Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorDueñas Gómez, Zulma Janeth
dc.contributor.advisorMartínez Ramírez, Jorge Ariel
dc.contributor.authorMachacado Rojas, Mável Ximena
dc.date.accessioned2020-11-11T15:53:06Z
dc.date.available2020-11-11T15:53:06Z
dc.date.issued2020-11-10
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78612
dc.description.abstractIntroducción: p-cresol (PC), toxina urémica producida por la microbiota intestinal no ha sido cuantificada en Colombia, sus elevadas concentraciones en la creciente población de hemodiálisis (HD) es perjudicial en distintos tejidos, acentuando la inflamación, oxidación y desgaste de las reservas proteicas y energéticas. Objetivo: identificar relación entre PC sérico y masa muscular en pacientes en HD del Instituto Nacional del Riñón en Bogotá D.C. Métodos: se incorporaron 29 pacientes en HD de mantenimiento con dosis de diálisis adecuada; se recolectó información de la historia clínica, la toma de muestras se hizo antes de la hemodiálisis y tras 30 minutos de su terminación se midió la masa muscular mediante técnicas de bioimpedancia y antropometría. Se validó un método de cromatografía de gases con detector de ionización en flama (GC-FID) para la determinación de PC total presente en suero humano; consecutivamente se realizó la determinación de PC recolectado y almacenado en su matriz a -80ºC hasta el momento de su procesamiento. El análisis de datos se realizó en Rstudio® para determinar si existía correlación entre concentraciones de PC y masa muscular y otras covariables de interés. Resultados: los niveles de PC se determinaron en el rango esperado para pacientes de HD crónica (10.1 ± 4.5 mg/L). El índice de masa muscular fue de 8.83 kg/m2 en hombres y 7.44 kg/m2 en mujeres, el ángulo de fase de 6.1º (predictor de mortalidad cuando es <4.8º). No se encontró correlación significativa entre PC y masa muscular (hombres p=0.4, mujeres p=0.55) y otras covariables. Conclusiones: no se estableció correlación entre los niveles de PC y la masa muscular estimada por bioimpedancia eléctrica multifrecuencia, sin embargo, se identificaron tendencias inversamente proporcionales entre el PC y ángulo de fase.
dc.description.abstractIntroduction: p-cresol (PC), uremic toxin produced by the intestinal microbiota has not been quantified in Colombia, its high concentrations in the growing hemodialysis (HD) population is harmful in different tissues, accentuating inflammation, oxidation and wear of the protein and energy reserves. Objective: to identify the relationship between serum PC and muscle mass in HD patients from the Instituto Nacional del Riñón in Bogotá D.C. Methods: 29 patients on maintenance HD were incorporated with an adequate dialysis dose; Information from the medical history was collected, the samples were taken before hemodialysis and after 30 minutes from its completion, muscle mass was measured using bioimpedance and anthropometric techniques. A gas chromatography method with flame ionization detector (GC-FID) was validated for the determination of total PC present in human serum; consecutively, the determination of PC collected and stored in its matrix was performed at -80ºC until the time of its processing. Data analysis was performed in R studio® to determine if there was a correlation between PC concentrations and muscle mass, and other covariates of interest. Results: PC levels were determined in the ex-pected range for chronic HD patients (10.1 ± 4.5 mg / L). The muscle mass index was 8.83 kg / m2 in men and 7.44 kg / m2 in women, the phase angle of 6.1º (predictor of mortality when it is <4.8º). No significant correlation was found between PC and muscle mass (men p = 0.4, women p = 0.55) and other covariates. Conclusions: no correlation was established between PC levels and muscle mass estimated by multi-frequency elec-trical bioimpedance, however inversely proportional trends were identified between PC and phase angle.
dc.format.extent133
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humana
dc.titleCuantificación del p-cresol sérico y su relación con la masa muscular en pacientes en hemodiálisis
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Fisiología renal
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Fisiología
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesBoron Walter F. BEL. Fisiología Médica. Tercera. Barcelona, España: Elsevier, 2017.
dc.relation.referencesWolf M. Mineral (Mal)Adaptation to kidney disease—Young investigator award address: American society of nephrology kidney week 2014. Clin J Am Soc Nephrol 2015; 10: 1875–1885.
dc.relation.referencesAbbasi MA hme., Chertow GM, Hall YN. End-stage renal disease. BMJ Clin Evid 2010; 2010: 1–16.
dc.relation.referencesBikbov B, Purcell CA, Levey AS, et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020; 395: 709–733.
dc.relation.referencesUniversity of Washington. Global Burden of Disease (GBD)-Colombia. Institute for Health Metrics and Evauation, http://www.healthdata.org/colombia?language=149)Institute for Health Metrics and Evaluation (IHME). Global Burden of Disease (GBD)-Colombia (2019, consultado el 17 de marzo de 2020).
dc.relation.referencesFondo Colombiano de Enfermedades de Alto Costo, Cuenta de Alto Costo (CAC). Situación de la enfermedad renal crónica, la hipertensión arterial y la diabetes mellitus en Colombia 2019. Bogotá D.C., 2020.
dc.relation.referencesHanna RM, Ghobry L, Wassef O, et al. A Practical Approach to Nutrition, Protein-Energy Wasting, Sarcopenia, and Cachexia in Patients with Chronic Kidney Disease. Blood Purif 2020; 49: 202–211.
dc.relation.referencesWatanabe H, Enoki Y, Maruyama T. Sarcopenia in chronic kidney disease: Factors, mechanisms, and therapeutic interventions. Biol Pharm Bull 2019; 42: 1437–1445.
dc.relation.referencesKhoury T, Tzukert K, Abel R, et al. The gut-kidney axis in chronic renal failure: A new potential target for therapy. Hemodial Int 2017; 21: 323–334.
dc.relation.referencesRamezani A, Massy ZA, Meijers B, et al. Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. Am J Kidney Dis 2016; 67: 483–498.
dc.relation.referencesRukavina Mikusic NL, Kouyoumdzian NM, Choi MR. Gut microbiota and chronic kidney disease: evidences and mechanisms that mediate a new communication in the gastrointestinal-renal axis. Pflugers Archiv European Journal of Physiology 2020; 472: 303–320.
dc.relation.referencesRonco C. The Rise of Expanded Hemodialysis. Blood Purif 2017; 44: I–VIII.
dc.relation.referencesKoppe L, Pillon NJ, Vella RE, et al. p-Cresyl Sulfate Promotes Insulin Resistance Associated with CKD. J Am Soc Nephrol 2013; 24: 88–99.
dc.relation.referencesDepartamento Nacional de Planeación (DNP). Objetivos de Desarrollo Sostenible, https://www.ods.gov.co/es/objetivos/salud-y-bienestar (2019, consultado el 10 de julio de 2020).
dc.relation.referencesMafra D, Borges N, Alvarenga L, et al. Dietary components that may influence the disturbed gut microbiota in chronic kidney disease. Nutrients 2019; 11: 1–23.
dc.relation.referencesVanholder R, Schepers E, Pletinck A, et al. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: A systematic review. J Am Soc Nephrol 2014; 25: 1897–1907.
dc.relation.referencesWu IW, Hsu KH, Hsu HJ, et al. Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients-A prospective cohort study. Nephrol Dial Transplant 2012; 27: 1169–1175.
dc.relation.referencesSato E, Mori T, Mishima E, et al. Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease. Sci Rep 2016; 6: 1–13.
dc.relation.referencesD’alessandro C, Piccoli GB, Barsotti M, et al. Prevalence and correlates of sarcopenia among elderly CKD outpatients on tertiary care. Nutrients 2018; 10: 1–13.
dc.relation.referencesHernández A, Monguí K, Rojas Y. Descripción de la composición corporal, fuerza muscular y actividad física en pacientes con insuficiencia renal crónica en hemodiálisis en una unidad renal en Bogotá, Colombia. Rev Andaluza Med del Deport 2018; 11: 52–56.
dc.relation.referencesAronov PA, Luo FJG, Plummer NS, et al. Colonic contribution to uremic solutes. J Am Soc Nephrol 2011; 22: 1769–1776.
dc.relation.referencesDe S, Roy A. Hemodialysis Membranes For Engineers to Medical Practitioners. Boca Raton: Taylor & Francis, 2017.
dc.relation.referencesGroup KDIGO (KDIGO) CW. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013; 3: 1.
dc.relation.referencesGorostidi M, Santamaría R, Alcázar R, et al. Documento de la sociedad española de nefrología sobre las guías KDIGO para la evaluación y el tratamiento de la enfermedad renal crónica. Nefrologia 2014; 34: 302–316.
dc.relation.referencesMinisterio de salud y protección social. Guía de Práctica Clínica para el diagnóstico y tratamiento de la Enfermedad Renal Crónica. 2016.
dc.relation.referencesDaugirdas J, Blake P, Todd I (eds). Handbook of dialysis. Fifth edit. Wolters Kluwer Health, 2015.
dc.relation.referencesAndreoli MCC, Totoli C. Peritoneal Dialysis. Rev Assoc Med Bras 2020; 66: s37–s44.
dc.relation.referencesRonco C, Clark WR. Haemodialysis membranes. Nat Rev Nephrol 2018; 14: 394–410.
dc.relation.referencesKlaassen CD. Casarett and Doull’s.Toxicology.The Basic Science of Poisons. 9a ed. McGraw-Hill Education, 2019.
dc.relation.referencesSaito A. Uremic toxins. 2012. Epub ahead of print 2012. DOI: 10.4009/jsdt.42.127.
dc.relation.referencesDuranton F, Cohen G, De Smet R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol 2012; 23: 1258–1270.
dc.relation.referencesPopkov VA, Silachev DN, Zalevsky AO, et al. Mitochondria as a source and a target for uremic toxins. Int J Mol Sci; 20. Epub ahead of print 2019. DOI: 10.3390/ijms20123094.
dc.relation.referencesEuropean Work Group on Uremic toxins (EUTox). Uremic Solutes Database. European Uremic Toxin, https://database.uremic-toxins.org/soluteList.php (2012, consultado el 17 de mayo de 2020).
dc.relation.referencesMair R, Sirich T, Meyer T. Uremic Toxin Clearance and Cardiovascular Toxicities. Toxins (Basel) 2018; 10: 226.
dc.relation.referencesRuan W, Engevik MA, Spinler JK, et al. Healthy Human Gastrointestinal Microbiome: Composition and Function After a Decade of Exploration. Dig Dis Sci 2020; 65: 695–705.
dc.relation.referencesGupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol; 8. Epub ahead of print 2017. DOI: 10.3389/fmicb.2017.01162.
dc.relation.referencesNyangale EP, Mottram DS, Gibson GR. Gut microbial activity, implications for health and disease: The potential role of metabolite analysis. J Proteome Res 2012; 11: 5573–5585.
dc.relation.referencesGuarner F, Malagelada J-R. Gut flora in health and disease. Lancet 2003; 361: 512–519.
dc.relation.referencesMagnúsdóttir S, Ravcheev D, De Crécy-Lagard V, et al. Systematic genome assessment of B-vitamin biosynthesis suggests cooperation among gut microbes. Front Genet; 6. Epub ahead of print 2015. DOI: 10.3389/fgene.2015.00148.
dc.relation.referencesRowland I, Gibson G, Heinken A, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 2018; 57: 1–24.
dc.relation.referencesYang T, Richards EM, Pepine CJ, et al. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nefrol 2019; 14: 442–456.
dc.relation.referencesInformation NC for B. PubChem Database. P-Cresol, CID=2879, https://pubchem.ncbi.nlm.nih.gov/compound/P-Cresol (consultado el 29 de junio de 2020).
dc.relation.referencesRandall Baselt. Disposition of Toxic Drugs and Chemicals in Man. 11a ed. United States: Biomedical Publications, 2017.
dc.relation.referencesde Loor H, Bammens B, Evenepoel P, et al. Gas Chromatographic–Mass Spectrometric Analysis for Measurement of p-Cresol and Its Conjugated Metabolites in Uremic and Normal Serum. Clin Chem 2005; 51: 1535–1538.
dc.relation.referencesSigma-Aldrich M. p-Cresol, https://www.merckmillipore.com/CO/es/product/p-Cresol,MDA_CHEM-805223 (2018, consultado el 3 de marzo de 2018).
dc.relation.referencesNational Center for Biotechnology Information. PubChem Database. p-Cresol sulfate, CID=4615423, https://pubchem.ncbi.nlm.nih.gov/compound/p-Cresol-sulfate (consultado el 29 de junio de 2020).
dc.relation.referencesDatabase. NC for BIP. p-Cresol glucuronide, CID=154035, https://pubchem.ncbi.nlm.nih.gov/compound/p-Cresol-glucuronide (consultado el 29 de junio de 2020).
dc.relation.referencesKoppe L, Alix PM, Croze ML, et al. P-Cresyl glucuronide is a major metabolite of p-cresol in mouse: In contrast to p-cresyl sulphate, p-cresyl glucuronide fails to promote insulin resistance. Nephrol Dial Transplant 2017; 32: 2000–2009.
dc.relation.referencesVanholder R, De Smet R, Glorieux G, et al. Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int 2003; 63: 1934–1943.
dc.relation.referencesGryp T, Vanholder R, Vaneechoutte M, et al. P-Cresyl Sulfate. Toxins (Basel) 2017; 9: 1–24.
dc.relation.referencesEspi M, Koppe L, Fouque D, et al. Chronic kidney disease-associated immune dysfunctions: Impact of protein-bound uremic retention solutes on immune cells. Toxins (Basel) 2020; 12: 1–16.
dc.relation.referencesShi Y, Tian H, Wang Y, et al. Effect of ionic strength, pH and chemical displacers on the percentage protein binding of protein-bound uremic toxins. Blood Purif 2019; 47: 351–360.
dc.relation.referencesWatanabe H, Miyamoto Y, Otagiri M, et al. Update on the pharmacokinetics and redox properties of protein-bound uremic toxins. J Pharm Sci 2011; 100: 3682–3695.
dc.relation.referencesIkematsu N, Kashiwagi M, Hara K, et al. Organ distribution of endogenous p-cresol in hemodialysis patients. J Med Investig 2019; 66: 81–85.
dc.relation.referencesGuerrero F, Carmona A, Obrero T, et al. Role of endothelial microvesicles released by p ‑ cresol on endothelial dysfunction. Sci Rep 2020; 1–10.
dc.relation.referencesOpdebeeck B, D’Haese PC, Verhulst A. Molecular and cellular mechanisms that induce arterial calcification by indoxyl sulfate and p-cresyl sulfate. Toxins (Basel) 2020; 12: 1–12.
dc.relation.referencesSankowski B, Księżarczyk K, Raćkowska E, et al. Higher cerebrospinal fluid to plasma ratio of p-cresol sulfate and indoxyl sulfate in patients with Parkinson’s disease. Clin Chim Acta 2020; 501: 165–173.
dc.relation.referencesSun CY, Li JR, Wang YY, et al. P-cresol sulfate caused behavior disorders and neurodegeneration in mice with unilateral nephrectomy involving oxidative stress and neuroinflammation. Int J Mol Sci 2020; 21: 1–16.
dc.relation.referencesMutsaers HAM, Caetano-Pinto P, Seegers AEM, et al. Proximal tubular efflux transporters involved in renal excretion of p-cresyl sulfate and p-cresyl glucuronide: Implications for chronic kidney disease pathophysiology. Toxicol Vitr 2015; 29: 1868–1877.
dc.relation.referencesSmith J, Pfaendtner J. Elucidating the Molecular Interactions between Uremic Toxins and the Sudlow II Binding Site of Human Serum Albumin. J Phys Chem B 2020; 124: 3922–3930.
dc.relation.referencesSmet R De, David F, Sandra P, et al. A sensitive HPLC method for the quantification of free and total p -cresol in patients with chronic renal failure. 1998; 278: 1–21.
dc.relation.referencesIUPAC. Compendium of Chemical Terminology. 2nd ed. Oxford: Blackwell Scientific Publications, 1997. Epub ahead of print 1997. DOI: https://doi.org/10.1351/goldbook.
dc.relation.referencesSkoog DA, Holler FJ, Crouch SR. Principios de Análisis Instrumental. Sexta. New York: Cengage Learning, 2008.
dc.relation.referencesHarris DC. Quantitative Chemical Analysis. Eighth Edi. New York: W.H. Freeman and Company, 2010.
dc.relation.referencesMc Nair HM, Miller JM. Basic Gas Chromatography - Tecniques in Analytical Chemistry. 1 ed. New York: John Wiley & Sons, Inc, 1998.
dc.relation.referencesMoein MM, El Beqqali A, Abdel-Rehim M. Bioanalytical method development and validation: Critical concepts and strategies. J Chromatogr B 2017; 1043: 3–11.
dc.relation.referencesKadian N, Raju KSR, Rashid M, et al. Comparative assessment of bioanalytical method validation guidelines for pharmaceutical industry. J Pharm Biomed Anal 2016; 126: 83–97.
dc.relation.referencesGonzález O, Blanco ME, Iriarte G, et al. Bioanalytical chromatographic method validation according to current regulations, with a special focus on the non-well defined parameters limit of quantification, robustness and matrix effect. J Chromatogr A 2014; 1353: 10–27.
dc.relation.referencesFrontera WR, Ochala J. Skeletal Muscle: A Brief Review of Structure and Function. Behav Genet 2015; 45: 183–195.
dc.relation.referencesRomagnoli C, Pampaloni B, Brandi ML. Muscle endocrinology and its relation with nutrition. Aging Clin Exp Res 2019; 31: 783–792.
dc.relation.referencesBuckinx F, Landi F, Cesari M, et al. Pitfalls in the measurement of muscle mass: a need for a reference standard. J Cachexia Sarcopenia Muscle 2018; 9: 269–278.
dc.relation.referencesNational Kidney Foundation. Clinical Practice Guideline for Nutrition in Chronic Kidney Disease: 2019 Update. Acad Nutr Diet 2019; 55.
dc.relation.referencesMargarita Alonso Franch MPR del R. El cuerpo humano: técnicas de estudio de la composición corporal. En: Torre AM de la (ed) Técnicas y métodos de investigación en nutrición humana. Barcelona, España: Editorial Glosa, 2002, pp. 135–163.
dc.relation.referencesHeymsfield SB, McManus C, Smith J, et al. Anthropometric measurement of muscle mass: revised equations for calculating bone-free arm muscle area. Am J Clin Nutr 1982; 36: 680–690.
dc.relation.referencesAdrian EA, Andrew S. The effect of an arteriovenous fi stula and haemodialysis on anthropometric measurements of the upper arm. Eur J Clin Nutr 2020; 9–11.
dc.relation.referencesKittiskulnam P, Eiam-Ong S. Body Composition and Its Clinical Outcome in Maintenance Hemodialysis Patients. En: Karkar A (ed) Aspects in Dialysis. IntechOpen, 2018. Epub ahead of print el 25 de abril de 2018. DOI: 10.5772/intechopen.70353.
dc.relation.referencesBertemes-Filho P, Simini F. Bioimpedance in Biomedical Applications and Research. 2018. Epub ahead of print 2018. DOI: 10.1007/978-3-319-74388-2.
dc.relation.referencesLukaski HC, Kyle UG, Kondrup J. Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: Phase angle and impedance ratio. Curr Opin Clin Nutr Metab Care 2017; 20: 330–339.
dc.relation.referencesCruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing 2010; 39: 412–423.
dc.relation.referencesCruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019; 48: 16–31.
dc.relation.referencesFearon K, Evans WJ, Anker SD. Myopenia-a new universal term for muscle wasting. J Cachexia Sarcopenia Muscle 2011; 2: 1–3.
dc.relation.referencesBaxter Healthcare Corporation. Revaclear Dialyzer. GLBL/MG3/18-0020a –January 2019 Manufacturer., https://renalcare.baxter.com/sites/g/files/ebysai1471/files/2019-01/Revaclear_datasheet_2018.pdf (2018, consultado el 26 de junio de 2020).
dc.relation.referencesSecretaría Distrital de Salud- Fundación CIC Salud. Manual de toma de muestras para análisis microbiológico. Bogotá D.C., 2015.
dc.relation.referencesAlvero C, Correas G, Ronconi M, et al. La bioimpedancia electrica como metodo de estimacion de la composicion corporal. Rev Andaluza Med del Deport 2011; 4: 17–28.
dc.relation.referencesMarfell-Jones M, Olds T, Stewart AD, et al. International Standards for Anthropometric Assessment. Int Soc Adv Kinanthropometry.
dc.relation.referencesFDA F and DA. Bioanalytical Method Validation Guidance. Food Drug Adm 2018; 1043: 25.
dc.relation.referencesPlentick A, Vanholder R, Glorieux G. Chapter 5. p-Cresyl sulfate. En: Niwa T (ed) Uremic Toxins. New Jersey, Hoboken: Wiley-VCH, Inc., 2012, pp. 77–86.
dc.relation.references’t Lam RUE. Scrutiny of variance results for outliers: Cochran’s test optimized. Anal Chim Acta 2010; 659: 68–84.
dc.relation.referencesFondo Colombiano de Enfermedades de Alto Costo. Situación de la enfermedad renal crónica, la hipertensión arterial y la diabetes mellitus en Colombia 2017. 2018.
dc.relation.referencesGuida B, Cataldi M, Memoli A, et al. Effect of a Short-Course Treatment with Synbiotics on Plasma p-Cresol Concentration in Kidney Transplant Recipients. 5724. Epub ahead of print 2017. DOI: 10.1080/07315724.2017.1334602.
dc.relation.referencesEidi F, Poor F, Ostadrahimi A, et al. Clinical Nutrition ESPEN Effect of Lactobacillus Rhamnosus on serum uremic toxins ( phenol and P-Cresol ) in hemodialysis patients : A double blind randomized clinical trial. Clin Nutr ESPEN 2018; 1–7.
dc.relation.referencesBenítez Méndez M, Torres DM, Curbelo Rodríguez L, et al. Comportamiento diferencial del paciente diabético en relación al no diabético en Hemodiálisis, en el hospital provincial de Camagüey, Cuba. Rev Colomb Nefrol 2017; 4: 168.
dc.relation.referencesBucharles SGE, Wallbach KKS, Moraes TP de, et al. Hypertension in patients on dialysis: diagnosis, mechanisms, and management. J Bras Nefrol 2019; 41: 400–411.
dc.relation.referencesClase CM, Carrero JJ, Ellison DH, et al. Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2020; 97: 42–61.
dc.relation.referencesSupplements KI. Clinical practice guideline update for the diagnosis , evaluation , prevention , and treatment of chronic kidney disease – mineral and bone disorder (CKD-MBD). 2017; 1–59.
dc.relation.referencesCare D, Suppl SS. 6. Glycemic Targets: Standards of Medical Care in Diabetes—2019. Diabetes Care 2019; 42: S61–S70.
dc.relation.referencesHoshino J, Larkina M, Karaboyas A, et al. Unique hemoglobin A1c level distribution and its relationship with mortality in diabetic hemodialysis patients. Kidney Int 2017; 92: 497–503.
dc.relation.referencesKittiskulnam P, Johansen KL. The obesity paradox: A further consideration in dialysis patients. Semin Dial 2019; 32: 485–489.
dc.relation.referencesMinisterio de Salud y Protección Social. Resolucion 2465 de 2016. 14 Junio 2016 2016; 47.
dc.relation.referencesFouque D, Kopple J, Cano N, et al. A proposed nomenclature and diagnostic criteria for protein – energy wasting in acute and chronic kidney disease. Kidney Int 2008; 73: 391–398.
dc.relation.referencesWu CC, Liou HH, Su PF, et al. Abdominal obesity is the most significant metabolic syndrome component predictive of cardiovascular events in chronic hemodialysis patients. Nephrol Dial Transplant 2011; 26: 3689–3695.
dc.relation.referencesRoss R, Neeland IJ, Yamashita S, et al. Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat Rev Endocrinol 2020; 16: 177–189.
dc.relation.referencesBeberashvili I, Azar A, Abu Hamad R, et al. Abdominal obesity in normal weight versus overweight and obese hemodialysis patients: Associations with nutrition, inflammation, muscle strength, and quality of life. Nutrition 2019; 59: 7–13.
dc.relation.referencesFrisancho AR. New norms of upper limb fat and muscle areas for assessment of nutritional status. Am J Clin Nutr 1981; 34: 2540–2545.
dc.relation.referencesMph CS, Yabes J, Pike F, et al. Changes in Anthropometry and Mortality in Maintenance Hemodialysis Patients in the HEMO Study. YAJKD 2013; 62: 1141–1150.
dc.relation.referencesHuang CX, Tighiouart H, Beddhu S, et al. Both low muscle mass and low fat are associated with higher all-cause mortality in hemodialysis patients. Kidney Int 2010; 77: 624–629.
dc.relation.referencesSegall L, Mardare N, Ungureanu S, et al. Nutritional status evaluation and survival in haemodialysis patients in one centre from Romania. 2009; 2536–2540.
dc.relation.referencesBishop CW, Bowen PE, Ritchey SJ. Norms for nutritional assessment of American adults by upper arm anthropometry. Am J Clin Nutr 1981; 34: 2530–2539.
dc.relation.referencesJanssen I, Heymsfield SB, Wang ZM, et al. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol 2000; 89: 81–88.
dc.relation.referencesPanorchan K, Nongnuch A, Goodlad C, et al. Changes in muscle and fat mass with haemodialysis detected by multi-frequency bioelectrical impedance analysis. 2015; 1109–1112.
dc.relation.referencesSlee A, Mckeaveney C, Adamson G, et al. Estimating the Prevalence of Muscle Wasting , Weakness , and Sarcopenia in. J Ren Nutr 2019; 1–9.
dc.relation.referencesBeaudart C, Bruyère O, Geerinck A, et al. Equation models developed with bioelectric impedance analysis tools to assess muscle mass: A systematic review. Clin Nutr ESPEN 2020; 35: 47–62.
dc.relation.referencesVanholder R, Glorieux G, Eloot S. Once upon a time in dialysis : the last days of Kt / V ? Kidney Int 2015; 88: 460–465.
dc.relation.referencesvan Gelder MK, Middel IR, Vernooij RWM, et al. Protein-bound uremic toxins in hemodialysis patients relate to residual kidney function, are not influenced by convective transport, and do not relate to outcome. Toxins (Basel); 12. Epub ahead of print 2020. DOI: 10.3390/toxins12040234.
dc.relation.referencesDaugirdas JT. Errors in Computing the Normalized Protein Catabolic Rate due to Use of Single-pool Urea Kinetic Modeling or to Omission of the Residual Kidney Urea Clearance. J Ren Nutr 2017; 27: 256–259.
dc.relation.referencesKovesdy CP, Shinaberger CS, Kalantar-Zadeh K. Epidemiology of dietary nutrient intake in ESRD. Semin Dial 2010; 23: 353–358.
dc.relation.referencesBeberashvili I, Azar A, Sinuani I, et al. Longitudinal changes in bioimpedance phase angle reflect inverse changes in serum IL-6 levels in maintenance hemodialysis patients. Nutrition 2014; 30: 297–304.
dc.relation.referencesSalmean YA, Segal MS, Palii SP, et al. Fiber supplementation lowers plasma p-cresol in chronic kidney disease patients. J Ren Nutr 2015; 25: 316–320.
dc.relation.referencesSirich TL, Plummer NS, Gardner CD, et al. Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin J Am Soc Nephrol 2014; 9: 1603–1610.
dc.relation.referencesMonteiro EB, Soares E dos R, Trindade PL, et al. Uraemic toxin-induced inflammation and oxidative stress in human endothelial cells: protective effect of polyphenol-rich extract from açaí. Exp Physiol 2020; 105: 542–551.
dc.relation.referencesMosinska P, Storr M, Fichna J. The role of AST-120 and protein-bound uremic toxins in irritable bowel syndrome: A therapeutic perspective. Therap Adv Gastroenterol 2015; 8: 278–284.
dc.relation.referencesLee C, Hsu C, Tain Y, et al. Effects of AST-120 on Blood Concentrations of Protein-Bound Uremic Toxins and Biomarkers of Cardiovascular Risk in Chronic Dialysis Patients. 2014; 833: 76–83.
dc.relation.referencesEvenepoel P, Bammens B, Verbeke K, et al. Acarbose treatment lowers generation and serum concentrations of the protein-bound solute p-cresol: A pilot study. Kidney Int 2006; 70: 192–198.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalp-cresol
dc.subject.proposalp-cresol
dc.subject.proposalEnfermedad Renal Crónica Terminal
dc.subject.proposalTerminal Chronic Kidney Disease
dc.subject.proposalHemodiálisis
dc.subject.proposalHemodialysis
dc.subject.proposalMicrobioma Gastrointestinal
dc.subject.proposalGastrointestinal Microbiome
dc.subject.proposalMúsculo Esquelético
dc.subject.proposalGas Chromatography
dc.subject.proposalImpedancia Eléctrica.
dc.subject.proposalSkeletal Muscle
dc.subject.proposalElectrical Impedance
dc.subject.proposalCromatografía de Gases
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito