Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorMeza Meza, Juan Manuel
dc.contributor.advisorJalalvand, Meisam
dc.contributor.authorMacías López, Juan Manuel
dc.date.accessioned2020-10-20T16:08:41Z
dc.date.available2020-10-20T16:08:41Z
dc.date.issued2020-09-01
dc.identifier.citationMacías, Juan (2020) Numerical and analytical models for the design of hybrid composite laminates with gradual failure behaviour under bending loads
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78550
dc.description.abstractEl presente trabajo describe el estudio reciente de los laminados de materiales compuestos híbridos sujetos a cargas de flexión, para luego usar este conocimiento en la creación de herramientas analíticas y numéricas que asisten el diseño de laminados híbridos con capacidad de falla gradual en un ensayo de flexión a cuatro puntos. Estas herramientas son inicialmente verificadas usando datos experimentales de laminados en los cuales se logró obtener falla gradual, pero la naturaleza de la falla y los mecanismos por los cuales se da, requieren un mayor entendimiento. El modelo en el cual se basa la herramienta analítica consiste en una adaptación de la solución analítica para ensayos de flexión a cuatro puntos en el cual el material es sometido a grandes deformaciones en combinación con la teoría clásica de laminados y mecánica de la fractura. Por otra parte, el modelo numérico utiliza elementos cohesivos para modelar tanto el daño intralaminar como el interlaminar, usando las propiedades de la resina para definir el comportamiento cohesivo interlaminar y usando una distribución de resistencias intralaminares según el modelo estadístico de Weibull. Una vez verificados los modelos, estos son usados para diseñar nuevos laminados híbridos optimizados, que reducen la cantidad de láminas ultradelgadas y por lo tanto, el número total de láminas requeridas para un mismo espesor, esto a su vez implica una posible reducción en el costo de fabricación y el tiempo de manufactura. Además, un laminado estándar (laminado no hibridado) es fabricado con fines comparativos; los ensayos en estos nuevos laminados validan la capacidad predictiva de ambas herramientas en casos falla gradual y falla repentina, tanto en laminados híbridos como estándar; y demuestran que es posible conseguir laminados híbridos con capacidad de falla gradual a un menor costo.
dc.description.abstractThe present work describes the recent studies on hybrid composite laminates under bending loads; then, this knowledge is used to create analytical and numerical tools that assist the design of hybrid layups which can fail gradually in a four-point bending test. These tools are initially verified using experimental data from layups where such a gradual failure was achieved, but the nature of the failure process and failure mechanisms need additional study. The analytical tool is based on modifications from the analytical solution of large deflections of a beam in a four-point bending test together with the classical laminate and fracture mechanics theories. On the other hand, the numerical model is set using cohesive elements to model intralaminar as well as interlaminar damage, where the interlaminar strength is based on resin properties and the intralaminar strength is set based on Weibull statistical distribution. Once the models were verified, they are used to design new optimised hybrid layups that reduce the number of thin-plies required and therefore, the total amount of plies required for the same layup thickness; these imply a potential decrease in the cost of the layup and the time to be manufactured. One non-hybrid layup was also manufactured for baseline comparison, testing results on all these new layups exhibited the expected failure sequence and failure mechanisms; validating the accuracy of the tools to predict brittle and gradual failure in hybrid and standard composites; besides, it shows that it is possible to obtain hybrid layups with gradual failure capabilities using other configurations.
dc.description.sponsorshipRoyal Academy of Engineering
dc.format.extent149
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.relationProducto terminado
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleNumerical and analytical models for the design of hybrid composite laminates with gradual failure behaviour under bending loads
dc.title.alternativeModelos numérico y analítico para el diseño de laminados compuestos híbridos con capacidad de falla gradual bajo cargas de flexión
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectNovel Hybrid Composites to improve structural performance of a Compact Electric Utility Vehicles Chassis
dc.description.additionalLínea de Investigación: Modelamiento de falla en materiales compuestos híbridos
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupDesign of Advanced Composite Materials Research Group DADCOMP
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Materiales y Minerales
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.references[Albaigés, 2013] Albaigés, J. (2013). Stanley e. manahan, environmental chemistry. International Journal of Environmental Analytical Chemistry, 93(14):1559–1560.
dc.relation.references[Ary Subagia et al., 2014] Ary Subagia, I., Kim, Y., Tijing, L., Pant, H., and Shon, H. K. (2014). Effect of stacking sequence on the flexural properties of hybrid composites reinforced with carbon and basalt fibers. Composites Part B: Engineering, 58:251–258.
dc.relation.references[Askeland, 2018] Askeland, D. R. (2018). Ciencia e Ingeniería de los Materiales, Tercera ed. International Thomson Editores, México.
dc.relation.references[ASTM, 2019] ASTM (2019). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. Technical report, ASTM.
dc.relation.references[Barbero, 2008] Barbero, E. (2008). Finite Element Analysis of Composite Materials.
dc.relation.references[Barbero, 2018] Barbero, E. (2018). Introduction to Composite Materials Design, Third Edition. Tailor & Francis Group, New York.
dc.relation.references[Cusack, 2018] Cusack, J. (2018). Optimization of hybrid composite layups for bending applications to promote a gradual failure. Master’s thesis, University of Strathclyde.
dc.relation.references[Czél et al., 2017] Czél, G., Suwarta, P., Jalalvand, M., and Wisnom, M. 2017). Investigation of the compression performance and failure mechanism of pseudo-ductile thin-ply hybrid composites. 21st International Conference on Composite Materials, ICCM 2017 ; Conference date: 20-08-2017 Through 25-08-2017.
dc.relation.references[Dong, 2016] Dong, C. (2016). Uncertainties in flexural strength of carbon/glass fibre reinforced hybrid epoxy composites. Composites Part B: Engineering, 98.
dc.relation.references[Dong and Davies, 2014] Dong, C. and Davies, I. (2014). Flexural and tensile strengths of unidirectional hybrid epoxy composites reinforced by s-2 glass and t700s carbon fibres. Materials and Design, 54:955–966.
dc.relation.references[Dong and Davies, 2012] Dong, C. and Davies, I. J. (2012). Optimal design for the flexural behaviour of glass and carbon fibre reinforced polymer hybrid composites. Materials and Design, 37:450 – 457.
dc.relation.references[Dong and Davies, 2013] Dong, C. and Davies, I. J. (2013). Flexural properties of glass and carbon fiber reinforced epoxy hybrid composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 227(4):308– 317.
dc.relation.references[Dong and Davies, 2015] Dong, C. and Davies, I. J. (2015). Flexural strength of bidirectional hybrid epoxy composites reinforced by e glass and t700s carbon fibres. Composites Part B: Engineering, 72:65 – 71.
dc.relation.references[Dong et al., 2012] Dong, C., Ranaweera-Jayawardena, H. A., and Davies, I. J (2012). Flexural properties of hybrid composites reinforced by s-2 glass and t700s carbon fibres. Composites Part B: Engineering, 43(2):573 – 581.
dc.relation.references[Fiore et al., 2011] Fiore, V., Bella, G. D., and Valenza, A. (2011). Glass–basalt/epoxy hybrid composites for marine applications. Materials and Design, 32(4):2091 – 2099.
dc.relation.references[Grupo, 2008] Grupo, F. P. J. C. J. M. A. B. (2008). Introducción al análisis y diseño con materiales compuestos.
dc.relation.references[Hashin, 1983] Hashin, Z. (1983). Analysis of Composite Materials—A Survey. Journal of Applied Mechanics, 50(3):481–505.
dc.relation.references[Hexcel, 2018] Hexcel (2018). Hextow im7 carbon fiber.
dc.relation.references[Hibbeler, 2001] Hibbeler, R. C. (2001). Mechanics of materials. Pearson Prentice Hall, US.
dc.relation.references[Hill, 2018] Hill, E. (2018). Achieving gradual failure in composites under bending through fibre hybridisation. Master’s thesis, University of Strathclyde.
dc.relation.references[Idárraga, 2019] Idárraga, G. (2019). Failure analysis and optimisation of multi-directional pseudo-ductile hybrid composites. P.h.d. thesis, National University of Colombia, Medellín.
dc.relation.references[Jalalvand et al., 2014] Jalalvand, M., Cz´el, G., and Wisnom, M. (2014). Numerical modelling of the damage modes in ud thin carbon/glass hybrid laminates. Composites Science and Technology, 94:39–47.
dc.relation.references[Jalalvand et al., 2015] Jalalvand, M., Cz´el, G., and Wisnom, M. (2015). Damage analysis of pseudo-ductile thin-ply ud hybrid composites - a new analytical method. Composites Part A: Applied Science and Manufacturing, 69:83–93.
dc.relation.references[Jesthi et al., 2018] Jesthi, D., Mandal, P., K., A., and Nayak, R. (2018). Effect of carbon/glass fiber symmetric inter-ply sequence on mechanical properties of polymer matrix composites. Procedia Manufacturing, 20:530–535.
dc.relation.references[Kalantari et al., 2016a] Kalantari, M., Dong, C., and Davies, I. (2016a). Multi-objective analysis for optimal and robust design of unidirectional glass/carbon fibre reinforced hybrid epoxy composites under flexural loading. Composites Part B: Engineering, 84:130– 139.
dc.relation.references[Kalantari et al., 2016b] Kalantari, M., Dong, C., and Davies, I. (2016b). Multi-objective robust optimisation of unidirectional carbon/glass fibre reinforced hybrid composites under flexural loading. Composite Structures, 138:264–275.
dc.relation.references[Kalantari et al., 2016c] Kalantari, M., Dong, C., and Davies, I. (2016). Numerical investigation of the hybridisation mechanism in fibre reinforced hybrid composites subjected to flexural load. Composites Part B: Engineering, 102:100–111.
dc.relation.references[kansu.tripod.com, ] kansu.tripod.com. A literature survey study on metal and ceramic matrix composites/ceramic matrix composite materials.
dc.relation.references[Lim et al., 2014] Lim, J., Rhee, K., Kim, H., and Jung, D. (2014). Investigation of the compression performance and failure mechanism of pseudo-ductile thin-ply hybrid composites. Carbon letters, 15:125–128.
dc.relation.references[Mangalgiri, 1999] Mangalgiri, P. D. (1999). Composite materials for aerospace applications. Bulletin of Materials Science, 22:657–664.
dc.relation.references[Megahed, 2019] Megahed, K. (2019). Introduction to Nonlinear Finite Element Analysis.
dc.relation.references[Naik and Kumar, 1999] Naik, N. and Kumar, R. S. (1999). Compressive strength of unidirectional composites: evaluation and comparison of prediction models. Composite Structures, 46(3):299 – 308.
dc.relation.references[Paolinelis and Ogorkiewicz, 1976] Paolinelis, S. and Ogorkiewicz, R. (1976). Large deflections of beams in four-point bending. The Journal of Strain Analysis for Engineering Design, 11:144–149.
dc.relation.references[Philpot et al., 2002] Philpot, T. A., Oglesby, D. B., Flori, R. E., Yellamraju, V., Hall, R. H., and Hubing, N. (2002). Interactive learning tools: Animating mechanics of materials.
dc.relation.references[Recupero et al., 2005] Recupero, A., D’Aveni, A., and Ghersi, A. (2005). Bending moment – shear force interaction domains for prestressed concrete beams. Journal of Structural Engineering, 131:1413–1421.
dc.relation.references[Reis et al., 2007] Reis, P., Ferreira, J., Antunes, F., and Costa, J. (2007). Flexural behaviour of hybrid laminated composites. Composites Part A: Applied Science and Manufacturing, 8:1612–1620.
dc.relation.references[Rose et al., 2013] Rose, C., Dávila, C., and Leone, F. (2013). Analysis methods for progressive damage of composite structures.
dc.relation.references[Simulia, 2014] Simulia, D. S. (2014). Abaqus 6.14 User Guide.
dc.relation.references[Sudarisman et al., 2009] Sudarisman, ., Miguel, B., and Davies, I. (2009). The effect of partial substitution of e-glass fibre for carbon fibre on the mechanical properties of cfrp composites.
dc.relation.references[Swolfs, 2019] Swolfs, Y. Verpoest, I. G. L. (2019). Recent advances in fibre-hybrid composites: materials selection, opportunities and applications. International Materials Reviews, 64:181–215.
dc.relation.references[Swolfs et al., 2014] Swolfs, Y., Gorbatikh, L., and Verpoest, I. (2014). Fibre hybridisation in polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 67:181 – 200.
dc.relation.references[Torayca(R), 2012] Torayca(R) (2012). Torayca(r) m46j carbon fiber product data sheet.
dc.relation.references[Turon Travesa, 2007] Turon Travesa, A. (2007). Simulation of delamination in composites under quasi-static and fatigue loading using cohesive zone models.
dc.relation.references[Vasiliev and Morozov, 2007] Vasiliev, V. V. and Morozov, E. V. (2007). Chapter 1 - introduction. In Vasiliev, V. V. and Morozov, E. V., editors, Advanced Mechanics of Composite Materials (Second Edition), pages 1 – 30. Elsevier Science Ltd, Oxford, second edition edition.
dc.relation.references[Velmurugan and Manikandan, 2007] Velmurugan, R. and Manikandan, V. (2007). Mechanical properties of palmyra/glass fiber hybrid composites. Composites Part A: Applied Science and Manufacturing, 38(10):2216 – 2226.
dc.relation.references[Whitney, 2005] Whitney, J. (2005). On the ‘ply discount method’ for determining effective thermo-elastic constants of laminates containing transverse cracks. Composites Part A: Applied Science and Manufacturing, 36:1347–1354.
dc.relation.references[William et al., 2007] William, G., Branko, S., and Max, U. (2007). Composite structures: the first 100 years. International conference on composite materials, 16:1–10.
dc.relation.references[X. Wu and Wisnom, 2017] X. Wu, J. F. and Wisnom, M. (2017). Combining the nonlinearity of angle-plies and fibre fragmentation in carbon fibre laminates under compressive loading. 21st International Conference on Composite Materials, 87.
dc.relation.references[Zhang et al., 2012] Zhang, J., Chaisombat, K., He, S., and Wang, C. H. (2012). Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures. Materials and Design (1980-2015), 36:75 – 80. Sustainable Materials, Design and Applications.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalHybrid composite materials
dc.subject.proposalMateriales compuestos híbridos
dc.subject.proposalensayo de flexión
dc.subject.proposalbending test
dc.subject.proposalnumerical and analytical tools
dc.subject.proposalherramientas analíticas y numéricas
dc.subject.proposalexperimental validation
dc.subject.proposalvalidación experimental
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito