Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorArango Arango, Pedro José
dc.contributor.advisorRetrepo Parra, Elisabeth
dc.contributor.authorRosero Rodríguez, Favio Nicolás
dc.date.accessioned2020-11-04T19:48:25Z
dc.date.available2020-11-04T19:48:25Z
dc.date.issued2020
dc.identifier.citationRosero-Rodriguez.F.N, Fabricación de Celdas Solares y Baterías Orgánicas, usando como Electrolito Nanopartículas de Plata, Universidad NAcional de Colombia Sede Manizales, 2020
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78583
dc.description.abstractThe synthesis of silver nanoparticles has been developed by a microwave-assisted hydrothermal method using silver nitrate as a precursor, PEG400 as a stabilizer, and starch as a reducing agent, for the elaboration of an electrolyte that is versatile to be used in organic solar cells based on nanowires. of zinc oxide (ZnO-NWs) synthesized by thermal decomposition with microwaves from zinc oxide dust and graphite dust and organic batteries using: avocado seed, sugarcane bagasse, and banana peel. The operation of the electrolyte is checked in dye-sensitized solar cells (DSSc) generating values between 450 mV corresponding to the potential difference and 0.107 mA of electric current, for the application of the electrolyte in organic batteries, voltage storage capacities of 1.0-1.2 and stability times close to 25 seconds at potentials of 0.1.0.4 V. The electrolyte, in addition to being a good ionic conductor, the presence of PEG in its composition, allows stability in terms of temperature is concerned.
dc.description.abstractSe ha desarrollado la síntesis de nanopartículas de plata por un método hidrotermal asistido por microondas usando nitrato de plata como precursor, PEG400 como estabilizante y almidón como reductor, para la elaboración de un electrolito que sea versátil para ser utilizado en celdas solares orgánicas basadas en nanoalambres de óxido de zinc (ZnO-NWs) sintetizados por descomposición térmica con microondas a partir de polvo de óxido de zinc y polvo de grafito y baterías orgánicas usando: semilla de aguacate, bagazo de caña de azúcar y cascara de plátano. Se comprueba el funcionamiento del electrolito en celdas solares sensibilizadas con colorante (DSSc) generando valores comprendidos entre 450 mV correspondiente a la diferencia de potencial y 0,107 mA de corriente eléctrica, para la aplicación del electrolito en baterías orgánicas se obtuvieron capacidades de almacenamiento de voltaje de 1,0-1,2 y tiempos de estabilidad cercanos a los 25 segundos en potenciales de 0,1.0,4 V. El electrolito además de ser un buen conductor iónico, la presencia de PEG en su composición, permite una estabilidad en cuanto a temperatura se refiere. (Texto tomado de la fuente)
dc.format.extent129
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc530 - Física
dc.titleFabricación de celdas solares y baterías orgánicas, usando como electrolito nanopartículas de plata
dc.title.alternativeManufacture of Solar Cells and Organic Batteries, using Ag-NPs as Electrolyte
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMemoria de Tesis presentada como requisito parcial para optar al título de: Magíster en Ciencias - Física.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física
dc.contributor.researchgroupLaboratorio de Fisica del Plasma
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Física y Química
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.references[1] D. nacional de planeacion de Colombía, “Energy Demand Situation in Colombia,” Dep. Nac. Planeac. Colombía, vol. 2ed, p. 136, 2017.
dc.relation.references[2] D. Kishore Kumar et al., “Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): A review,” Mater. Sci. Energy Technol., vol. 3, pp. 472–481, 2020, doi: 10.1016/j.mset.2020.03.003.
dc.relation.references[3] UPME, “Proyección de la demanda de energía eléctrica y potencia máxima en Colombia,” p. 60, 2019.
dc.relation.references[4] PIRS, “Informe de caracterización de residuos de pilas y luminarias. Universidad Nacional de Colombia, Bogotá.,” 2008.
dc.relation.references[5] A. Kajbafvala et al., “Nanostructure sword-like ZnO wires: Rapid synthesis and characterization through a microwave-assisted route,” J. Alloys Compd., vol. 469, no. 1–2, pp. 293–297, 2009, doi: 10.1016/j.jallcom.2008.01.093.
dc.relation.references6] J. Olmedo, “Diseño de celdas solares sensibilizadas con tinta N719 empleando electrolitos en gel de red polimérica interpenetrada, a base de poli (anilina-co-o fenilendiam ina) o polianilina dopados con ɩ - carragenina,” Cimav, vol. 7, p. 114, 2016.
dc.relation.references[7] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, and H. Arakawa, “Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells,” Sol. Energy Mater. Sol. Cells, vol. 64, no. 2, pp. 115–134, 2000, doi: 10.1016/S0927-0248(00)00065-9.
dc.relation.references[8] M. Grätzel, “Molecular photovoltaics that mimic photosynthesis,” Pure Appl. Chem., vol. 73, no. 3, pp. 459–467, 2001, doi: 10.1351/pac200173030459.
dc.relation.references[9] M. Y. A. Rahman, M. M. Salleh, I. A. Talib, and M. Yahaya, “Effect of surface roughness of TiO2 films on short-circuit current density of photoelectrochemical cell of ITO/TiO2/ PVC-LiClO4/graphite,” Curr. Appl. Phys., vol. 5, no. 6, pp. 599–602, 2005, doi: 10.1016/j.cap.2004.08.003.
dc.relation.references[10] E. Galoppini et al., “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B, vol. 110, no. 33, pp. 16139–16161, 2006, doi: 10.1021/jp062865q.
dc.relation.references[11] A. Tiwari and M. Snure, “Synthesis and characterization of ZnO nano-plant-like electrodes,” J. Nanosci. Nanotechnol., vol. 8, no. 8, pp. 3981–3987, 2008, doi: 10.1166/jnn.2008.299.
dc.relation.references[12] Z. Yang, H. Peng, W. Wang, and T. Liu, “Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites,” J. Appl. Polym. Sci., vol. 116, no. 5, pp. 2658–2667, 2010, doi: 10.1002/app.
dc.relation.references[13] J. Villanueva, J. A. Anta, E. Guillén, and G. Oskam, “Numerical simulation of the current-voltage curve in dye-sensitized solar cells,” J. Phys. Chem. C, vol. 113, no. 45, pp. 19722–19731, 2009, doi: 10.1021/jp907011z.
dc.relation.references14] S. Suresh, A. Pandikumar, S. Murugesan, R. Ramaraj, and S. P. Raj, “Photovoltaic performance of solid-state solar cells based on ZnO nanosheets sensitized with low-cost metal-free organic dye,” Sol. Energy, vol. 85, no. 9, pp. 1787–1793, 2011, doi: 10.1016/j.solener.2011.04.016.
dc.relation.references[15] J. Huang, Z. Yin, and Q. Zheng, “Applications of ZnO in organic and hybrid solar cells,” Energy Environ. Sci., vol. 4, no. 10, pp. 3861–3877, 2011, doi: 10.1039/c1ee01873f.
dc.relation.references[16] J. Navas et al., “Direct estimation of the electron diffusion length in dye-sensitized solar cells,” J. Phys. Chem. Lett., vol. 2, no. 9, pp. 1045–1050, 2011, doi: 10.1021/jz200340h.
dc.relation.references[17] J. S. Bendall et al., “An efficient DSSC based on ZnO nanowire photo-anodes and a new D-π-A organic dye,” Energy Environ. Sci., vol. 4, no. 8, pp. 2903–2908, 2011, doi: 10.1039/c1ee01254a.
dc.relation.references[18] E. Guillén, L. M. Peter, and J. A. Anta, “Electron transport and recombination in ZnO-based dye-sensitized solar cells,” J. Phys. Chem. C, vol. 115, no. 45, pp. 22622–22632, 2011, doi: 10.1021/jp206698t.
dc.relation.references[19] P. Kung et al., “Photovoltaic devices based on quantum dot functionalized nanowire arrays embedded in an organic matrix,” Quantum Sens. Nanophotonic Devices IX, vol. 8268, p. 82680S, 2012, doi: 10.1117/12.914372.
dc.relation.references[20] W. A. Chamorro Coral and S. Urrego Riveros, “Celdas solares orgánicas, una perspectiva hacia el futuro,” Elementos, vol. 2, no. 2, 2013, doi: 10.15765/e.v2i2.181.
dc.relation.references[21] M. Y. A. Rahman, A. A. Umar, R. Taslim, and M. M. Salleh, “Effect of organic dye, the concentration and dipping time of the organic dye N719 on the photovoltaic performance of dye-sensitized ZnO solar cell prepared by ammonia-assisted hydrolysis technique,” Electrochim. Acta, vol. 88, pp. 639–643, 2013, doi: 10.1016/j.electacta.2012.10.146.
dc.relation.references[22] D. Karageorgopoulos, E. Stathatos, and E. Vitoratos, “Thin ZnO nanocrystalline films for efficient quasi-solid state electrolyte quantum dot sensitized solar cells,” J. Power Sources, vol. 219, pp. 9–15, 2012, doi: 10.1016/j.jpowsour.2012.07.034.
dc.relation.references[23] R. L. Z. Hoye, K. P. Musselman, and J. L. Macmanus-Driscoll, “Research update: Doping ZnO and TiO2 for solar cells,” APL Mater., vol. 1, no. 6, 2013, doi: 10.1063/1.4833475.
dc.relation.references[24] D. Darmawan, “Extraction and Characterization of Natural Dyes Applied to ZnO-based DSSC,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019, doi: 10.1017/CBO9781107415324.004.
dc.relation.references[25] M. Giannouli, “Nanostructured ZnO, TiO2, and Composite ZnO/TiO2 Films for Application in Dye-Sensitized Solar Cells,” ZnO Nanostructures Their Appl., vol. 2013, 2011, doi: 10.1201/b11518-10.
dc.relation.references[26] B. Cerda, “Síntesis y caracterización de colorantes naturales para ser usados en celdas sensibilizadas por colorante Thesis · December 2014,” no. July, 2017, doi: 10.13140/RG.2.2.27054.20808.
dc.relation.references[27] H. Muguerra et al., “Electrodeposited ZnO nanowires as photoelectrodes in solid-state organic dye-sensitized solar cells,” Phys. Chem. Chem. Phys., vol. 16, no. 16, pp. 7472–7480, 2014, doi: 10.1039/c3cp54210f.
dc.relation.references[28] A. Syukron, R. A. Wahyuono, D. Sawitri, and D. D. Risanti, “The effect of paste preparation and annealing temperature of ZnO photoelectrode to dye-sensitized solar cells (DSSC) performance,” Adv. Mater. Res., vol. 896, pp. 183–186, 2014, doi: 10.4028/www.scientific.net/AMR.896.183.
dc.relation.references[29] A. Thankappan et al., “Highly efficient betanin dye based ZnO and ZnO/Au Schottky barrier solar cell,” Thin Solid Films, vol. 583, no. 1, pp. 102–107, 2015, doi: 10.1016/j.tsf.2015.03.052.
dc.relation.references[30] C. Zhang, Y. Xie, T. Bai, J. Hu, and J. Wang, “Cooperation of multifunction composite structures and fluorescein for photovoltaic performance-enhanced ZnO-based dye-sensitized solar cells,” J. Power Sources, vol. 297, pp. 16–22, 2015, doi: 10.1016/j.jpowsour.2015.07.092.
dc.relation.references31] B. Ilyassov, N. Ibrayev, and N. Nuraje, “Hierarchically assembled nanostructures and their photovoltaic properties,” Mater. Sci. Semicond. Process., vol. 40, pp. 885–889, 2015, doi: 10.1016/j.mssp.2015.07.087.
dc.relation.references[32] B. S. Han, S. Caliskan, W. Sohn, M. Kim, J. K. Lee, and H. W. Jang, “Room Temperature Deposition of Crystalline Nanoporous ZnO Nanostructures for Direct Use as Flexible DSSC Photoanode,” Nanoscale Res. Lett., vol. 11, no. 1, 2016, doi: 10.1186/s11671-016-1437-2.
dc.relation.references[33] G. S. Selopal et al., “Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells,” Sci. Rep., vol. 6, no. August 2015, pp. 1–12, 2016, doi: 10.1038/srep18756.
dc.relation.references[34] J. T. D. Ty, N. Dannehl, D. Schlettwein, and H. Yanagi, “Hybrid organic - Inorganic solar cells with electrodeposited Al-doped zinc oxide,” J. Nanosci. Nanotechnol., vol. 16, no. 4, pp. 3402–3406, 2016, doi: 10.1166/jnn.2016.12291.
dc.relation.references[35] T. Mahmoudi, S. Seo, H. Y. Yang, W. Y. Rho, Y. Wang, and Y. B. Hahn, Efficient bulk heterojunction hybrid solar cells with graphene-silver nanoparticles composite synthesized by microwave-assisted reduction, vol. 28. Elsevier, 2016.
dc.relation.references[36] L. F. G. Larsson et al., “Application of zinc oxide in hybrid solar cells using a P3HT and P3OT polymer junction as charge carrier,” Mater. Res., vol. 22, pp. 1–5, 2019, doi: 10.1590/1980-5373-MR-2018-0820.
dc.relation.references[37] M. K. M.U. Manzoor*, M.T.Z. Butt, M.S. Dar, M.H. Ashraf, T. Ahmad, “THE DEVELOPMENT AND CHARACTERIZATION OF MECHANICALLY EXFOLIATED GRAPHITE BASED COUNTER ELECTRODE FOR NATURAL DYE SENSITIZED SOLAR CELL (DSSC),” ثبثبثب, vol. ث ققثق, no. ثق ثقثقثق, p. ثقثقثقثق, 2019.
dc.relation.references[38] K. S. Karimov et al., “Electrochemical properties of Zn/orange dye aqueous solution/carbon cell,” J. Power Sources, vol. 155, no. 2, pp. 475–477, 2006, doi: 10.1016/j.jpowsour.2005.05.017.
dc.relation.references[39] T. Yang et al., “In situ growth of ZnO nanodots on carbon hierarchical hollow spheres as high-performance electrodes for lithium-ion batteries,” J. Alloys Compd., vol. 735, pp. 1079–1087, 2018, doi: 10.1016/j.jallcom.2017.11.125.
dc.relation.references[40] Z. Chen et al., “Construction of hybrid hollow architectures by in-situ rooting ultrafine ZnS nanorods within porous carbon polyhedra for enhanced lithium storage properties,” Chem. Eng. J., vol. 326, pp. 680–690, 2017, doi: 10.1016/j.cej.2017.06.009.
dc.relation.references[41] Q. Zhang et al., “All-Metal-Organic Framework-Derived Battery Materials on Carbon Nanotube Fibers for Wearable Energy-Storage Device,” Adv. Sci., vol. 5, no. 12, 2018, doi: 10.1002/advs.201801462.
dc.relation.references[42] A. Xia, X. Pu, Y. Tao, H. Liu, and Y. Wang, “Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries,” Appl. Surf. Sci., vol. 481, no. December 2018, pp. 852–859, 2019, doi: 10.1016/j.apsusc.2019.03.197.
dc.relation.references[43] J. Shi et al., “An Ultrahigh Energy Density Quasi-Solid-State Zinc Ion Microbattery with Excellent Flexibility and Thermostability,” Adv. Energy Mater., vol. 9, no. 37, pp. 1–9, 2019, doi: 10.1002/aenm.201901957.
dc.relation.references44] X. Xiao et al., “High-performance solid-state Zn batteries based on a free-standing organic cathode and metal Zn anode with an ordered nano-architecture,” Nanoscale Adv., vol. 2, no. 1, pp. 296–303, 2020, doi: 10.1039/c9na00562e.
dc.relation.references[45] C. Li et al., “An ultra-high endurance and high-performance quasi-solid-state fiber-shaped Zn-Ag 2 O battery to harvest wind energy,” J. Mater. Chem. A, vol. 7, no. 5, pp. 2034–2040, 2019, doi: 10.1039/c8ta10807b.
dc.relation.references[46] T. Li, M. Li, H. Li, X. Zhou, and H. Zhao, “The construction of a novel rechargeable Zn(OH)42– ion battery,” Mater. Lett., vol. 273, p. 127989, 2020, doi: 10.1016/j.matlet.2020.127989.
dc.relation.references[47] Y. Zhao et al., “Achieving high capacity and long life of aqueous rechargeable zinc battery by using nanoporous-carbon-supported poly(1,5-naphthalenediamine) nanorods as cathode,” Energy Storage Mater., vol. 28, no. March, pp. 64–72, 2020, doi: 10.1016/j.ensm.2020.03.001.
dc.relation.references[48] T. Z. Qinghua Li, Jihuai Wu, Qunwei Tang, Zhang Lan, Pinjiang Li, “Application of Polymer Gel Electrolyte With Graphite Powder in Quasi-Solid-State Dye-Sensitized Solar Cells,” Polym. Polym. Compos., vol. 16, no. 2, pp. 101–113, 2009, doi: 10.1002/pc.
dc.relation.references[49] E. Guillén et al., “ZnO-based dye solar cell with pure ionic-liquid electrolyte and organic sensitizer: The relevance of the dye-oxide interaction in an ionic-liquid medium,” Phys. Chem. Chem. Phys., vol. 13, no. 1, pp. 207–213, 2011, doi: 10.1039/c0cp00507j.
dc.relation.references[50] N. M. Gómez-Ortíz et al., “Influence of dye chemistry and electrolyte solution on interfacial processes at nanostructured zno in dye-sensitized solar cells,” J. Photochem. Photobiol. A Chem., vol. 264, pp. 26–33, 2013, doi: 10.1016/j.jphotochem.2013.04.020.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalCeldas DSSc
dc.subject.proposalDSSc Cells
dc.subject.proposalNanowires
dc.subject.proposalnanoalambres
dc.subject.proposalNanoparticles
dc.subject.proposalNanopartículas
dc.subject.proposalBaterías orgánicas
dc.subject.proposalOrganic Batteries
dc.subject.proposalZinc Oxide
dc.subject.proposalÓxido de zinc
dc.subject.proposalSilver
dc.subject.proposalPlata
dc.subject.proposalGraphite
dc.subject.proposalGrafito
dc.subject.proposalPolyethylene Glycol
dc.subject.proposalPolietilenglicol
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito