencesZhao, Y., & Gao, Y. (2008). Mass size distributions of water-soluble inorganic and organic ions in size-segregated aerosols over metropolitan Newark in the US east coast. Atmospheric Environment, 42(18), 4063–4078. https://doi.org/10.1016/j.atmosenv.2008.01.032
dc.relation.referencesZhou, J., Xing, Z., Deng, J., & Du, K. (2016). Characterizing and sourcing ambient PM2.5 over key emission regions in China I: Water-soluble ions and carbonaceous fractions. Atmospheric Environment, 135, 20–30. https://doi.org/10.1016/j.atmosenv.2016.03.054
dc.relation.referencesZhuang, H., Chan, C. K., Fang, M., & Wexler, A. S. (1999). Size distributions of particulate sulfate, nitrate, and ammonium at a coastal site in Hong Kong. Atmospheric Environment, 33(6), 843–853. https://doi.org/10.1016/S1352-2310(98)00305-7
dc.relation.referencesAgency for Toxic Substances and Disease Registry (ATSDR). (2012). Toxicity of Polycyclic Aromatic Hydrocarbons (PAH).
dc.relation.referencesAlcaldía Local Fontibón, & Alcaldía Mayor Bogotá D.C. (2017). Plan Ambiental Localidad de Fontibón. Bogotá.
dc.relation.referencesAlcaldía Mayor Bogotá D.C. (2018a). Análisis de condiciones, calidad de vida, salud y enfermedad - 2018 Fontibon.
dc.relation.referencesAlcaldía Mayor Bogotá D.C. (2018b). Análisis demográfico y proyecciones poblacionales de Bogotá. Alcaldia Mayor de Bogotá D.C., 109. Retrieved from http://www.sdp.gov.co/sites/default/files/demografia_proyecciones_2017_0_0.pdf
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalParticulate matter
dc.subject.proposalMaterial particulado
dc.subject.proposalCaracterización química
dc.subject.proposalChemical composition
dc.subject.proposalDistribución de tamaño
dc.subject.proposalSize distribution
dc.subject.proposalContribución de fuentes
dc.subject.proposalSource appointment
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito