Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorZea Ramírez, Hugo Ricardo
dc.contributor.advisorSierra Ávila, César Augusto
dc.contributor.authorRojas Forero, Ana Yuri Viviana
dc.date.accessioned2020-11-17T14:40:46Z
dc.date.available2020-11-17T14:40:46Z
dc.date.issued2020-10-28
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78628
dc.description.abstractTextile industry produces the highest dye discharge worldwide. This industry is one of the most important sectors of economy in Colombia and generates high wastewater amounts. Thus, it´s necessary to develop new and alternative materials and treatments that guarantee the hydric resource quality. The above, considering the inefficiency of the Colombian legislation and the traditional wastewater treatments to accomplish its purpose, causes rise to environmental and human health negative impacts. Metal-organic frameworks (MOFs) are widely known because of their multiple applications, such as gas adsorption, photocatalytic hydrogen production, antibacterial activity and wastewater treatment, etc. However, these fine-powdered materials have not been implemented at large scale as result of their water instability and difficult manipulation. Considering the disadvantages that prevent MOF’s implementation in aqueous media dye-removal applications, herein a PVC/MOF system was developed through physical and chemical modifications in the PVC to support the MOF on its surface employing green chemistry. The PVC is a widely used polymer due to its physical and chemical characteristics and its low-cost production. In the MOF/PVC system it works as the NH2-MIL-53(Al) support. NH2-MIL-53(Al)is a water stable MOF with high surface area and widely used in several applications. The MOF/PVC system synthesis was developed using atom transfer radical polymerization (ATRP) to obtain a PVC-g-poly(methacrylic) acid and subsequently, MOF linkage was achieved, by employing green chemistry on the modified polymer surface on aqueous media. Thereafter, the powder NH2-MIL-53(Al) and the MOF/PVC system were evaluated in the indigo carmine aqueous media removal , achieving up to 89% and 25% of dye reduction, respectively. Finally, we proposed a possible removal mechanism based on the chemical and structural characteristics of the developed system. The MOF/PVC system projects as a wastewater material to treat water with dyes at large scale because of its easily manipulation and recover from the aqueous media characteristic making it moldable according to industry needs.
dc.description.abstractLa industria textil es la mayor aportante de vertimientos con colorantes a nivel mundial. Teniendo en cuenta que en Colombia esta industria representa un sector muy importante de la economía y que su contribución de vertimientos es significativamente alta, se hace necesario el desarrollo de nuevos materiales y tratamientos alternativos que garanticen la calidad del recurso hídrico. Lo anterior, considerando que la legislación ambiental colombiana y los tratamientos tradicionales de aguas residuales resultan ineficaces en el cumplimiento de este propósito generando así impactos negativos, tanto ambientales como de salud pública. Las estructuras metal-orgánicas (MOF) son ampliamente conocidas a causa de sus múltiples aplicaciones, tales como adsorción de gases, producción fotocatalítica de hidrógeno, actividad antibacterial y tratamiento de aguas, entre otras. A pesar de esto, no se ha implementado el uso de este tipo de materiales a gran escala debido a que, por un lado, son inestables en medios acuosos y, por otro lado, su estado físico consiste en un polvo muy fino, lo cual dificulta su manipulación. Teniendo en cuenta las desventajas previamente mencionadas que impiden la implementación de los MOF para la remoción de colorantes en medios acuosos, en el presente trabajo se desarrolló un sistema MOF/PVC mediante modificaciones físicas y químicas del policloruro de vinilo (PVC) para soportar el MOF en su superficie. El PVC, material ampliamente empleado en la industria debido a sus características físicas, químicas y su bajo costo, actúa en el sistema MOF/PVC como soporte del MOF estable en agua, NH2-MIL-53(Al), que presenta gran área superficial y gran variedad de aplicaciones. La síntesis del sistema MOF/PVC se desarrolló mediante una polimerización radicalaria por transferencia de átomo (ATRP, por sus siglas en inglés) para obtener PVC-g-ácido poli(metacrílico), y el posterior anclaje del MOF siguiendo una metodología verde sobre la superficie modificada del polímero en medio acuoso. Enseguida, se evaluó el NH2-MIL-53(Al) en polvo y el sistema PVC/MOF desarrollado, en la remoción de índigo carmín en medio acuoso, alcanzando una reducción de hasta un 89% y un 25% en la concentración del colorante en el medio acuoso, respectivamente. Finalmente, se propuso un posible mecanismo de adsorción del colorante, con base en las características químicas y estructurales del sistema desarrollado. El sistema MOF/PVC se proyecta como un material para el tratamiento de aguas contaminadas con colorantes a gran escala, puesto que puede ser fácilmente manipulado y recuperado del medio acuoso y, de esta manera moldearse de acuerdo a las necesidades de la industria.
dc.format.extent91
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc660 - Ingeniería química
dc.titleDesarrollo de estructura metal-orgánica soportada sobre policloruro de vinilo y su aplicación en el control de colorantes en medios acuosos
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de investigación: Ciencia de materiales
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.contributor.researchgroupGrupo de Investigación en Materiales, Catálisis y Medio Ambiente
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesSaratale, R. G.; Saratale, G. D.; Chang, J. S.; Govindwar, S. P. Journal of the Taiwan Institute of Chemical Engineers Bacterial Decolorization and Degradation of Azo Dyes : A Review. J. Taiwan Inst. Chem. Eng. 2011, 42 (1), 138–157. https://doi.org/10.1016/j.jtice.2010.06.006
dc.relation.referencesMamun, K.; Asw, R.; Fahmida, K. Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO 2 : A Review. Appl. Water Sci. 2015, 7 (4), 1569–1578. https://doi.org/10.1007/s13201-015-0367-y
dc.relation.referencesKatheresan, V.; Kansedo, J.; Lau, S. Y. Efficiency of Various Recent Wastewater Dye Removal Methods: A Review. J. Environ. Chem. Eng. 2018, 6 (4), 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060
dc.relation.referencesVacchi, F. I.; Vendemiatti, J. A. de S.; da Silva, B. F.; Zanoni, M. V. B.; Umbuzeiro, G. de A. Quantifying the Contribution of Dyes to the Mutagenicity of Waters under the Influence of Textile Activities. Sci. Total Environ. 2017, 601–602, 230–236. https://doi.org/10.1016/j.scitotenv.2017.05.103
dc.relation.referencesVenegas Loaiza, A. Solamente 48,2% de Los Municipios Cuentan Con Plantas de Tratamiento de Aguas Residuales. La Republica. March 16, 2018
dc.relation.referencesRamesh, T. N.; Kirana, D. V.; Ashwini, A.; Manasa, T. R. Calcium Hydroxide as Low Cost Adsorbent for the Effective Removal of Indigo Carmine Dye in Water. J. Saudi Chem. Soc. 2017, 21 (2), 165–171. https://doi.org/10.1016/j.jscs.2015.03.001
dc.relation.referencesVidya Lekshmi, K. P.; Yesodharan, S.; Yesodharan, E. P. MnO2 Efficiently Removes Indigo Carmine Dyes from Polluted Water. Heliyon 2018, 4 (11). https://doi.org/10.1016/j.heliyon.2018.e00897
dc.relation.referencesSalgot, M.; Folch, M.; Unit, S. S. Wastewater Treatment and Water Reuse. Curr. Opin. Environ. Sci. Heal. 2018. https://doi.org/10.1016/j.coesh.2018.03.005
dc.relation.referencesSood, S.; Kumar, S.; Umar, A.; Kaur, A.; Kumar, S.; Kumar, S. TiO 2 Quantum Dots for the Photocatalytic Degradation of Indigo Carmine Dye. J. Alloys Compd. 2015, 650, 193–198. https://doi.org/10.1016/j.jallcom.2015.07.164
dc.relation.referencesBaumer, J. D.; Valério, A.; Guelli, S. M. A.; Souza, U. De; Erzinger, G. S.; Jr, A. F.; Augusto, A.; Souza, U. De. Toxicity of Enzymatically Decolored Textile Dyes Solution by Horseradish Peroxidase. J. Hazard. Mater. 2018, 360, 82–88. https://doi.org/10.1016/j.jhazmat.2018.07.102
dc.relation.referencesBasheer, A. A. New Generation Nano-Adsorbents for the Removal of Emerging Contaminants in Water. J. Mol. Liq. 2018, 261, 583–593. https://doi.org/https://doi.org/10.1016/j.molliq.2018.04.021
dc.relation.referencesGuan, Y.; Xia, M.; Wang, X.; Cao, W.; Marchetti, A. Water-Based Preparation of Nano-Sized NH2-MIL-53(Al) Frameworks for Enhanced Dye Removal. Inorganica Chem. Acta 2019, 484, 180–184. https://doi.org/10.1016/j.ica.2018.09.036
dc.relation.referencesKumar, P.; Bansal, V.; Kim, K.; Kwon, E. E. Metal-Organic Frameworks ( MOFs ) as Futuristic Options for Wastewater Treatment. J. Ind. Eng. Chem. 2018, 62, 130–145. https://doi.org/10.1016/j.jiec.2017.12.051
dc.relation.referencesJiang, D.; Chen, M.; Wang, H.; Zeng, G.; Huang, D.; Cheng, M.; Liu, Y.; Xue, W.; Wang, Z. W. The Application of Different Typological and Structural MOFs-Based Materials for the Dyes Adsorption. Coord. Chem. Rev. 2019, 380, 471–483. https://doi.org/10.1016/j.ccr.2018.11.002
dc.relation.referencesMirkovic, I.; Lei, L.; Ljubic, D.; Zhu, S. Crystal Growth of Metal-Organic Framework-5 around Cellulose-Based Fibers Having a Necklace Morphology. ACS Omega 2019, 4 (1), 169–175. https://doi.org/10.1021/acsomega.8b02332
dc.relation.referencesBao, T.; Su, Y.; Zhang, N.; Gao, Y.; Wang, S. Hydrophilic Carboxyl Cotton for in Situ Growth of UiO-66 and Its Application as Adsorbents. Ind. Eng. Chem. Res. 2019, 58 (44), 20331–20339. https://doi.org/10.1021/acs.iecr.9b05172
dc.relation.referencesNeufeld, M. J.; Harding, J. L.; Reynolds, M. M. Immobilization of Metal-Organic Framework Copper(II) Benzene-1,3,5-Tricarboxylate (CuBTC) onto Cotton Fabric as a Nitric Oxide Release Catalyst. ACS Appl. Mater. Interfaces 2015, 7 (48), 26742–26750. https://doi.org/10.1021/acsami.5b08773
dc.relation.referencesMa, K.; Wang, Y.; Chen, Z.; Islamoglu, T.; Lai, C.; Wang, X.; Fei, B.; Farha, O. K.; Xin, J. H. Facile and Scalable Coating of Metal-Organic Frameworks on Fibrous Substrates by a Coordination Replication Method at Room Temperature. ACS Appl. Mater. Interfaces 2019, 11, 22714–22721. https://doi.org/10.1021/acsami.9b04780
dc.relation.referencesHsiue, G. H.; Liu, Y. L.; Liao, H. H. Metal-Catalyzed Living Radical Graft Copolymerization of Olefins Initiated from the Structural Defects of Poly(Vinyl Chloride). J. Polym. Sci. Part A Polym. Chem. 2001, 39 (7), 1120–1135. https://doi.org/10.1002/1099-0518(20010401)39:7<1120::AID-POLA1089>3.0.CO;2-Z
dc.relation.referencesZhang, C.; Mu, Y.; Zhang, W.; Zhao, S.; Wang, Y. PVC-Based Hybrid Membranes Containing Metal-Organic Frameworks for Li+/Mg2+ Separation. J. Memb. Sci. 2020, 596, 117724. https://doi.org/10.1016/j.memsci.2019.117724
dc.relation.referencesNeufeld, M. J.; Ware, B. R.; Lutzke, A.; Khetani, S. R.; Reynolds, M. M. Water-Stable Metal-Organic Framework/Polymer Composites Compatible with Human Hepatocytes. ACS Appl. Mater. Interfaces 2016, 8 (30), 19343–19352. https://doi.org/10.1021/acsami.6b05948
dc.relation.referencesBehboudi, A.; Jafarzadeh, Y.; Yegani, R. Chemical Engineering Research and Design Preparation and Characterization of TiO 2 Embedded PVC Ultrafiltration Membranes. Chem. Eng. Res. Des. 2016, 114, 96–107. https://doi.org/10.1016/j.cherd.2016.07.027
dc.relation.referencesLinda, T.; Muthupoongodi, S.; Shajan, X. S.; Balakumar, S. Photocatalytic Degradation of Congo Red and Crystal Violet Dyes on Cellulose / PVC / ZnO Composites under UV Light Irradiation. Mater. Today Proc. 2016, 3 (6), 2035–2041. https://doi.org/10.1016/j.matpr.2016.04.106
dc.relation.referencesMallakpour, S.; Shamsaddinimotlagh, S. Ultrasonics - Sonochemistry Ultrasonic-Promoted Rapid Preparation of PVC / TiO 2 -BSA Nanocomposites : Characterization and Photocatalytic Degradation of Methylene Blue. Ultrason. - Sonochemistry 2018, 41 (September 2017), 361–374. https://doi.org/10.1016/j.ultsonch.2017.09.052
dc.relation.referencesXu, S.; Ni, Y. NH2-MIL-53(Al) Nanocrystals: A Fluorescent Probe for the Fast Detection of Aromatic Nitro-Compounds and Ions in Aqueous Systems. Analyst 2019, 144 (5), 1687–1695. https://doi.org/10.1039/c8an01976b
dc.relation.referencesMartínez, F.; Orcajo, G.; Briones, D.; Leo, P.; Calleja, G. Catalytic Advantages of NH2-Modified MIL-53(Al) Materials for Knoevenagel Condensation Reaction. Microporous Mesoporous Mater. 2017, 246, 43–50. https://doi.org/10.1016/j.micromeso.2017.03.011
dc.relation.referencesSánchez-Sánchez, M.; Getachew, N.; Díaz, K.; Díaz-García, M.; Chebude, Y.; Díaz, I. Synthesis of Metal–Organic Frameworks in Water at Room Temperature: Salts as Linker Sources. Green Chem. 2015, 17 (3), 1500–1509. https://doi.org/10.1039/C4GC01861C
dc.relation.referencesCheng, X.; Zhang, A.; Hou, K.; Liu, M.; Wang, Y.; Song, C.; Zhang, G.; Guo, X. Size- and Morphology-Controlled NH2-MIL-53 (Al) Prepared in DMF-Water Mixed Solvents. RSC Publ. 2013, 42, 13698–13705. https://doi.org/10.1039/c3dt51322j
dc.relation.referencesGarzón, J. E. Industria Textil Colombiana 2018: telas inteligentes y tendencias ecológicas
dc.relation.referencesSuperintendencia de sociedades. Desempeño Del Sector Textil-Confección Informe; 2018
dc.relation.referencesCorporativo, S. web. Fabricato, nuestro compromiso ambiental https://www.fabricato.com/images/presentciones-trimestrales/presentacion-corporativa-2018-espanol-final.pdf
dc.relation.referencesCorporativo, S. web. Coltejer, responsabilidad ambiental
dc.relation.referencesAmbiente, M. de A. y D. S. Resolución 0631 de 2015; 2015
dc.relation.referencesRadio, C. Cueros Vélez Reconoce Que Tiñó El Río Medellín Por Contingencia. 2014
dc.relation.referencesEscobar, P. M. En Ocho Días, El Río Medellín Cambió de Color Cinco Veces. EL Tiempo. 2013
dc.relation.referencesTyner Chair, T.; Francis, J. Indigo Carmine Shortage; ASC publications, 2017; Vol. Part 4, p A-B. https://doi.org/10.1021/acsreagents.4173
dc.relation.referencesMeyer, R. química. Hoja de Datos de Seguridad - Indigo Carmín. 2009, 1–4
dc.relation.referencesAlmoisheer, N.; Alseroury, F. A.; Kumar, R.; Aslam, M.; Barakat, M. A. Adsorption and Anion Exchange Insight of Indigo Carmine onto CuAl-LDH/SWCNTs Nanocomposite: Kinetic, Thermodynamic and Isotherm Analysis. RSC Adv. 2019, 9 (1), 560–568. https://doi.org/10.1039/C8RA09562K
dc.relation.referencesHarrache, Z.; Abbas, M.; Aksil, T.; Trari, M. Thermodynamic and Kinetics Studies on Adsorption of Indigo Carmine from Aqueous Solution by Activated Carbon. Microchem. J. 2019, 144, 180–189. https://doi.org/10.1016/j.microc.2018.09.004
dc.relation.referencesGeyikçi, F. Factorial Design Analysis for Adsorption of Indigo Carmine onto Montmorillonite-Evaluation of the Kinetics and Equilibrium Data. Prog. Org. Coatings 2016, 98, 28–34. https://doi.org/10.1016/j.porgcoat.2016.04.019
dc.relation.referencesAhmed, M. A.; brick, A. A.; Mohamed, A. A. A. An Efficient Adsorption of Indigo Carmine Dye from Aqueous Solution on Mesoporous Mg/Fe Layered Double Hydroxide Nanoparticles Prepared by Controlled Sol-Gel Route. Chemosphere 2017, 174, 280–288. https://doi.org/10.1016/j.chemosphere.2017.01.147
dc.relation.referencesArenas, C. N.; Vasco, A.; Betancur, M.; Martínez, J. D. Removal of Indigo Carmine (IC) from Aqueous Solution by Adsorption through Abrasive Spherical Materials Made of Rice Husk Ash (RHA). Process Saf. Environ. Prot. 2017, 106 (Ic), 224–238. https://doi.org/10.1016/j.psep.2017.01.013
dc.relation.referencesLiu, H.; Chen, L.; Ding, J. Adsorption Behavior of Magnetic Amino-Functionalized Metal-Organic Framework for Cationic and Anionic Dyes from Aqueous Solution. RSC Adv. 2016, 6 (54), 48884–48895. https://doi.org/10.1039/c6ra07567c
dc.relation.referencesFurukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science (80-. ). 2013, 341 (6149). https://doi.org/10.1126/science.1230444
dc.relation.referencesGao, Q.; Xu, J.; Bu, X. H. Recent Advances about Metal–Organic Frameworks in the Removal of Pollutants from Wastewater. Coord. Chem. Rev. 2019, 378, 17–31. https://doi.org/10.1016/j.ccr.2018.03.015
dc.relation.referencesShi, Y.; Yang, A. F.; Cao, C. S.; Zhao, B. Applications of MOFs: Recent Advances in Photocatalytic Hydrogen Production from Water. Coord. Chem. Rev. 2019, 390, 50–75. https://doi.org/10.1016/j.ccr.2019.03.012
dc.relation.referencesQiu, J.; Zhang, X.; Feng, Y.; Zhang, X.; Wang, H.; Yao, J. Modified Metal-Organic Frameworks as Photocatalysts. Appl. Catal. B Environ. 2018, 231 (2010), 317–342. https://doi.org/10.1016/j.apcatb.2018.03.039
dc.relation.referencesNouri, F.; Rostamizadeh, S.; Azad, M. Post-Synthetic Modification of IRMOF-3 with an Iminopalladacycle Complex and Its Application as an Effective Heterogeneous Catalyst in Suzuki-Miyaura Cross-Coupling Reaction in H2O/EtOH Media at Room Temperature. Mol. Catal. 2017, 443, 286–293. https://doi.org/10.1016/j.mcat.2017.10.019
dc.relation.referencesPhan, N. T. S.; Nguyen, T. T.; Luu, Q. H.; Nguyen, L. T. L. Paal-Knorr Reaction Catalyzed by Metal-Organic Framework IRMOF-3 as an Efficient and Reusable Heterogeneous Catalyst. J. Mol. Catal. A Chem. 2012, 363–364, 178–185. https://doi.org/10.1016/j.molcata.2012.06.007
dc.relation.referencesLee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal–Organic Framework Materials as Catalysts. Chem. Soc. Rev. 2009, 38 (5), 1450. https://doi.org/10.1039/b807080f
dc.relation.referencesRostamnia, S.; Alamgholiloo, H.; Liu, X. Pd-Grafted Open Metal Site Copper-Benzene-1,4-Dicarboxylate Metal Organic Frameworks (Cu-BDC MOFâ€TMs) as Promising Interfacial Catalysts for Sustainable Suzuki Coupling. 2016. https://doi.org/10.1016/j.jcis.2016.02.021
dc.relation.referencesHu, M. L.; Safarifard, V.; Doustkhah, E.; Rostamnia, S.; Morsali, A.; Nouruzi, N.; Beheshti, S.; Akhbari, K. Taking Organic Reactions over Metal-Organic Frameworks as Heterogeneous Catalysis. Microporous and Mesoporous Materials. 2018, pp 111–127. https://doi.org/10.1016/j.micromeso.2017.07.057
dc.relation.referencesChen, Y.-Z.; Zhang, R.; Jiao, L.; Jiang, H.-L. Metal-Organic Framework-Derived Porous Materials for Catalysis. Coord. Chem. Rev. 2018, 362, 1–23. https://doi.org/10.1016/j.ccr.2018.02.008
dc.relation.referencesRostamnia, S.; Xin, H. Basic Isoreticular Metal-Organic Framework (IRMOF-3) Porous Nanomaterial as a Suitable and Green Catalyst for Selective Unsymmetrical Hantzsch Coupling Reaction. Appl. Organomet. Chem. 2014, 28 (5), 359–363. https://doi.org/10.1002/aoc.3136
dc.relation.referencesLiang, J.; Liang, Z.; Zou, R.; Zhao, Y. Heterogeneous Catalysis in Zeolites, Mesoporous Silica, and Metal–Organic Frameworks. Adv. Mater. 2017, 29 (30), 1–21. https://doi.org/10.1002/adma.201701139
dc.relation.referencesRostamnia, S.; Morsali, A. Size-Controlled Crystalline Basic Nanoporous Coordination Polymers of Zn4O(H2N-TA)3: Catalytically Study of IRMOF-3 as a Suitable and Green Catalyst for Selective Synthesis of Tetrahydro-Chromenes. Inorganica Chim. Acta 2014. https://doi.org/10.1016/j.ica.2013.12.002
dc.relation.referencesLi, W.; Liu, J.; Zhao, D. Mesoporous Materials for Energy Conversion and Storage Devices. Nat. Rev. Mater. 2016, 1 (6). https://doi.org/10.1038/natrevmats.2016.23
dc.relation.referencesCheng-Xiong Yang, Hu-Bo Ren, and X.-P. Y. Fluorescent Metal−Organic Framework MIL-53(Al) for Highly Selective and Sensitive Detection of Fe3+ in Aqueous Solution. Anal. Chem. 2013, 85 (15), 7441–7446. https://doi.org/10.1021/ac401387z
dc.relation.referencesPi, Y.; Li, X.; Xia, Q.; Wu, J.; Li, Y.; Xiao, J.; Li, Z. Adsorptive and Photocatalytic Removal of Persistent Organic Pollutants (POPs) in Water by Metal-Organic Frameworks (MOFs). 2018. https://doi.org/10.1016/j.cej.2017.12.092
dc.relation.referencesYuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; et al. Stable Metal-Organic Framework: Desing, Synthesis and Applications. Advanced Materials. 2018, pp 1–35. https://doi.org/10.1002/adma.201704303
dc.relation.referencesMa, K.; Islamoglu, T.; Chen, Z.; Li, P.; Wasson, M. C.; Chen, Y.; Wang, Y.; Peterson, G. W.; Xin, J. H.; Farha, O. K. Scalable and Template-Free Aqueous Synthesis of Zirconium-Based Metal-Organic Framework Coating on Textile Fiber. J. Am. Chem. Soc. 2019, 141 (39), 15626–15633. https://doi.org/10.1021/jacs.9b07301
dc.relation.referencesArstad, B.; Fjellvåg, H.; Kongshaug, K. O.; Swang, O.; Blom, R. Amine Functionalised Metal Organic Frameworks (MOFs) as Adsorbents for Carbon Dioxide. Adsorption 2008, 14 (6), 755–762. https://doi.org/10.1007/s10450-008-9137-6
dc.relation.referencesAmirilargani, M.; Merlet, R. B.; Hedayati, P.; Nijmeijer, A.; Winnubst, L.; De Smet, L. C. P. M.; Sudhölter, E. J. R. MIL-53(Al) and NH2-MIL-53(Al) Modified α-Alumina Membranes for Efficient Adsorption of Dyes from Organic Solvents. Chem. Commun. 2019, 55 (28), 4119–4122. https://doi.org/10.1039/c9cc01624d
dc.relation.referencesAmirilargani, M.; Merlet, R. B.; Hedayati, P.; Nijmeijer, A.; Winnubst, L.; De Smet, L. C. P. M.; Sudhölter, E. J. R. MIL-53(Al) and NH2-MIL-53(Al) Modified α-Alumina Membranes for Efficient Adsorption of Dyes from Organic Solvents. Chem. Commun. 2019, 55 (28), 4119–4122. https://doi.org/10.1039/c9cc01624d
dc.relation.referencesRobatjazi, H.; Weinberg, D.; Swearer, D. F.; Jacobson, C.; Zhang, M.; Tian, S.; Zhou, L.; Nordlander, P.; Halas, N. J. Metal-Organic Frameworks Tailor the Properties of Aluminum Nanocrystals. Sci. Adv. 2019, 5 (2), 1–11. https://doi.org/10.1126/sciadv.aav5340
dc.relation.referencesRasool, H.; Hassan, Z.; Shang, J.; Wang, S. Synthesis, Characterization, and CO2adsorption of Three Metal-Organicframeworks (MOFs): MIL-53, MIL-96, and Amino-MIL-53. Polyhedron 2016, 120, 103–111. https://doi.org/10.1016/j.poly.2016.06.034
dc.relation.referencesRostamnia, S.; Morsali, A. Basic Isoreticular Nanoporous Metal–Organic Framework for Biginelli and Hantzsch Coupling: IRMOF-3 as a Green and Recoverable Heterogeneous Catalyst in Solvent-Free Conditions. RSC Adv. 2014, 4 (21), 10514. https://doi.org/10.1039/c3ra46709k
dc.relation.referencesBoulé, R.; Roland, C.; Pollés, L. Le; Audebrand, N.; Ghoufi, A. Thermal and Guest-Assisted Structural Transition in the NH 2 -MIL-53 ( Al ) Metal Organic Framework : A Molecular Dynamics Simulation Investigation. Nanomaterials 2018, 8 (7), 531. https://doi.org/10.3390/nano8070531
dc.relation.referencesSeoane, B.; Téllez, C.; Coronas, J.; Staudt, C. NH2 -MIL-53 ( Al ) and NH 2 -MIL-101 ( Al ) in Sulfur-Containing Copolyimide Mixed Matrix Membranes for Gas Separation. Sep. Purif. Technol. 2013, 111, 72–81. https://doi.org/10.1016/j.seppur.2013.03.034
dc.relation.referencesGascon, J.; Aktay, U.; Hernandez-Alonso, M. D.; van Klink, G. P. M.; Kapteijn, F. Amino-Based Metal-Organic Frameworks as Stable, Highly Active Basic Catalysts. J. Catal. 2009, 261 (1), 75–87. https://doi.org/10.1016/j.jcat.2008.11.010
dc.relation.referencesBunchuay, T.; Ketkaew, R.; Chotmongkolsap, P.; Chutimasakul, T.; Kanarat, J.; Tantirungrotechai, Y.; Tantirungrotechai, J. Microwave-Assisted One-Pot Functionalization of Metal-Organic Framework MIL-53(Al)-NH2 with Copper(II) Complexes and Its Application in Olefin Oxidation. Catal. Sci. Technol. 2017, 7 (24), 6069–6079. https://doi.org/10.1039/c7cy01941f
dc.relation.referencesNguyen, J. G.; Cohen, S. M. Moisture-Resistant and Superhydrophobic Metal−Organic Frameworks Obtained via Postsynthetic Modification. J. Am. Chem. Soc. 2010, 132 (13), 4560–4561. https://doi.org/10.1021/ja100900c
dc.relation.referencesValero, M.; Zornoza, B.; Téllez, C.; Coronas, J. Mixed Matrix Membranes for Gas Separation by Combination of Silica MCM-41 and MOF NH2-MIL-53(Al) in Glassy Polymers. Microporous Mesoporous Mater. 2014, 192, 23–28. https://doi.org/10.1016/j.micromeso.2013.09.018
dc.relation.referencesMubashir, M.; Yeong, Y. F.; Lau, K. K.; Chew, T. L.; Norwahyu, J. Efficient CO2/N2 and CO2/CH4 Separation Using NH2-MIL-53(Al)/Cellulose Acetate (CA) Mixed Matrix Membranes. Sep. Purif. Technol. 2018, 199, 140–151. https://doi.org/10.1016/j.seppur.2018.01.038
dc.relation.referencesFang, J.; Zhao, G.; Dong, X.; Li, X.; Miao, J.; Wei, Q.; Cao, W. Ultrasensitive Electrochemiluminescence Immunosensor for the Detection of Amyloid-β Proteins Based on Resonance Energy Transfer between g-C3N4 and Pd NPs Coated NH2-MIL-53. Biosens. Bioelectron. 2019, 142 (June), 111517. https://doi.org/10.1016/j.bios.2019.111517
dc.relation.referencesLi, C.; Xiong, Z.; Zhang, J.; Wu, C. The Strengthening Role of the Amino Group in Metal-Organic Framework MIL-53 (Al) for Methylene Blue and Malachite Green Dye Adsorption. J. Chem. Eng. Data 2015, 60 (11), 3414–3422. https://doi.org/10.1021/acs.jced.5b00692
dc.relation.referencesAbdelhameed, R. M.; El-Deib, H. R.; El-Dars, F. M. S. E.; Ahmed, H. B.; Emam, H. E. Applicable Strategy for Removing Liquid Fuel Nitrogenated Contaminants Using MIL-53-NH2@Natural Fabric Composites. Ind. Eng. Chem. Res. 2018, 57 (44), 15054–15065. https://doi.org/10.1021/acs.iecr.8b03936
dc.relation.referencesZornoza, B.; Martinez-Joaristi, A.; Serra-Crespo, P.; Tellez, C.; Coronas, J.; Gascon, J.; Kapteijn, F. Functionalized Flexible MOFs as Fillers in Mixed Matrix Membranes for Highly Selective Separation of CO2 from CH4 at Elevated Pressures. Chem. Commun. 2011, 47 (33), 9522–9524. https://doi.org/10.1039/c1cc13431k
dc.relation.referencesTanh Jeazet, H. B.; Staudt, C.; Janiak, C. Metal-Organic Frameworks in Mixed-Matrix Membranes for Gas Separation. Dalt. Trans. 2012, 41 (46), 14003–14027. https://doi.org/10.1039/c2dt31550e
dc.relation.referencesRodenas, T.; Van Dalen, M.; Serra-Crespo, P.; Kapteijn, F.; Gascon, J. Mixed Matrix Membranes Based on NH2-Functionalized MIL-Type MOFs: Influence of Structural and Operational Parameters on the CO 2/CH4 Separation Performance. Microporous Mesoporous Mater. 2014, 192, 35–42. https://doi.org/10.1016/j.micromeso.2013.08.049
dc.relation.referencesAhmadijokani, F.; Ahmadipouya, S.; Molavi, H.; Arjmand, M. Amino-Silane-Grafted NH2-MIL-53(Al)/Polyethersulfone Mixed Matrix Membranes for CO2/CH4 Separation. Dalt. Trans. 2019, 48 (36), 13555–13566. https://doi.org/10.1039/c9dt02328c
dc.relation.referencesRodenas, T.; Van Dalen, M.; García-Pérez, E.; Serra-Crespo, P.; Zornoza, B.; Kapteijn, F.; Gascon, J. Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structure-Performance Relationships in CO2/CH4 Separation over NH2-MIL-53(Al)@PI. Adv. Funct. Mater. 2014, 24 (2), 249–256. https://doi.org/10.1002/adfm.201203462
dc.relation.referencesSachdeva, S.; Soccol, D.; Gravesteijn, D. J.; Kapteijn, F.; Sudhölter, E. J. R.; Gascon, J.; De Smet, L. C. P. M. Polymer-Metal Organic Framework Composite Films as Affinity Layer for Capacitive Sensor Devices. ACS Sensors 2016, 1 (10), 1188–1192. https://doi.org/10.1021/acssensors.6b00295
dc.relation.referencesSachdeva, S.; Koper, S. J. H.; Sabetghadam, A.; Soccol, D.; Gravesteijn, D. J.; Kapteijn, F.; Sudhölter, E. J. R.; Gascon, J.; De Smet, L. C. P. M. Gas Phase Sensing of Alcohols by Metal Organic Framework-Polymer Composite Materials. ACS Appl. Mater. Interfaces 2017, 9 (29), 24926–24935. https://doi.org/10.1021/acsami.7b02630
dc.relation.referencesKertik, A.; Khan, A. L.; Vankelecom, I. F. J. Mixed Matrix Membranes Prepared from Non-Dried MOFs for CO2/CH4 Separations. RSC Adv. 2016, 6 (115), 114505–114512. https://doi.org/10.1039/c6ra23013j
dc.relation.referencesChen, X. Y.; Hoang, V. T.; Rodrigue, D.; Kaliaguine, S. Optimization of Continuous Phase in Amino-Functionalized Metal-Organic Framework (MIL-53) Based Co-Polyimide Mixed Matrix Membranes for CO 2/CH4 Separation. RSC Adv. 2013, 3 (46), 24266–24279. https://doi.org/10.1039/c3ra43486a
dc.relation.referencesTien-Binh, N.; Vinh-Thang, H.; Chen, X. Y.; Rodrigue, D.; Kaliaguine, S. Polymer Functionalization to Enhance Interface Quality of Mixed Matrix Membranes for High CO2/CH4 Gas Separation. J. Mater. Chem. A 2015, 3 (29), 15202–15213. https://doi.org/10.1039/c5ta01597a
dc.relation.referencesSabetghadam, A.; Liu, X.; Benzaqui, M.; Gkaniatsou, E.; Orsi, A.; Lozinska, M. M.; Sicard, C.; Johnson, T.; Steunou, N.; Wright, P. A.; et al. Influence of Filler Pore Structure and Polymer on the Performance of MOF-Based Mixed-Matrix Membranes for CO2 Capture. Chem. - A Eur. J. 2018, 24 (31), 7949–7956. https://doi.org/10.1002/chem.201800253
dc.relation.referencesAbedini, R.; Omidkhah, M.; Dorosti, F. Highly Permeable Poly(4-Methyl-1-Pentyne)/NH2-MIL 53 (Al) Mixed Matrix Membrane for CO2/CH4 Separation. RSC Adv. 2014, 4 (69), 36522–36537. https://doi.org/10.1039/c4ra07030e
dc.relation.referencesBurmann, P.; Zornoza, B.; Téllez, C.; Coronas, J. Mixed Matrix Membranes Comprising MOFs and Porous Silicate Fillers Prepared via Spin Coating for Gas Separation. Chem. Eng. Sci. 2014, 107, 66–75. https://doi.org/10.1016/j.ces.2013.12.001
dc.relation.referencesZhao, Y.; Zhao, D.; Kong, C.; Zhou, F.; Jiang, T.; Chen, L. Design of Thin and Tubular MOFs-Polymer Mixed Matrix Membranes for Highly Selective Separation of H2 and CO2. Sep. Purif. Technol. 2019, 220 (July 2018), 197–205. https://doi.org/10.1016/j.seppur.2019.03.037
dc.relation.referencesLuo, X.; Li, G.; Hu, Y. In-Tube Solid-Phase Microextraction Based on NH2-MIL-53(Al)-Polymer Monolithic Column for Online Coupling with High-Performance Liquid Chromatography for Directly Sensitive Analysis of Estrogens in Human Urine. Talanta 2017, 165, 377–383. https://doi.org/10.1016/j.talanta.2016.12.050
dc.relation.referencesMubashir, M.; Yeong, Y. F.; Chew, T. L.; Lau, K. K. Optimization of Spinning Parameters on the Fabrication of NH2-MIL-53(Al)/Cellulose Acetate (CA) Hollow Fiber Mixed Matrix Membrane for CO2 Separation. Sep. Purif. Technol. 2019, 215 (December 2018), 32–43. https://doi.org/10.1016/j.seppur.2018.12.086
dc.relation.referencesMubashir, M.; Yin fong, Y.; Leng, C. T.; Keong, L. K.; Jusoh, N. Study on the Effect of Process Parameters on CO2/CH4 Binary Gas Separation Performance over NH2-MIL-53(Al)/Cellulose Acetate Hollow Fiber Mixed Matrix Membrane. Polym. Test. 2020, 81 (October 2019), 106223. https://doi.org/10.1016/j.polymertesting.2019.106223
dc.relation.referencesAhmadi Feijani, E.; Tavasoli, A.; Mahdavi, H. Improving Gas Separation Performance of Poly(Vinylidene Fluoride) Based Mixed Matrix Membranes Containing Metal-Organic Frameworks by Chemical Modification. Ind. Eng. Chem. Res. 2015, 54 (48), 12124–12134. https://doi.org/10.1021/acs.iecr.5b02549
dc.relation.referencesLi, Q.; Duan, J.; Jin, W. Efficient CO2/N2 Separation by Mixed Matrix Membrane with Amide Functionalized Porous Coordination Polymer Filler. Chinese Chem. Lett. 2018, 29 (6), 854–856. https://doi.org/10.1016/j.cclet.2017.11.008
dc.relation.referencesFeijani, E. A.; Mahdavi, H.; Tavasoli, A. Poly(Vinylidene Fluoride) Based Mixed Matrix Membranes Comprising Metal Organic Frameworks for Gas Separation Applications. Chem. Eng. Res. Des. 2015, 96, 87–102. https://doi.org/10.1016/j.cherd.2015.02.009
dc.relation.referencesDai, Z.; Lee, D. T.; Shi, K.; Wang, S.; Barton, H. F.; Zhu, J.; Yan, J.; Ke, Q.; Parsons, G. N. Fabrication of a Freestanding Metal Organic Framework Predominant Hollow Fiber Mat and Its Potential Applications in Gas Separation and Catalysis. J. Mater. Chem. A 2020, 8 (7), 3803–3813. https://doi.org/10.1039/c9ta11701f
dc.relation.referencesZhang, Q.; Xia, G.; Liang, J.; Zhang, X.; Jiang, L.; Zheng, Y. UHPLC-MS / MS for Detection of Trace Sulfonamides in Food Samples. 2020, 53, 1–15
dc.relation.referencesWu, G.; Jiang, M.; Zhang, T.; Jia, Z. Tunable Pervaporation Performance of Modified MIL-53(Al)-NH2/Poly(Vinyl Alcohol) Mixed Matrix Membranes. J. Memb. Sci. 2016, 507, 72–80. https://doi.org/10.1016/j.memsci.2016.01.048
dc.relation.referencesXie, L.; Liu, S.; Han, Z.; Jiang, R.; Zhu, F.; Xu, W.; Su, C.; Ouyang, G. Amine-Functionalized MIL-53(Al)-Coated Stainless Steel Fiber for Efficient Solid-Phase Microextraction of Synthetic Musks and Organochlorine Pesticides in Water Samples. Anal. Bioanal. Chem. 2017, 409 (22), 5239–5247. https://doi.org/10.1007/s00216-017-0472-x
dc.relation.referencesTitow, M. V. PVC Technology. Springer Sci. Bus. Media 2012
dc.relation.referencesMoulay, S. Chemical Modification of Poly(Vinyl Chloride)-Still on the Run. Prog. Polym. Sci. 2010, 35 (3), 303–331. https://doi.org/10.1016/j.progpolymsci.2009.12.001
dc.relation.referencesWypych, G. PVC Degradation and Stabilization, 3rd ed.; 2015; Vol. 1. https://doi.org/10.1016/b978-1-895198-85-0.50003-0
dc.relation.referencesTaha, T. A.; Azab, A. A. Thermal, Optical, and Dielectric Investigations of PVC/La0.95Bi0.05FeO3 Nanocomposites. J. Mol. Struct. 2019, 1178, 39–44. https://doi.org/10.1016/j.molstruc.2018.10.018
dc.relation.referencesHibbard, H. A. J.; Burnley, M. J.; Rubin, H. N.; Miera, J. A.; Reynolds, M. M. Porphyrin-Based Metal-Organic Framework and Polyvinylchloride Composites for Fluorescence Sensing of Divalent Cadmium Ions in Water. Inorg. Chem. Commun. 2020, 115, 107861. https://doi.org/10.1016/j.inoche.2020.107861
dc.relation.referencesPark, J. T.; Moon, J.; Choi, G. H.; Lim, S. M.; Kim, J. H. Facile Graft Copolymer Template Synthesis of Mesoporous Polymeric Metal-Organic Frameworks to Produce Mesoporous TiO2: Promising Platforms for Photovoltaic and Photocatalytic Applications. J. Ind. Eng. Chem. 2020, 84 (2019), 384–392. https://doi.org/10.1016/j.jiec.2020.01.025
dc.relation.referencesZárate, A.; Peralta, R. A.; Bayliss, P. A.; Howie, R.; Sánchez-Serratos, M.; Carmona-Monroy, P.; Solis-Ibarra, D.; González-Zamora, E.; Ibarra, I. A. CO2 Capture under Humid Conditions in NH2-MIL-53(Al): The Influence of the Amine Functional Group. RSC Adv. 2016, 6 (12), 9978–9983. https://doi.org/10.1039/c5ra26517g
dc.relation.referencesVargas Rodríguez, H. Estudio de La Estabilidad Fisicoquímica de Redes Metal-Orgánicas En Medio Acuoso, Universidad Nacional de Colombia, 2019
dc.relation.referencesNanda, A. K.; Matyjaszewski, K. Effect of [PMDETA]/[Cu(I)] Ratio, Monomer, Solvent, Counterion, Ligand, and Alkyl Bromide on the Activation Rate Constants in Atom Transfer Radical Polymerization. Macromolecules 2003, 36 (5), 1487–1493. https://doi.org/10.1021/ma0340107
dc.relation.referencesKreutzer, J. New Method Breathes Life into ATRP. Nature Reviews Chemistry. 2018, p 0111. https://doi.org/10.1038/s41570-018-0111
dc.relation.referencesChen, Q.; He, Q.; Lv, M.; Xu, Y.; Yang, H.; Liu, X.; Wei, F. Selective Adsorption of Cationic Dyes by UiO-66-NH 2. Appl. Surf. Sci. 2015, 327, 77–85. https://doi.org/10.1016/j.apsusc.2014.11.103
dc.relation.referencesKumar, P.; Anand, B.; Fai, Y.; Kim, K.; Khullar, S.; Wang, B. Regeneration , Degradation , and Toxicity Effect of MOFs : Opportunities and Challenges. Environ. Res. 2019, 176 (May), 108488. https://doi.org/10.1016/j.envres.2019.05.019
dc.relation.referencesPatterson, A. L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56 (10), 978. https://doi.org/https://doi.org/10.1103/PhysRev.56.978
dc.relation.referencesRostamnia, S.; Jafari, M. Metal–Organic Framework of Amine-MIL-53(Al) as Active and Reusable Liquid-Phase Reaction Inductor for Multicomponent Condensation of Ugi-Type Reactions. Appl. Organomet. Chem. 2017, 31 (4), 2–7. https://doi.org/10.1002/aoc.3584
dc.relation.referencesIsrar, F.; Kim, D. K.; Kim, Y.; Chun, W. Scope of Various Solvents and Their Effects on Solvothermal Synthesis of Ni-BTC. Quim. Nova 2016, 39 (6). https://doi.org/10.5935/0100-4042.20160068
dc.relation.referencesChin, J. M.; Chen, E. Y.; Menon, A. G.; Tan, H. Y.; Hor, A. T. S.; Schreyer, M. K.; Xu, J. Tuning the Aspect Ratio of NH 2 -MIL-53(Al) Microneedles and Nanorodsvia Coordination Modulation. CrystEngComm 2013, 15 (4), 654–657. https://doi.org/10.1039/C2CE26586A
dc.relation.referencesTan, K.; Nijem, N.; Canepa, P.; Gong, Q.; Li, J.; Thonhauser, T.; Chabal, Y. J. Stability and Hydrolyzation of Metal Organic Frameworks with Paddle-Wheel SBUs upon Hydration. Chem. Mater. 2012, 24 (16), 3153–3167. https://doi.org/10.1021/cm301427w
dc.relation.referencesZheng, J.; Vemuri, R. S.; Estevez, L.; Koech, P. K.; Varga, T.; Camaioni, D. M.; Blake, T. A.; McGrail, B. P.; Motkuri, R. K. Pore-Engineered Metal-Organic Frameworks with Excellent Adsorption of Water and Fluorocarbon Refrigerant for Cooling Applications. J. Am. Chem. Soc. 2017, 139 (31), 10601–10604. https://doi.org/10.1021/jacs.7b04872
dc.relation.referencesQian, X.; Yadian, B.; Wu, R.; Long, Y.; Zhou, K.; Zhu, B.; Huang, Y. Structure Stability of Metal-Organic Framework MIL-53 (Al) in Aqueous Solutions. Int. J. Hydrogen Energy 2013, 38 (36), 16710–16715. https://doi.org/10.1016/j.ijhydene.2013.07.054
dc.relation.referencesStavitski, E.; Pidko, E. A.; Couck, S.; Remy, T.; Hensen, E. J. M.; Weckhuysen, B. M.; Denayer, J.; Gascon, J.; Kapteijn, F. Complexity behind CO2 Capture on NH2-MIL-53(Al). Langmuir 2011, 27 (7), 3970–3976. https://doi.org/10.1021/la1045207
dc.relation.referencesCanivet, J.; Fateeva, A.; Guo, Y.; Coasne, B.; Farrusseng, D. Water Adsorption in MOFs: Fundamentals and Applications. Chem. Soc. Rev. 2014, 43 (16), 5594–5617. https://doi.org/10.1039/c4cs00078a
dc.relation.referencesTodaro, M.; Alessi, A.; Sciortino, L.; Agnello, S.; Cannas, M.; Gelardi, F. M.; Buscarino, G. Investigation by Raman Spectroscopy of the Decomposition Process of HKUST-1 upon Exposure to Air. J. Spectrosc. 2016, 2016. https://doi.org/10.1155/2016/8074297
dc.relation.referencesAl-janabi, N.; Hill, P.; Torrente-murciano, L.; Garforth, A.; Gorgojo, P.; Siperstein, F.; Fan, X. Mapping the Cu-BTC Metal – Organic Framework ( HKUST-1 ) Stability Envelope in the Presence of Water Vapour for CO 2 Adsorption from Flue Gases. Chem. Eng. J. 2015, 281, 669–677. https://doi.org/10.1016/j.cej.2015.07.020
dc.relation.referencesBershtein, V. A.; Ryzhov, V. A. Far Infrared Spectroscopy of Polymers. In: Polymer Analysis and Characterization. Advances in Polymer Science; Springer Berlin Heidelberg, 1994
dc.relation.referencesFang, L. F.; Matsuyama, H.; Zhu, B. K.; Zhao, S. Development of Antifouling Poly(Vinyl Chloride) Blend Membranes by Atom Transfer Radical Polymerization. J. Appl. Polym. Sci. 2018, 135 (6), 1–12. https://doi.org/10.1002/app.45832
dc.relation.referencesLanzalaco, S.; Galia, A.; Lazzano, F.; Mauro, R. R.; Scialdone, O. Utilization of Poly(Vinylchloride) and Poly(Vinylidenefluoride) as Macroinitiators for ATRP Polymerization of Hydroxyethyl Methacrylate: Electroanalytical and Graft-Copolymerization Studies. J. Polym. Sci. Part A Polym. Chem. 2015, 53 (21), 2524–2536. https://doi.org/10.1002/pola.27717
dc.relation.referencesHuang, Z.; Feng, C.; Guo, H.; Huang, X. Direct Functionalization of Poly(Vinyl Chloride) by Photo-Mediated ATRP without a Deoxygenation Procedure. Polym. Chem. 2016, 7 (17), 3034–3045. https://doi.org/10.1039/c6py00483k
dc.relation.referencesProkhorov, K. A.; Aleksandrova, D. A.; Sagitova, E. A.; Nikolaeva, G. Y.; Vlasova, T. V.; Pashinin, P. P.; Jones, C. A.; Shilton, S. J. Raman Spectroscopy Evaluation of Polyvinylchloride Structure. J. Phys. Conf. Ser. 2016, 691 (1), 012001. https://doi.org/10.1088/1742-6596/691/1/012001
dc.relation.referencesYvon, H. . Raman Spectroscopy for Analysis and Monitoring. Raman data Anal 2017, 1–2
dc.relation.referencesSun, H.; Cong, S.; Zheng, Z.; Wang, Z.; Chen, Z.; Zhao, Z. Metal–Organic Frameworks as Surface Enhanced Raman Scattering Substrates with High Tailorability. J. Am. Chem. Soc. 2018, 141, 870–878. https://doi.org/10.1021/jacs.8b09414
dc.relation.referencesDwyer, D. B.; Dugan, N.; Hoffman, N.; Cooke, D. J.; Hall, M. G.; Tovar, T. M.; Bernier, W. E.; Decoste, J.; Pomerantz, N. L.; Jones, W. E. Chemical Protective Textiles of UiO-66-Integrated PVDF Composite Fibers with Rapid Heterogeneous Decontamination of Toxic Organophosphates. ACS Appl. Mater. Interfaces 2018, 10 (40), 34585–34591. https://doi.org/10.1021/acsami.8b11290
dc.relation.referencesDastkhoon, M.; Ghaedi, M.; Asfaram, A.; Hossein, M.; Azqhandi, A.; Hajati, S.; Purkait, M. K. Simultaneous Removal of Dyes onto Nanowires Adsorbent Use of Ultrasound Assisted Adsorption to Clean Waste Water: Chemometrics for Modeling and Optimization, Multicomponent Adsorption and Kinetic Study. Chem. Eng. Res. Des. 2017, 124, 222–237. https://doi.org/10.1016/j.cherd.2017.06.011
dc.relation.referencesPeica, N.; Kiefer, W. Characterization of Indigo Carmine with Surface-Enhanced Resonance Raman Spectroscopy ( SERRS ) Using Silver Colloids and Island Films , and Theoretical Calculations. J. Raman Spectrosc 2008, 38, 47–60. https://doi.org/10.1002/jrs
dc.relation.referencesAhmed, I.; Jhung, S. H. Applications of Metal-Organic Frameworks in Adsorption/Separation Processes via Hydrogen Bonding Interactions. Chem. Eng. J. 2017, 310, 197–215. https://doi.org/10.1016/j.cej.2016.10.115
dc.relation.referencesVilela, S. M. F.; Salcedo-Abraira, P.; Colinet, I.; Salles, F.; De Koning, M. C.; Joosen, M. J. A.; Serre, C.; Horcajada, P. Nanometric MIL-125-NH2 Metal-Organic Framework as a Potential Nerve Agent Antidote Carrier. Nanomaterials 2017, 7 (10), 1–15. https://doi.org/10.3390/nano7100321
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalEstructura metal-orgánica
dc.subject.proposalMetal-organic framework
dc.subject.proposalMOF
dc.subject.proposalMOF
dc.subject.proposalNH2-MIL-53(Al)
dc.subject.proposalNH2-MIL-53(Al)
dc.subject.proposalpolicloruro de vinilo
dc.subject.proposalpolyvinyl chloride
dc.subject.proposalPVC
dc.subject.proposalPVC
dc.subject.proposalíndigo carmín
dc.subject.proposalindigo carmine
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito