Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorLópez Gerena, Jershon
dc.contributor.advisorLópez López, Karina
dc.contributor.authorFranco Arango, Claudia Marcela
dc.date.accessioned2020-11-19T20:43:08Z
dc.date.available2020-11-19T20:43:08Z
dc.date.issued2019-11-19
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78640
dc.description.abstractGenome editing is a technique used to accurately and efficiently modify the DNA within a cell. Since 2012, the CRISPR/Cas system has been used for gene editing (adding, interrupting or changing specific gene sequences) and for gene regulation in several species. For this investigation, this methodology was used to cause the functional elimination of the BU1 gene responsible for the leaf angle in sugarcane and to introduce a modification of the ALS gene to confer resistance to herbicides. To test the sugarcane gene editing system, two vectors were designed one for the BU1 gene and one for the ALS + BU1 genes, which were bombardment with a genetic gun in embryogenic calli of the UFCP 82-1655 sugarcane variety. After the bombardment, the tissue was selected with geneticin (20mg/L), the plants that survived were subjected to molecular tests using PCR, TaqMan assay and restriction enzymes. After selection with geneticin, 89 plants containing the plasmid with BU1 and 98 plants for the plasmid ALS + BU1 survived, after the molecular evaluation of these plants, the modification or insertion of the ALS gene in two plants (events ALS107 and ALS111) was found, these plants presented nucleotide T at position 653, while none of the plants turned out to be edited for the BU1 gene.
dc.description.abstractLa edición del genoma es una técnica utilizada para modificar con precisión y eficiencia el ADN dentro de una célula. Desde 2012, el sistema CRISPR/Cas se ha utilizado para la edición de genes (agregando, interrumpiendo o cambiando las secuencias de genes específicos) y para la regulación génica en varias especies. Para esta investigación se utilizó esta metodología para provocar la eliminación funcional del gen BU1 responsable del ángulo de la hoja en caña de azúcar y para introducir una modificación del gen ALS para conferir resistencia a herbicidas. Para probar el sistema de edición de genes en caña de azúcar se diseñaron dos vectores, uno para el gen BU1 y otro para el gen ALS + gen BU1, los cuales fueron disparados por medio de una pistola genética en callos embriogénicos de la variedad de caña UFCP 82-1655. Después del bombardeo, el tejido se puso en selección con geneticina (20mg/L), a las plantas que sobrevivieron se les hicieron pruebas moleculares con PCR, ensayo TaqMan y enzimas de restricción. Después de la selección con geneticina sobrevivieron 89 plantas para el plásmido con BU1 y 98 plantas para el plásmido ALS + BU1, después de la evaluación molecular de estas plantas, se encontró la modificación o inserción del gen ALS en dos plantas (eventos ALS107 y ALS111), las cuales presentaron el nucleótido T en la posición 653, mientras que ninguna de las pantas resultó ser editada para el gen BU1.
dc.format.extent99
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas
dc.titleEdición genética de la variedad de caña UFCP 82-1655 para inactivar el GEN BU1 y modificar la función del gen ALS mediante CRISPR/CAS9
dc.typeDocumento de trabajo
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/workingPaper
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicas
dc.contributor.corporatenameCenicaña
dc.description.degreelevelMaestría
dc.publisher.departmentMaestría en Ciencias Biológicas
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.relation.referencesAddgene. 2017. “CRISPR 101: A Desktop Resource.” https://doi.org/10.1016/S1058- 2746(99)90151-9. ———. 2019. “CRISPR History and Development for Genome Engineering.” 2019. https://www.addgene.org/crispr/history/.
dc.relation.referencesAglawe, Supriya B., Kalyani M. Barbadikar, Satendra K. Mangrauthia, and M. Sheshu Madhav. 2018. “New Breeding Technique ‘Genome Editing’ for Crop Improvement: Applications, Potentials and Challenges.” 3 Biotech 8 (8): 1–20. https://doi.org/10.1007/s13205-018-1355- 3.
dc.relation.referencesAraki, Motoko, and Tetsuya Ishii. 2015. “Towards Social Acceptance of Plant Breeding by Genome Editing.” Trends in Plant Science 20 (3): 145–49. https://doi.org/10.1016/j.tplants.2015.01.010.
dc.relation.referencesBaltes, Nicholas J., and Daniel F. Voytas. 2015. “Enabling Plant Synthetic Biology through Genome Engineering.” Trends in Biotechnology 33 (2): 120–31. https://doi.org/10.1016/j.tibtech.2014.11.008.
dc.relation.referencesBarrangou, Rodolphe. 2013. “CRISPR-Cas Systems and RNA-Guided Interference.” Wiley Interdisciplinary Reviews: RNA 4 (3): 267–78. https://doi.org/10.1002/wrna.1159.
dc.relation.referencesBarrangou, Rodolphe, Christophe Fremaux, Hélène Deveau, Melissa Richards, Patrick Boyaval, Sylvain Moineau, Dennis A Romero, and Philippe Horvath. 2007. “CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes.” Science 315 (5819): 1709 LP – 1712.
dc.relation.referencesBelhaj, Khaoula, Angela Chaparro-Garcia, Sophien Kamoun, Vladimir Nekrasov, R Sorek, CM Lawrence, B Wiedenheft, et al. 2013. “Plant Genome Editing Made Easy: Targeted Mutagenesis in Model and Crop Plants Using the CRISPR/Cas System.” Plant Methods 9 (1): 39. https://doi.org/10.1186/1746-4811-9-39.
dc.relation.referencesBelkhadir, Youssef, and Joanne Chory. 2006. “Brassinosteroid Signaling: A Paradigm for Steroid Hormone Signaling from the Cell Surface.” Science 314 (5804): 1410 LP – 1411. https://doi.org/10.1126/science.1134040.
dc.relation.referencesBreitler, J.C, A Labeyrie, D Meynard, T Legavre, and E Guiderdoni. 2002. “Efficient Microprojectile Bombardment-Mediated Transformation of Rice Using Gene Cassettes.” Theor Appl Genet 104: 709–19. https://doi.org/https://doi.org/10.1007/s00122-001-0786-z.
dc.relation.referencesBrumbley, Stevens M, Sandy J Snyman, Annathurai Gnanasambandam, Priya Joyce, Scott R Hermann, Jorge A G da Silva, Richard B McQualter, et al. 2008. “Sugarcane.” Compendium of Transgenic Crop Plants. Major Reference Works. https://doi.org/doi:10.1002/9781405181099.k0701.
dc.relation.referencesCai, Yupeng, Li Chen, Xiujie Liu, Chen Guo, Shi Sun, Cunxiang Wu, Bingjun Jiang, Tianfu Han, and Wensheng Hou. 2018. “CRISPR/Cas9-Mediated Targeted Mutagenesis of GmFT2a Delays Flowering Time in Soya Bean.” Plant Biotechnology Journal 16 (1): 176–85. https://doi.org/10.1111/pbi.12758.
dc.relation.referencesCano-Delgado, A. 2004. “BRL1 and BRL3 Are Novel Brassinosteroid Receptors That Function in Vascular Differentiation in Arabidopsis.” Development 131 (21): 5341–51. https://doi.org/10.1242/dev.01403.
dc.relation.referencesCao, Heping, and Shankun Chen. 1995. Brassinosteroid-Induced Rice Lamina Joint Inclination and Its Relation to Indole-3-Acetic Acid and Ethylene. Plant Growth Regulation. Vol. 16. https://doi.org/10.1007/BF00029540.
dc.relation.referencesCentro de Investigación de la Caña de Azúcar de Colombia-Cenicaña. 1995. El Cultivo de La Caña En La Zona Azucarera de Colombia. Edited by C. Cassalett, J. Torres, and C. Isaacs.
dc.relation.referencesChylinski, Krzysztof, Kira S. Makarova, Emmanuelle Charpentier, and Eugene V. Koonin. 2014. “Classification and Evolution of Type II CRISPR-Cas Systems.” Nucleic Acids Research 42 (10): 6091–6105. https://doi.org/10.1093/nar/gku241.
dc.relation.referencesClark, A. J., G. Harold, and F. E. Yull. 1996. “Mammalian CDNA and Prokaryotic Reporter Sequences Silence Adjacent Transgenes in Transgenic Mice.” Nucleic Acids Research 25 (5): 1009–14. https://doi.org/10.1093/nar/25.5.1009.
dc.relation.referencesClouse, Steven D, and Jenneth M Sasse. 1998. “BRASSINOSTEROIDS: Essential Regulators of Plant Growth and Development.” Annual Review of Plant Physiology and Plant Molecular Biology 49 (1): 427–51. https://doi.org/10.1146/annurev.arplant.49.1.427.
dc.relation.referencesCong, Le, F Ann Ran, David Cox, Shuailiang Lin, Robert Barretto, Naomi Habib, Patrick D Hsu, et al. 2013. “Multiplex Genome Engineering Using CRISPR/Cas Systems.” Science (New York, N.Y.) 339 (6121): 819–23. https://doi.org/10.1126/science.1231143.
dc.relation.referencesDoench, John G, Nicolo Fusi, Meagan Sullender, Mudra Hegde, Emma W Vaimberg, Katherine F Donovan, Ian Smith, et al. 2016. “Optimized SgRNA Design to Maximize Activity and Minimize Off-Target Effects of CRISPR-Cas9.” Nature Biotechnology 34 (2): 184–91. https://doi.org/10.1038/nbt.3437.
dc.relation.referencesDrewry, Darren T, Praveen Kumar, and Stephen P Long. 2014. “Simultaneous Improvement in Productivity, Water Use, and Albedo through Crop Structural Modification.” Global Change Biology 20 (6): 1955–67. https://doi.org/10.1111/gcb.12567.
dc.relation.referencesDuan, Ke, Li Li, Peng Hu, Shu-Ping Xu, Zhi-Hong Xu, and Hong-Wei Xue. 2006. “A Brassinolide-Suppressed Rice MADS-Box Transcription Factor, OsMDP1, Has a Negative Regulatory Role in BR Signaling.” The Plant Journal 47 (4): 519–31. https://doi.org/10.1111/j.1365-313X.2006.02804.x.
dc.relation.referencesDuvick, D N. 2005. Genetic Progress in Yield of United States Maize (Zea Mays L.). Maydica. Vol. 50.
dc.relation.referencesEid, A, and M M Mahfouz. 2016. “Genome Editing: The Road of CRISPR/Cas9 from Bench to Clinic.” Exp Mol Med 48 (10): e265. https://doi.org/10.1038/emm.2016.111.
dc.relation.referencesEndo, Masaki, and Seiichi Toki. 2013. “Creation of Herbicide-Tolerant Crops by Gene Targeting.” Journal of Pesticide Science 38 (2): 49–59. https://doi.org/10.1584/jpestics.D12-073.
dc.relation.referencesEngler, Carola, Romy Kandzia, and Sylvestre Marillonnet. 2008. “A One Pot, One Step, Precision Cloning Method with High Throughput Capability.” PLoS ONE 3 (11).https://doi.org/10.1371/journal.pone.0003647.
dc.relation.referencesFu, X, LT Duc, S Fontana, BB Bong, P Tinjuangjun, D Sudhakar, RM Twyman, P Christou, and A Kohli. 2000. “Linear Transgene Constructs Lacking Vector Backbone Sequences Generate Low-Copy-Number Transgenic Plants with Simple Integration Patterns.” Transgenic Res 9: 11–19.
dc.relation.referencesGan, Lijun, Hong Wu, Dapeng Wu, Zhanfang Zhang, Zhengfei Guo, Na Yang, Kai Xia, et al. 2015. “Methyl Jasmonate Inhibits Lamina Joint Inclination by Repressing Brassinosteroid Biosynthesis and Signaling in Rice.” Plant Science 241: 238–45. https://doi.org/https://doi.org/10.1016/j.plantsci.2015.10.012.
dc.relation.referencesGao, Feng, Xiao Z Shen, Feng Jiang, Yongqiang Wu, and Chunyu Han. 2016. “DNA-Guided Genome Editing Using the Natronobacterium Gregoryi Argonaute.” Nature Biotechnology, no. May: 1–7. https://doi.org/10.1038/nbt.3547.
dc.relation.referencesGao, Yangbin, and Yunde Zhao. 2014. “Specific and Heritable Gene Editing in <Em>Arabidopsis</Em>” Proceedings of the National Academy of Sciences 111 (12): 4357 LP – 4358. https://doi.org/10.1073/pnas.1402295111.
dc.relation.referencesGarsmeur, Olivier, Gaetan Droc, Rudie Antonise, Jane Grimwood, Bernard Potier, Karen Aitken, Jerry Jenkins, et al. 2018. “A Mosaic Monoploid Reference Sequence for the Highly Complex Genome of Sugarcane.” Nature Communications 9 (1): 2638. https://doi.org/10.1038/s41467-018-05051-5.
dc.relation.referencesGasiunas, Giedrius, Rodolphe Barrangou, Philippe Horvath, and Virginijus Siksnys. 2012. “Cas9- CrRNA Ribonucleoprotein Complex Mediates Specific DNA Cleavage for Adaptive Immunity in Bacteria.” Proceedings of the National Academy of Sciences of the United States of America 109 (39): 2579–86. https://doi.org/10.1073/pnas.1208507109.
dc.relation.referencesGómez-Mena, Concha. 2020. “La Edición De Genomas: Plantas a La Carta.” Mètode Revista de Difusió de La Investigació, no. 11: 45–49. https://doi.org/10.7203/metode.11.15507.
dc.relation.referencesGoodman, Richard E, and Afua O Tetteh. 2011. “Suggested Improvements for the Allergenicity Assessment of Genetically Modified Plants Used in Foods.” Current Allergy and Asthma Reports 11 (4): 317–24. https://doi.org/10.1007/s11882-011-0195-6.
dc.relation.referencesHammer, G, Zhanshan Dong, Greg Mclean, Al Doherty, Carlos Messina, J Schussler, Chris Zinselmeier, Steve Paszkiewicz, and Mark Cooper. 2009. Can Changes in Canopy and/or Root System Architecture Explain Historical Maize Yield Trends in the US Corn Belt? Crop Science. Vol. 49. https://doi.org/10.2135/cropsci2008.03.0152.
dc.relation.referencesHao Liu, Yuduan Ding, Yanqing Zhou, Wenqi Jin, Kabin Xie, Chen, Ling-Ling. 2016. “CRISPR-P 2 . 0 : An Improved CRISPR-Cas9 Tool for Genome Editing in Plants,” 9–11. https://doi.org/10.1016/j.molp.2017.01.003.
dc.relation.referencesHartung, Frank, and Joachim Schiemann. 2014. “Precise Plant Breeding Using New Genome Editing Techniques: Opportunities, Safety and Regulation in the EU.” The Plant Journal 78 (5): 742–52. https://doi.org/10.1111/tpj.12413.
dc.relation.referencesHaughn, George W, Julie Smith, Barbara Mazur, and Chris Somerville. 1988. “Transformation with a Mutant Arabidopsis Acetolactate Synthase Gene Renders Tobacco Resistant to Sulfonylurea Herbicides,” 266–71.
dc.relation.referencesHeidrich, Nadja, and Jörg Vogel. 2013. “Same Same but Different: New Structural Insight into CRISPR-Cas Complexes.” Molecular Cell 52 (1): 4–7. https://doi.org/10.1016/j.molcel.2013.09.023.
dc.relation.referencesHolman, Christopher M. 2019. “A Fractured International Response to CRISPR-Enabled Gene Editing of Agricultural Products.” Biotechnology Law Report 38 (1): 3–23. https://doi.org/10.1089/blr.2019.29100.cmh.
dc.relation.referencesHong, Zhi, Miyako Ueguchi-Tanaka, and Makoto Matsuoka. 2004. “Brassinosteroids and Rice Architecture.” Journal of Pesticide Science 29 (3): 184–88. https://doi.org/10.1584/jpestics.29.184.
dc.relation.referencesHong, Zhi, Miyako Ueguchi-Tanaka, Kazuto Umemura, Sakurako Uozu, Shozo Fujioka, Suguru Takatsuto, Shigeo Yoshida, Motoyuki Ashikari, Hidemi Kitano, and Makoto Matsuoka. 2003a. “A Rice Brassinosteroid-Deficient Mutant, <Em>Ebisu Dwarf</Em> (<Em>D2</Em>), Is Caused by a Loss of Function of a New Member of Cytochrome P450.” The Plant Cell 15 (12): 2900 LP – 2910. https://doi.org/10.1105/tpc.014712.
dc.relation.referencesHorizon. 2018. “CRISPR-Cas9 Gene Editing Applications.” 2018. https://horizondiscovery.com/en/applications/crispr-cas9/crispr-cas9-gene-editingapplications.
dc.relation.referencesHoshikawa, Kiyochika. 1989. The Growing Rice Plant: An Anatomical Monograph. Edited by Tokyo : Nobunkyo. 1st ed. Tokyo.
dc.relation.referencesICA, Instituto Colombiano Agropecuario. 2018. “Resolución-29299-Del-01-de-Agosto-de- 2018.Pdf.”
dc.relation.referencesJiang, Wenzhi, Huanbin Zhou, Honghao Bi, Michael Fromm, Bing Yang, and Donald P. Weeks. 2013. “Demonstration of CRISPR/Cas9/SgRNA-Mediated Targeted Gene Modification in Arabidopsis, Tobacco, Sorghum and Rice.” Nucleic Acids Research 41 (20): 1–12. https://doi.org/10.1093/nar/gkt780.
dc.relation.referencesJinek, Martin, Krzysztof Chylinski, Ines Fonfara, Michael Hauer, Jennifer A Doudna, and Emmanuelle Charpentier. 2012. “A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity.” Science 337 (6096): 816 LP – 821. http://science.sciencemag.org/content/337/6096/816.abstract.
dc.relation.referencesJones, Huw D. 2015. “Regulatory Uncertainty over Genome Editing.” Nature Plants 1 (1): 14011. https://doi.org/10.1038/nplants.2014.11.
dc.relation.referencesJoyce, Priya, Melissa Kuwahata, Nicole Turner, and Prakash Lakshmanan. 2010. “Selection System and Co-Cultivation Medium Are Important Determinants of Agrobacterium-Mediated Transformation of Sugarcane.” Plant Cell Reports 29 (2): 173–83. https://doi.org/10.1007/s00299-009-0810-3.
dc.relation.referencesKinoshita, Toshinori, Ana Caño-Delgado, Hideharu Seto, Sayoko Hiranuma, Shozo Fujioka, Shigeo Yoshida, and Joanne Chory. 2005. “Binding of Brassinosteroids to the Extracellular Domain of Plant Receptor Kinase BRI1.” Nature 433 (January): 167. https://doi.org/10.1038/nature03227.
dc.relation.referencesKohli, Ajay, Simon Griffiths, Natalia Palacios, Richard M. Twyman, Philippe Vain, David A. Laurie, and Paul Christou. 1999. “Molecular Characterization of Transforming Plasmid Rearrangements in Transgenic Rice Reveals a Recombination Hotspot in the CaMV 35S Promoter and Confirms the Predominance of Microhomology Mediated Recombination.” Plant Journal 17 (6): 591–601. https://doi.org/10.1046/j.1365-313X.1999.00399.x.
dc.relation.referencesKumar, Vinay, and Mukesh Jain. 2015. “The CRISPR-Cas System for Plant Genome Editing: Advances and Opportunities.” Journal of Experimental Botany 66 (1): 47–57. https://doi.org/10.1093/jxb/eru429.
dc.relation.referencesLambert, R J, and R R Johnson. 1978. “Leaf Angle, Tassel Morphology, and the Performance of Maize Hybrids1.” Crop Science 18: 499–502. https://doi.org/10.2135/cropsci1978.0011183X001800030037x.
dc.relation.referencesLaRossa, R. A., and J. V. Schloss. 1984. “The Sulfonylurea Herbicide Sulfometuron Methyl Is an Extremely Potent and Selective Inhibitor of Acetolactate Synthase in Salmonella Typhimurium.” Journal of Biological Chemistry 259 (14): 8753–57.
dc.relation.referencesLawrenson, Tom, Oluwaseyi Shorinola, Nicola Stacey, Chengdao Li, Lars Østergaard, Nicola Patron, Cristobal Uauy, and Wendy Harwood. 2015. “Induction of Targeted, Heritable Mutations in Barley and Brassica Oleracea Using RNA-Guided Cas9 Nuclease.” Genome Biology 16 (1): 1–13. https://doi.org/10.1186/s13059-015-0826-7.
dc.relation.referencesLee, Sumin, Seunghee Lee, Ki-Young Yang, Young-Mi Kim, So-Yeon Park, Soo Young Kim, and Moon-Soo Soh. 2006. “Overexpression of PRE1 and Its Homologous Genes Activates Gibberellin-Dependent Responses in Arabidopsis Thaliana.” Plant and Cell Physiology 47 (5): 591–600. https://doi.org/10.1093/pcp/pcj026.
dc.relation.referencesLee, and Tollenaar. 2007. Physiological Basis of Successful Breeding Strategies for Maize Grain Yield. Crop Science. Vol. 47. https://doi.org/10.2135/cropsci2007.04.0010IPBS.
dc.relation.referencesLi, Jian Feng, Julie E. Norville, John Aach, Matthew McCormack, Dandan Zhang, Jenifer Bush, George M. Church, and Jen Sheen. 2013. “Multiplex and Homologous Recombination- Mediated Genome Editing in Arabidopsis and Nicotiana Benthamiana Using Guide RNA and Cas9.” Nature Biotechnology 31 (8): 688–91. https://doi.org/10.1038/nbt.2654.
dc.relation.referencesLi, Jianming, and Joanne Chory. 1997. “A Putative Leucine-Rich Repeat Receptor Kinase Involved in Brassinosteroid Signal Transduction.” Cell 90 (5): 929–38. https://doi.org/https://doi.org/10.1016/S0092-8674(00)80357-8.
dc.relation.referencesLiang, Zhen, Kunling Chen, Tingdong Li, Yi Zhang, Yanpeng Wang, Qian Zhao, Jinxing Liu, et al. 2017. “ARTICLE Efficient DNA-Free Genome Editing of Bread Wheat Using CRISPR/Cas9 Ribonucleoprotein Complexes.” Nature Publishing Group 8: 1–5. https://doi.org/10.1038/ncomms14261.
dc.relation.referencesMa, Xingliang, Qunyu Zhang, Qinlong Zhu, Wei Liu, Yan Chen, Rong Qiu, Bin Wang, et al. 2015. “A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants.” Molecular Plant 8 (8): 1274–84. https://doi.org/10.1016/j.molp.2015.04.007.
dc.relation.referencesMa, Xingliang, Qinlong Zhu, Yuanling Chen, and Yao Guang Liu. 2016. “CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.” Molecular Plant. https://doi.org/10.1016/j.molp.2016.04.009.
dc.relation.referencesMakarova, Kira S., Daniel H. Haft, Rodolphe Barrangou, Stan J. J. Brouns, Emmanuelle Charpentier, Philippe Horvath, Sylvain Moineau, et al. 2011. “Evolution and Classification of the CRISPR–Cas Systems.” Nature Reviews Microbiology 9 (6): 467–77. https://doi.org/10.1038/nrmicro2577.
dc.relation.referencesMakarova, Kira S., Yuri I. Wolf, Omer S. Alkhnbashi, Fabrizio Costa, Shiraz A. Shah, Sita J. Saunders, Rodolphe Barrangou, et al. 2015. “An Updated Evolutionary Classification of CRISPR-Cas Systems.” Nature Reviews. Microbiology 13 (11): 722–36. https://doi.org/10.1038/nrmicro3569.
dc.relation.referencesMakarova, Kira S., Yuri I. Wolf, and Eugene V. Koonin. 2013. “Comparative Genomics of Defense Systems in Archaea and Bacteria.” Nucleic Acids Research 41 (8): 4360–77. https://doi.org/10.1093/nar/gkt157.
dc.relation.referencesMansfield, Brian, and Rita Mumm. 2013. Survey of Plant Density Tolerance in US Maize Germplasm. Crop Science. https://doi.org/10.2135/cropsci2013.04.0252.
dc.relation.referencesMelero Royo, Sergio, Nicole Martínez-García, and María Luz Centeno Martín. 2020. “Edición Genética Por CRISPPR-Cas y Sus Aplicaciones En La Mejora de Cultivos.” Ambiociencias 3021 (17): 14. https://doi.org/10.18002/ambioc.v0i17.6206.
dc.relation.referencesMetje-Sprink, Janina, Jochen Menz, Dominik Modrzejewski, and Thorben Sprink. 2019. “DNAFree Genome Editing: Past, Present and Future.” Frontiers in Plant Science 9 (January): 1–9. https://doi.org/10.3389/fpls.2018.01957.
dc.relation.referencesMikami, Masafumi, Seiichi Toki, and Masaki Endo. 2015. “Comparison of CRISPR/Cas9 Expression Constructs for Efficient Targeted Mutagenesis in Rice.” Plant Molecular Biology 88 (6): 561–72. https://doi.org/10.1007/s11103-015-0342-x.
dc.relation.referencesMojica, F. J M, César Díez-Villaseñor, Jesús García-Martínez, and Elena Soria. 2005. “Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements.” Journal of Molecular Evolution 60 (2): 174–82. https://doi.org/10.1007/s00239-004-0046-3.
dc.relation.referencesMoore, P H, and F C Botha. 2013. Sugarcane: Physiology, Biochemistry and Functional Biology. World Agriculture Series. Wiley. https://books.google.com.co/books?id=-334nQEACAAJ.
dc.relation.referencesMoreno, M A, L C Harper, R W Krueger, and M Dellaporta, S LFreeling. 1997. “Liguleless1 Encodes a Nuclear-Localized Protein Required for Induction of Ligules and Auricles During Maize Leaf Organogenesis.” Genes & Development 11 (5): 616–28. https://doi.org/10.1101/gad.11.5.616.
dc.relation.referencesMori, Masaki, Takahito Nomura, Hisako Ooka, Masumi Ishizaka, Takao Yokota, Kazuhiko Sugimoto, Ken Okabe, et al. 2002. “Isolation and Characterization of a Rice Dwarf Mutant with a Defect in Brassinosteroid Biosynthesis.” Plant Physiology 130 (3): 1152 LP – 1161. https://doi.org/10.1104/pp.007179.
dc.relation.referencesNagamangala Kanchiswamy, Chidananda, Daniel James Sargent, Riccardo Velasco, Massimo E Maffei, and Mickael Malnoy. 2015. “Looking Forward to Genetically Edited Fruit Crops.” Trends in Biotechnology 33 (2): 62–64. https://doi.org/https://doi.org/10.1016/j.tibtech.2014.07.003.
dc.relation.referencesNakamura, Ayako, Shozo Fujioka, Hidehiko Sunohara, Noriko Kamiya, Zhi Hong, Yoshiaki Inukai, Kotaro Miura, et al. 2006. “The Role of <Em>OsBRI1</Em> and Its Homologous Genes, <Em>OsBRL1</Em> and <Em>OsBRL3</Em>, in Rice.” Plant Physiology 140 (2): 580 LP – 590. https://doi.org/10.1104/pp.105.072330.
dc.relation.referencesNakashita, Hideo, Michiko Yasuda, Takako Nitta, Tadao Asami, Shozo Fujioka, Yuko Arai, Katsuhiko Sekimata, Suguru Takatsuto, Isamu Yamaguchi, and Shigeo Yoshida. 2003. “Brassinosteroid Functions in a Broad Range of Disease Resistance in Tobacco and Rice.” The Plant Journal 33 (5): 887–98. https://doi.org/10.1046/j.1365-313X.2003.01675.x.
dc.relation.referencesNekrasov, Vladimir, Brian Staskawicz, Detlef Weigel, Jonathan D G Jones, and Sophien Kamoun. 2013. “Targeted Mutagenesis in the Model Plant Nicotiana Benthamiana Using Cas9 RNAGuided Endonuclease.” Nature Biotechnology 31 (August): 691. https://doi.org/10.1038/nbt.2655.
dc.relation.referencesNew England Biolabs. 2007. “CRISPR / Cas9 and Targeted Genome Editing : A New Era in Molecular Biology.” New England BioLabs, no. Figure 1: 1–4. papers2://publication/uuid/580A8CEB-0A7F-4743-8E49-9EADD2A9D1B8.
dc.relation.referencesOost, John van der, Matthijs M. Jore, Edze R. Westra, Magnus Lundgren, and Stan J.J. Brouns. 2009. “CRISPR-Based Adaptive and Heritable Immunity in Prokaryotes.” Trends in Biochemical Sciences 34 (8): 401–7. https://doi.org/10.1016/j.tibs.2009.05.002.
dc.relation.referencesOost, John van der, Edze R Westra, Ryan N Jackson, and Blake Wiedenheft. 2014. “Unravelling the Structural and Mechanistic Basis of CRISPR-Cas Systems.” Nature Reviews. Microbiology 12 (7): 479–92. https://doi.org/10.1038/nrmicro3279.
dc.relation.referencesOrtigosa, Andrés, Selena Gimenez-Ibanez, Nathalie Leonhardt, and Roberto Solano. 2019. “Design of a Bacterial Speck Resistant Tomato by CRISPR/Cas9-Mediated Editing of SlJAZ2.” Plant Biotechnology Journal 17 (3): 665–73. https://doi.org/10.1111/pbi.13006.
dc.relation.referencesOsakabe, Yuriko, Zhenchang Liang, Chong Ren, Chikako Nishitani, Keishi Osakabe, Masato Wada, Sadao Komori, et al. 2018. “CRISPR–Cas9-Mediated Genome Editing in Apple and Grapevine.” Nature Protocols 13 (12): 2844–63. https://doi.org/10.1038/s41596-018-0067-9.
dc.relation.referencesOz, Tufan Mehmet, Ratna Karan, Fredy Altpeter, and Aldo Merotto. 2019. “Targeted Precision Nucleotide Substitutions in Sugarcane Following CRISPR/Cas9 and Template Mediated Genome Editing Confer ‘Gain of Function.’” In Meeting of the Society for In Vitro Biology. Tampa, Florida.
dc.relation.referencesPendleton, J W, G E Smith, S R Winter, and T J Johnston. 1968. “Field Investigations of the Relationships of Leaf Angle in Corn (Zea Mays L.) to Grain Yield and Apparent Photosynthesis1.” Agronomy Journal 60: 422–24. https://doi.org/10.2134/agronj1968.00021962006000040027x.
dc.relation.referencesPeng, Aihong, Shanchun Chen, Tiangang Lei, Lanzhen Xu, Yongrui He, Liu Wu, Lixiao Yao, and Xiuping Zou. 2017. “Engineering Canker-Resistant Plants through CRISPR/Cas9-Targeted Editing of the Susceptibility Gene CsLOB1 Promoter in Citrus.” Plant Biotechnology Journal 15 (12): 1509–19. https://doi.org/10.1111/pbi.12733.
dc.relation.referencesPinto, L R, A A F Garcia, M M Pastina, L H M Teixeira, J A Bressiani, E C Ulian, M A P Bidoia, and A P Souza. 2010. “Analysis of Genomic and Functional RFLP Derived Markers Associated with Sucrose Content, Fiber and Yield QTLs in a Sugarcane (Saccharum Spp.) Commercial Cross.” Euphytica 172 (3): 313–27. https://doi.org/10.1007/s10681-009-9988-2.
dc.relation.referencesPorebski, Sue, L Grant Bailey, and Bernard R Baum. 1997. “Modification of a CTAB DNA Extraction Protocol for Plants Containing High Polysaccharide and Polyphenol Components.” Plant Molecular Biology Reporter 15 (1): 8–15. https://doi.org/10.1007/BF02772108.
dc.relation.referencesRath, Devashish, Lina Amlinger, Archana Rath, and Magnus Lundgren. 2015. “The CRISPR-Cas Immune System: Biology, Mechanisms and Applications.” Biochimie 117: 119–28. https://doi.org/10.1016/j.biochi.2015.03.025.
dc.relation.referencesRiaño-Pachón, Diego Mauricio, and Lucia Mattiello. 2017. “Draft Genome Sequencing of the Sugarcane Hybrid SP80-3280.” F1000Research 6 (0): 861. https://doi.org/10.12688/f1000research.11859.1.
dc.relation.referencesSakamoto, Tomoaki, Yoichi Morinaka, Toshiyuki Ohnishi, Hidehiko Sunohara, Shozo Fujioka, Miyako Ueguchi-Tanaka, Masaharu Mizutani, et al. 2006. “Erect Leaves Caused by Brassinosteroid Deficiency Increase Biomass Production and Grain Yield in Rice.” Nature Biotechnology 24 (December): 105. https://doi.org/10.1038/nbt1173.
dc.relation.referencesSamson, Julie E, Alfonso H Magadán, Mourad Sabri, and Sylvain Moineau. 2013. “Revenge of the Phages : Defeating Bacterial Defences” 11. https://doi.org/10.1038/nrmicro3096.
dc.relation.referencesSánchez-León, Susana, Javier Gil-Humanes, Carmen V. Ozuna, María J. Giménez, Carolina Sousa, Daniel F. Voytas, and Francisco Barro. 2018. “Low-Gluten, Nontransgenic Wheat Engineered with CRISPR/Cas9.” Plant Biotechnology Journal 16 (4): 902–10. https://doi.org/10.1111/pbi.12837.
dc.relation.referencesSauer, Noel J, Jerry Mozoruk, Ryan B Miller, Zachary J Warburg, Keith A Walker, Peter R Beetham, Christian R Schöpke, and Greg F W Gocal. 2016. “Oligonucleotide-Directed Mutagenesis for Precision Gene Editing.” Plant Biotechnology Journal 14 (2): 496–502. https://doi.org/10.1111/pbi.12496.
dc.relation.referencesSchiml, Simon, and Holger Puchta. 2016. “Revolutionizing Plant Biology: Multiple Ways of Genome Engineering by CRISPR/Cas.” Plant Methods. https://doi.org/10.1186/s13007-016- 0103-0.
dc.relation.referencesShah, Tariq, Tayyaba Andleeb, Sadia Lateef, and Ali Noor. 2018. “Genome Editing in Plants: Advancing Crop Transformation and Overview of Tools ☆.”https://doi.org/10.1016/j.plaphy.2018.05.009.
dc.relation.referencesShan, Qiwei, Yanpeng Wang, Jun Li, Yi Zhang, Kunling Chen, Zhen Liang, Kang Zhang, et al. 2013. “Targeted Genome Modification of Crop Plants Using a CRISPR-Cas System.” Nature Biotechnology 31 (August): 686. https://doi.org/10.1038/nbt.2650.
dc.relation.referencesShaner, Dale L., Paul C. Anderson, and Mark A. Stidham. 1984. “Imidazolinones: POTENT INHIBITORS OF ACETOHYDROXYACID SYNTHASE.” Plant Physiol. 76: 545–46. https://doi.org/10.1017/S0022029900033598.
dc.relation.referencesSinclair, Thomas R, and John E Sheehy. 1999. “Erect Leaves and Photosynthesis in Rice.” Science 283 (5407): 1455 LP – 1455. https://doi.org/10.1126/science.283.5407.1455c.
dc.relation.referencesSmith, J. K., J. V. Schloss, and B. J. Mazur. 1989. “Functional Expression of Plant Acetolactate Synthase Genes in Escherichia Coli.” Proceedings of the National Academy of Sciences of the United States of America 86 (11): 4179–83. https://doi.org/10.1073/pnas.86.11.4179.
dc.relation.referencesSoda, Neelam, Lokesh Verma, and Jitender Giri. 2018. “CRISPR-Cas9 Based Plant Genome Editing: Significance, Opportunities and Recent Advances.” Plant Physiology and Biochemistry 131 (October 2017): 2–11. https://doi.org/10.1016/j.plaphy.2017.10.024.
dc.relation.referencesSoyk, Sebastian, Niels A Müller, Soon Ju Park, Inga Schmalenbach, Ke Jiang, Ryosuke Hayama, Lei Zhang, Joyce Van Eck, José M Jiménez-Gómez, and Zachary B Lippman. 2017. “Variation in the Flowering Gene SELF PRUNING 5G Promotes Day-Neutrality and Early Yield in Tomato.” Nature Genetics 49 (1): 162–68. https://doi.org/10.1038/ng.3733.
dc.relation.referencesSuttle, Curtis a. 2007. “Marine Viruses--Major Players in the Global Ecosystem.” Nature Reviews. Microbiology 5 (10): 801–12. https://doi.org/10.1038/nrmicro1750.
dc.relation.referencesSvitashev, Sergei, Christine Schwartz, Brian Lenderts, Joshua K. Young, and A. Mark Cigan. 2016. “Genome Editing in Maize Directed by CRISPR-Cas9 Ribonucleoprotein Complexes.” Nature Communications 7: 1–7. https://doi.org/10.1038/ncomms13274.
dc.relation.referencesSvitashev, Sergei, Joshua K. Young, Christine Schwartz, Huirong Gao, S. Carl Falco, and A. Mark Cigan. 2015. “Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA.” Plant Physiology 169 (2): 931–45. https://doi.org/10.1104/pp.15.00793.
dc.relation.referencesSzekeres, Miklós, Kinga Németh, Zsuzsanna Koncz-Kálmán, Jaideep Mathur, Annette Kauschmann, Thomas Altmann, George P Rédei, Ferenc Nagy, Jeff Schell, and Csaba Koncz. 1996. “Brassinosteroids Rescue the Deficiency of CYP90, a Cytochrome P450, Controlling Cell Elongation and De-Etiolation in Arabidopsis.” Cell 85 (2): 171–82. https://doi.org/https://doi.org/10.1016/S0092-8674(00)81094-6.
dc.relation.referencesTanabe, Sumiyo, Motoyuki Ashikari, Shozo Fujioka, Suguru Takatsuto, Shigeo Yoshida, Masahiro Yano, Atsushi Yoshimura, et al. 2005a. “A Novel Cytochrome P450 Is Implicated in Brassinosteroid Biosynthesis via the Characterization of a Rice Dwarf Mutant, <Em>Dwarf11</Em>, with Reduced Seed Length.” The Plant Cell 17 (3): 776 LP – 790. https://doi.org/10.1105/tpc.104.024950.
dc.relation.referencesTanaka, A., H. Nakagawa, C. Tomita, Z. Shimatani, M. Ohtake, T. Nomura, C.-J. Jiang, et al. 2009. “BRASSINOSTEROID UPREGULATED1, Encoding a Helix-Loop-Helix Protein, Is a Novel Gene Involved in Brassinosteroid Signaling and Controls Bending of the Lamina Joint in Rice.” Plant Physiology 151 (2): 669–80. https://doi.org/10.1104/pp.109.140806.
dc.relation.referencesTaparia, Yogesh, Maria Gallo, and Fredy Altpeter. 2012. “Comparison of Direct and Indirect Embryogenesis Protocols, Biolistic Gene Transfer and Selection Parameters for Efficient Genetic Transformation of Sugarcane.” Plant Cell, Tissue and Organ Culture 111 (2): 131– 41. https://doi.org/10.1007/s11240-012-0177-y.
dc.relation.referencesTian, Peter J Bradbury, Patrick J Brown, Hsiaoyi Hung, Qi Sun, Sherry Flint-Garcia, Torbert R Rocheford, Michael D McMullen, James B Holland, and Edward S Buckler. 2011. “Genome- Wide Association Study of Leaf Architecture in the Maize Nested Association Mapping Population.” Nature Genetics 43 (January): 159. https://doi.org/10.1038/ng.746.
dc.relation.referencesTian, Shouwei, Linjian Jiang, Qiang Gao, Jie Zhang, Mei Zong, Haiying Zhang, Yi Ren, et al. 2017. “Efficient CRISPR/Cas9-Based Gene Knockout in Watermelon.” Plant Cell Reports 36 (3): 399–406. https://doi.org/10.1007/s00299-016-2089-5.
dc.relation.referencesTollenaar, M, and J Wu. 1999. “Yield Improvement in Temperate Maize Is Attributable to Greater Stress Tolerance.” Crop Science 39: 1597–1604. https://doi.org/10.2135/cropsci1999.3961597x.
dc.relation.referencesTrujillo, John Henry. 2020. “Ensamblaje de Un Genoma y Una Huella Molecular de Caña de Azúcar Utilizando Secuenciación de Alto Rendimiento.” Centro de Investigación de la caña de azúcar de Colombia, Cenicaña.
dc.relation.referencesTruong, Sandra K, Ryan F Mccormick, William L Rooney, and John E Mullet. 2015. “Harnessing Genetic Variation in Leaf Angle to Increase Productivity of Sorghum Bicolor” 201 (November): 1229–38. https://doi.org/10.1534/genetics.115.178608.
dc.relation.referencesWada, Kojiro, Shingo Marumo, Nobuo Ikekawa, Masuo Morisaki, and Kenji Mori. 1981. “Brassinolide and Homobrassinolide Promotion of Lamina Inclination of Rice Seedlings.” Plant and Cell Physiology 22 (2): 323–25. https://doi.org/10.1093/oxfordjournals.pcp.a076173.
dc.relation.referencesWalsh, J, C A Waters, and M Freeling. 1998. “The Maize Gene Liguleless2 Encodes a Basic Leucine Zipper Protein Involved in the Establishment of the Leaf Blade-Sheath Boundary.” Genes & Development 12 (2): 208–18. https://www.ncbi.nlm.nih.gov/pubmed/9490265.
dc.relation.referencesWang, Ying, Lizhao Geng, Menglong Yuan, Juan Wei, Chen Jin, Min Li, Yu Kun, et al. 2017. “Deletion of a Target Gene in Indica Rice via CRISPR/Cas9.” Plant Cell Reports 36 (8): 1333–43.
dc.relation.referencesWolter, Felix, Patrick Schindele, and Holger Puchta. 2019. “Plant Breeding at the Speed of Light: The Power of CRISPR/Cas to Generate Directed Genetic Diversity at Multiple Sites.” BMC Plant Biology 19 (1): 1–8. https://doi.org/10.1186/s12870-019-1775-1.
dc.relation.referencesWong, Gane Ka Shu, Jun Wang, Lin Tao, Jun Tan, Jianguo Zhang, Douglas A. Passey, and Jun Yu. 2002. “Compositional Gradients in Gramineae Genes.” Genome Research 12 (6): 851– 56. https://doi.org/10.1101/gr.189102.
dc.relation.referencesWoo, Je Wook, Jungeun Kim, Soon Il Kwon, Claudia Corvalán, Seung Woo Cho, Hyeran Kim, Sang-Gyu Kim, Sang-Tae Kim, Sunghwa Choe, and Jin-Soo Kim. 2015. “DNA-Free Genome Editing in Plants with Preassembled CRISPR-Cas9 Ribonucleoproteins.” Nature Biotechnology 33 (11): 1162–64. https://doi.org/10.1038/nbt.3389.
dc.relation.referencesXing, Hui-Li, Li Dong, Zhi-Ping Wang, Hai-Yan Zhang, Chun-Yan Han, Bing Liu, Xue-Chen Wang, and Qi-Jun Chen. 2014. “A CRISPR/Cas9 Toolkit for Multiplex Genome Editing in Plants.” BMC Plant Biology 14 (1): 327. https://doi.org/10.1186/s12870-014-0327-y.
dc.relation.referencesXu, Rong Fang, Hao Li, Rui Ying Qin, Juan Li, Chun Hong Qiu, Ya Chun Yang, Hui Ma, Li Li, Peng Cheng Wei, and Jian Bo Yang. 2015. “Generation of Inheritable and ‘Transgene Clean’ Targeted Genome-Modified Rice in Later Generations Using the CRISPR/Cas9 System.” Scientific Reports 5 (May): 1–10. https://doi.org/10.1038/srep11491.
dc.relation.referencesXu, Rongfang, Hao Li, Ruiying Qin, Lu Wang, Li Li, Pengcheng Wei, and Jianbo Yang. 2014. “Gene Targeting Using the Agrobacterium Tumefaciens-Mediated CRISPR-Cas System in Rice.” Rice 7 (1): 7–10. https://doi.org/10.1186/s12284-014-0005-6.
dc.relation.referencesYamamuro, Chizuko, Yoshihisa Ihara, Xiong Wu, Takahiro Noguchi, Shozo Fujioka, Suguru Takatsuto, Motoyuki Ashikari, Hidemi Kitano, and Makoto Matsuoka. 2000. “Loss of Function of a Rice <Em>Brassinosteroid Insensitive1</Em> Homolog Prevents Internode Elongation and Bending of the Lamina Joint.” The Plant Cell 12 (9): 1591 LP – 1605. https://doi.org/10.1105/tpc.12.9.1591.
dc.relation.referencesYang, Fayu, Changbao Liu, Ding Chen, Mengjun Tu, Haihua Xie, Huihui Sun, Xianglian Ge, et al. 2017. “CRISPR/Cas9-LoxP-Mediated Gene Editing as a Novel Site-Specific Genetic Manipulation Tool.” Molecular Therapy - Nucleic Acids 7 (June): 378–86. https://doi.org/10.1016/j.omtn.2017.04.018.
dc.relation.referencesYoshida, Shouichi. 1972. “Physiological Aspects of Grain Yield.” Annual Review of Plant Physiology 23 (1): 437–64. https://doi.org/10.1146/annurev.pp.23.060172.002253.
dc.relation.referencesYu, Xiaofei, Li Li, Lei Li, Michelle Guo, Joanne Chory, and Yanhai Yin. 2008. “Modulation of Brassinosteroid-Regulated Gene Expression by Jumonji Domain-Containing Proteins ELF6 and REF6 in <Em>Arabidopsis</Em>” Proceedings of the National Academy of Sciences 105 (21): 7618 LP – 7623. https://doi.org/10.1073/pnas.0802254105.
dc.relation.referencesZhang, Jisen, Xingtan Zhang, Haibao Tang, Qing Zhang, Xiuting Hua, Xiaokai Ma, Fan Zhu, et al. 2018. “Allele-Defined Genome of the Autopolyploid Sugarcane Saccharum Spontaneum L.” Nature Genetics 50 (11): 1565–73. https://doi.org/10.1038/s41588-018-0237-2.
dc.relation.referencesZhao, Shu-qing, Jiang Hu, Long-biao Guo, Qian Qian, and Hong-wei Xue. 2010. “Rice Leaf Inclination2 , a VIN3-like Protein , Regulates Leaf Angle through Modulating Cell Division of the Collar.” Nature Publishing Group 20 (8): 935–47. https://doi.org/10.1038/cr.2010.109.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalCRISPR / Cas9
dc.subject.proposalCRISPR/Cas9
dc.subject.proposalGenetic edition
dc.subject.proposalBU1
dc.subject.proposalALS
dc.subject.proposalMutation
dc.subject.proposalLeaf angle
dc.subject.proposalEdición genética
dc.subject.proposalHerbicide resistance
dc.subject.proposalMutación
dc.subject.proposalÁngulo de la hoja
dc.subject.proposalBU1
dc.subject.proposalResistencia a herbicidas
dc.subject.proposalALS
dc.type.coarhttp://purl.org/coar/resource_type/c_93fc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/WP
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito