Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorCastañeda Colorado, Leonardo
dc.contributor.authorLópez Trilleras, Itamar Alfonso
dc.date.accessioned2020-10-08T21:34:48Z
dc.date.available2020-10-08T21:34:48Z
dc.date.issued2020-06-08
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78533
dc.description.abstractEn este trabajo se presentan dos métodos de reconstrucción de los perfiles de masa en galaxias de disco, el primero de ellos se realiza mediante el ajuste de la curva de rotación con base en los datos de velocidad circular que se obtienen observacionalmente en un sistema de estrellas, mientras que el segundo método se enfoca en el Efecto de Lente Gravitacional(ELG). Para las reconstrucciones de masa mencionadas, se utilizaron dos rutinas desarrolladas en el lenguaje de programación python: una de ellas es Galrotpy, la cual fue creada por integrantes del grupo de Galaxias, Gravitación y Cosmología del Observatorio Astronómico Nacional de la Universidad Nacional de Colombia 5 y cuya funcionalidad se aplica a las curvas de rotación, la otra rutina se denomina Gallenspy y fue creada en el desarrollo de este trabajo para lo concerciente al ELG. Cabe resaltar que ambas rutinas realizan una obtención de parámetros desde la aplicación de la estadística bayesiana, lo cual permite obtener las incertidumbres de los valores estimados. Finalmente, en el capítulo 5 se muestra la potencialidad de combinar dinámica galáctica y ELG, donde con el uso de los códigos mencionados anteriormente se reconstruyeron los perfiles de masa de las galaxias SDSSJ2141-001 y SDSSJ1331+3628 y se realiza la comparación con los resultados obtenidos por otros autores respecto a estos dos sistemas.
dc.description.abstractTwo methods for mass profiles reconstruction in disc-like galaxies are presented in this work, the first is done with the fit of the rotation curve based on the dates of circular velocity which are obtained observationally in a stars system, while the other method is focused on the gravitational lensed effect (ELG). For these mass reconstructions, two routines developed in the language of programming python were used: one of them is Galrotpy, which was built by members of the Galaxies, Gravitation and Cosmology group from the Observatorio Astronómico Nacional of the Universidad Nacional de Colombia 5 and whose funtionality is applied in the rotation curves, the other routine is Gallenspy which was created in the development of this work and it is focoused in the ELG. It should be noted that both routines perform a parameters estimation from the Bayesian statistics, which allows us to obtain the uncertainties of the estimated valors. Finally in the chapter 5 the great power of combining galactic dynamics and ELG is shown, for this purpose the mass profiles of the galaxies SDSSJ2141-001 and SDSSJ1331+3628 were reconstructed with Galrotpy and Gallenspy and the results obtained are compared with those reported by other authors with respect to these systems.
dc.format.extent125
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc520 - Astronomía y ciencias afines
dc.titleReconstrucción de los perfiles de masa en galaxias de disco con base en sus propiedades de lente gravitacional y curvas de rotación
dc.title.alternativeReconstruction of mass profiles in disc-like galaxies based on its properties of lensing and rotational curves
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Astronomía
dc.contributor.researchgroupGrupo de Astronomía Galáctica, Gravitación y Cosmología
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesDutton Aaron A., Brendon J., Brewer Philip J., Marshall Matthew W., Auger Tommaso, Treu David, Koo C., Bolton Adam S., Bradford P. Holden, and Koopmans Leon V. E. The swells survey – ii. breaking the disc–halo degeneracy in the spiral galaxy gravitational lens sdss j2141. Royal Astronomical Society, pages 1621–1642, 2011.
dc.relation.referencesDutton Aaron A., Treu Tommaso, Brewer Brendon J., Marshall Philip J., Auger M. W., Barnabé Matteo, Koo David C., Bolton Adam S., and Koopmans Leon V. E. The swells survey – v. a salpeter stellar initial mass function in the bulges of massive spiral galaxies. Oxford Journals, pages 3151–3168, 2013.
dc.relation.referencesDutton A.A., Treu T.and Brewer Brendon J., Marshall Philip J., Auger M. W., Barnabé Matteo, Koo David C., Bolton Adam S., and Koopmans Leon V. E. The swells survey – v. a salpeter stellar initial mass function in the bulges of massive spiral galaxies. MNRAS, 2013.
dc.relation.referencesHurtado Mojica Roger Anderson. Perfil de masa de abell 370 a partir de sus propiedades como lente gravitacional. Master’s thesis, Universidad Nacional de Colombia, 2014.
dc.relation.referencesGranados Andrés, Torres Daniel, Castañeda Leonardo, Henao Lady, and Vanegas Santiago. Galrotpy: an educational tool to understand and parametrize the rotation curve and the gravitational potential of disc-like galaxies. New Astronomy Journals, 2020.
dc.relation.referencesJo Bovy. Galpy: A python library for galactic dynamics. The Astrophysical Journal Supplement Series 216, 29, 2015.
dc.relation.referencesF. Combes, P. Boissé, A. Mazure, and Blanchard A. Galaxies and Cosmology. Springer Science+Business Media, 1995.
dc.relation.referencesNumPy community. NumPy User Guide. Release 1.17.0rc1, July 12, 2019.
dc.relation.referencesForeman-Mackey Daniel. corner.py: Scatterplot matrices in python. The Journal of Open Source Software, 2016.
dc.relation.referencesForeman-Mackey Daniel, Hogg David W., Dustin Lang, and Goodman Jonathan. emcee: The mcmc hamme. Astronomical Society of the Pacific, 2013.
dc.relation.referencesThe Astropy Developers. Astropy Documentation. Release 1.0.13, May 30, 2017.
dc.relation.referencesCorbelli E., Thilker D., Zibetti S., Giovanardi C., and Salucci P. Astronomy and Astrophysics, page 572–A23, 2014.
dc.relation.referencesCorbelli E., Thilker D., Zibetti S., Giovanardi C., and Salucci P. Dynamical signatures of a λcdm-halo and the distribution of the baryons in m33. Astronomy and Astrophysics 572, A23., (2014).
dc.relation.referencesJullo E., Kneib J-P., Limousin M., Elíasdottir Á., Marshall P. J., and Verdugo T. A bayesian approach to strong lensing modelling of galaxy clusters. New Journal of Physics, 2007.
dc.relation.referencesKoopmans L. V. E., de Bruyn A. G., and Jackson N. The edge-on spiral gravitational lens b1600+434. MNRAS, page 295–534, 1998.
dc.relation.referencesSalpeter E. E. The luminosity function and stellar evolution. American Astronomical Society, page 121–161, 1955.
dc.relation.referencesCourbin F., Chantry V., Revaz Y., Sluse D., Faure C., Tewes M., Eulaers E., Koleva M., Asfandiyarov I., Dye S., Magain P., van Winckel H., Coles J., Saha P., Ibrahimov M., and Meylan G. Cosmograil: the cosmological monitoring of gravitational lenses. Astronomy and Astrophysics, 2011.
dc.relation.referencesZwicky. F. The redshift of extragalactic nebulae. Helvetica Physica Acta 6, 110 (1933).
dc.relation.referencesGranados Cruz Andrés Felipe. Dinámica estelar y perfiles galácticos de lentes gravitacionales. Trabajo de Grado Universidad Nacional de Colombia, 2018.
dc.relation.referencesK. C. Freeman. On the disks of spiral and s0 galaxies. The Astrophysical Journal, page 811, 1970.
dc.relation.referencesLópez Fune, E. Salucci P., and Corbelli E. Radial dependence of the dark matter distribution in m33. Monthly Notices of the Royal Astronomical Society 468, 147, (2017).
dc.relation.referencesChabrier G. Galactic stellar and substellar initial mass function. Astronomical Society of the Pacific, Volume 115, Issue 809., page 763–795, 2003.
dc.relation.referencesKarttunen H., Kröger P., H. Oja, M. Poutanen, and K.J. Donner. Fundamental Astronomy. Springer Science+Business Media, LLC, 2007.
dc.relation.referencesTrick Wilma H., van de Ven Glenn, and Dutton Aaron A. A spiral galaxy’s mass distribution uncovered through lensing and dynamics. Oxford Journals, pages 3151–3168, 2016.
dc.relation.referencesBrewer B. J., Dutton Aaron A., Treu Tommaso, Auger Matthew W., Marshall Philip J., Barnabé Matteo, Bolton Adam S., Koo David C., and Koopmans Léon V. E. The swells survey – iii. disfavouring ‘heavy’ initial mass functions for spiral lens galaxies. MNRAS, 2012.
dc.relation.referencesBrewer Brendon J. Introduction to Bayesian Statistics. Commons Attribution-ShareAlike University of Auckland., 2012.
dc.relation.referencesNavarro J., Frenk C., and White S. The structure of cold dark matter halos. The Astrophysical Journal, page 563–575, 1996.
dc.relation.referencesBinney James and Tremaine Scott. Galactic Dynamics. Princeton University Press, 1987.
dc.relation.referencesBinney James and Tremaine Scott. Galactic Dynamics. Princeton University Press, 1994.
dc.relation.referencesHunter John, Dale Darren, Firing Eric, and Droettboom Michael. Matplotlib. Release 3.1.1, July 02, 2019.
dc.relation.referencesBordeianu Cristian C. Landau Rubin H., Páez Manuel J. Computational Physics. Wiley-VHC, 2010.
dc.relation.referencesCastañeda Colorado Leonardo. Efecto de la constante cosmológica en la probabilidad de lentes gravitacionales. Master’s thesis, Universidad Nacional de Colombia, 2000.
dc.relation.referencesBartelmann Mathiass. Numerical methods in gravitational lensing. Gravitational Lensing Winter School, Aussois, 2003.
dc.relation.referencesJ. H. Oort.et al. Some problems concerning the structure and dynamics of the galactic system and the elliptical nebulae ngc 3115 and 4494. Astrophysical Journal,91, 1940.
dc.relation.referencesJiménez Cárdenas Julián Orlando. Retardo cosmológico temporal en modelos de energía oscura. Trabajo de Grado Universidad Nacional de Colombia, 2020.
dc.relation.referencesSchneider Peter and Sluse Dominique. Mass-sheet degeneracy, power-law models and external convergence: Impact on the determination of the hubble constant from gravitational lensing. Astronomy and Astrophysics MSD, 2018.
dc.relation.referencesEllis George F. R., Maartens Roy, and MacCallum Malcolm A. H. Relativistic Cosmology. Cambridge University Press, 2012.
dc.relation.referencesJimenez R., Verde L., and Oh S. P. Dark halo properties from rotation curves. Monthly Notices of the Royal Astronomical Society, page 339–243, 2003.
dc.relation.referencesSparke Linda S. and Gallagher III John S. Galaxies in the Universe: An Introduction. Cambridge university press, 2007.
dc.relation.referencesP. Schneider, J. Ehlers, and Falco. Gravitational Lenses. Springer Science+Business Media, LLC, 1999.
dc.relation.referencesV. M. Slipher. The radial velocity of the andromeda nebula. Lowell Observatory Bulletin 2, 66, Lowell Observatory Bulletin 2, 66,1914.
dc.relation.referencesBoroson T. The distribution of luminosity in spiral galaxies. Astrophys. J. Suppl. 46,177, (1981).
dc.relation.referencesTreu T., Dutton A. A., Auger M. W., Marshall P. J., Bolton A. S., Brewer B. J., Koo D. C., and Koopmans L. V. E. MNRAS, pages 417, 1601, 2011.
dc.relation.referencesTommaso Treu, Aaron A. Dutton, Matthew W. Auger, Philip J. Marshall, Adam S. Bolton, Brendon J. Brewer, David C. Koo, and Léon V. E. Koopmans. MNRAS, 2010.
dc.relation.referencesNightingale James. W., Massey Richard J, Harvey David R, Cooper Andrew P, Etherington Amy, Tam Sut-Ieng, and Hayes Richard G. Galaxy structure with strong gravitational lensing: decomposing the internal mass distribution of massive elliptical galaxies. MNRAS. 1–21, (2018).
dc.relation.referencesZwicky.F. On the masses of nebulae and of clusters of nebulae. The Astrophysical Journal 86, 217, 1937.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalEfecto de lente gravitacional
dc.subject.proposalGravitational lensed effect
dc.subject.proposalEefecto de lente fuerte
dc.subject.proposalStrong lensing
dc.subject.proposalCurvas de rotación
dc.subject.proposalRotation curves
dc.subject.proposalMontecarlo Markov chains
dc.subject.proposalCadenas de Markov Montecarlo
dc.subject.proposalDinámica galáctica
dc.subject.proposalGalactic dynamics
dc.subject.proposalMass reconstruction
dc.subject.proposalReconstrucción de masa
dc.subject.proposalMass profiles
dc.subject.proposalPerfiles de masa
dc.subject.proposalGalrotpy
dc.subject.proposalGalrotpy
dc.subject.proposalGallenspy
dc.subject.proposalGallenspy
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito