Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRodríguez Baracaldo, Rodolfo
dc.contributor.advisorNarváez Tovar, Carlos Alberto
dc.contributor.authorPérez Velásquez, Cristian Camilo
dc.date.accessioned2020-12-14T14:33:27Z
dc.date.available2020-12-14T14:33:27Z
dc.date.issued2018-11-06
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78706
dc.description.abstractCurrently dual phase steel are used in manufacture auto parts due to their good mechanical properties, which allow manufacture pieces more lightweight and therefore reduce the fuel consumption. However, the influence of their microstructure, which depends of a lot of factors like the chemical composition, on properties like fracture toughness or the crack propagation resistance haven´t had a large develop. Thus is convenient continue studying these properties, which allow estimate the final limit of use of a piece through structural integrity analysis. This document presents the study of influence of the dual phase steel microstructure on fracture toughness and fatigue crack propagation resistance. For this it was compared dual phase steels with different microstructures, mainly due to martensite content. Was performed an experimental analysis of the mechanical properties through tension, fracture toughness and crack propagation tests. Moreover it was used ABAQUS software to evaluate the material during the cracks propagation from experimental results, using the extended finite elements XFEM. The results shown that an increase of martensite phase on the dual phase steel microstructure decrease the fatigue crack velocity and increase their mechanical strength
dc.description.abstractActualmente el uso de aceros de fase dual se evidencia en gran parte en la fabricación de partes para el sector automotriz debido a sus buenas propiedades mecánicas, las cuales permiten la fabricación de piezas más livianas y al final una reducción en el consumo de combustible. Sin embargo la influencia de su microestructura, la cual depende altamente de la composición química del material inicial, sobre propiedades como la tenacidad de fractura o la resistencia a la propagación de grietas no ha tenido un gran desarrollo. Haciendo conveniente continuar el estudio de estas propiedades, las cuales permiten estimar el límite final de servicio de una pieza mediante análisis de integridad estructural. En este trabajo se presenta el estudio de la influencia de la microestructura de los aceros de fase dual en su tenacidad a la fractura y su resistencia a la propagación de grietas por fatiga. Para esto se compararon dos aceros de fase dual con una microestructura diferente, principalmente debida a la cantidad de martensita presente. Se realizó un análisis experimental de las propiedades del material mediante el uso de ensayos de tensión, ensayos de tenacidad de fractura y ensayos de propagación de grietas por fatiga usando probetas tipo CT. Además se usó el software ABAQUS para el estudio del material ante la propagación de grietas a partir de resultados experimentales al emplear el método de los elementos finitos extendidos (XFEM). Los resultados obtenidos evidencian que el aumento de la fase martensita en la microestructura del acero de fase dual aumenta su resistencia mecánicas y su resistencia a la propagación de grietas por fatiga.
dc.format.extent148
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleEvaluación experimental y modelado de propagación de grietas en un acero de fase dual
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Ingeniería de Materiales y Proceso de Manufactura
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupInnovación en Procesos de Manufactura e Ingeniería de Materiales (IPMIM)
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesC. E. Inglis, “Stresses in a plate due to the presence of cracks and sharp corners,” Trans. I.N.A., vol. XLIV. p. 15, 1913.
dc.relation.referencesA. A. Griffith, “The Phenomena of Rupture and Flow in Solids,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 221, no. 582–593. pp. 163–198, 1921.
dc.relation.referencesH. M. Westergaard, “Bearing pressures and cracks,” Journal of Applied Mechanics, vol. 61. pp. A49–A53, 1939.
dc.relation.referencesG. R. Irwin, “Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate,” Journal of Applied Mechanics, vol. 24, no. September. pp. 361–364, 1957.
dc.relation.referencesD. M. Tracey, “Finite elements for determination of crack tip elastic stress intensity factors.,” Eng. Fract. Mech., vol. 3, no. 3, pp. 255–265, 1971.
dc.relation.referencesZ. Xiulin and M. A. Hirt, “Fatigue crack propagation in steels,” Eng. Fract. Mech., vol. 18, no. 5, pp. 965–973, 1983.
dc.relation.referencesP. A. Wawrzynek and A. R. Ingraffea, “Interactive finite element analysis of fracture processes: An integrated approach,” Theor. Appl. Fract. Mech., vol. 8, no. 2, pp. 137–150, 1987.
dc.relation.referencesR. O. Ritchie, “Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids,” Int. J. Fract., vol. 100, pp. 55–83, 1999
dc.relation.referencesJ.-H. Kim and G. H. Paulino, “Simulation of Crack Propagation in Functionally Graded Materials Under Mixed-Mode and Non-Proportional Loading,” Int. J. Mech. Mater. Des., vol. 1, no. 1, pp. 63–94, 2004
dc.relation.referencesA. M. Alshoaibi, M. S. a. Hadi, and a. K. Ariffin, “An adaptive finite element procedure for crack propagation analysis,” J. Zhejiang Univ. Sci. A, vol. 8, no. 2, pp. 228–236, 2007.
dc.relation.referencesH. Zhang and A. Fatemi, “Short fatigue crack growth from a blunt notch in plate specimens,” Int. J. Fract., vol. 170, no. 1, pp. 1–11, 2011.
dc.relation.referencesG. Gruben, O. S. S. Hopperstad, and T. Børvik, “Simulation of ductile crack propagation in dual-phase steel,” Int. J. Fract., vol. 180, no. 1, pp. 1–22, 2012.
dc.relation.referencesA. Riccio, U. Caruso, A. Raimondo, and A. Sellitto, “Robustness of XFEM Method for the Simulation of Cracks Propagation in Fracture Mechanics Problems,” no. 2001, 2016.
dc.relation.referencesC. H. Pham, D. K. Phan, M. T. Huynh, and G. J. Hancock, “Fracture Toughness of G450 Sheet Steels at Ambient Temperature Subjected to Tension,” ISTRUC, vol. 1039, pp. 1–8, 2016.
dc.relation.referencesC. C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe, “An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design,” Annu. Rev. Mater. Res., vol. 45, no. 1, p. 150504161757009, 2014.
dc.relation.referencesP. Tsipouridis, “Mechanical properties of Dual-Phase steels,” p. 122, 2006.
dc.relation.referencesY. Granbom, Structure and mechanical properties of dual phase steels – An experimental and theoretical analysis. 2010.
dc.relation.referencesQ. Lai, O. Bouaziz, M. Gouné, L. Brassart, M. Verdier, G. Parry, A. Perlade, Y. Bréchet, and T. Pardoen, “Damage and fracture of dual-phase steels: Influence of martensite volume fraction,” Mater. Sci. Eng. A, vol. 646, pp. 322–331, 2015.
dc.relation.referencesY. Hayami, Sathiro. Furukawa, Takashi. Takeoka, “Method For Producing a Steel Sheet with Dual Phase Structure Composed of Ferrite and Rapidly Cooled Transformed Phases,” 1977.
dc.relation.referencesV. L. de la Concepción, H. N. Lorusso, and H. G. Svoboda, “Effect of Carbon Content on Microstructure and Mechanical Properties of Dual Phase Steels,” Procedia Mater. Sci., vol. 8, pp. 1047–1056, 2015.
dc.relation.referencesM. K. Manoj, V. Pancholi, and S. K. Nath, “Mechanical Properties and Fracture Behavior of Medium Carbon Dual Phase Steels,” vol. 2, no. 4, 2014.
dc.relation.referencesM. Pouranvari, “Work Hardening Behavior of Fe-0.1 C Dual Phase Steel,” BHM Berg-und Hüttenmännische Monatshefte, vol. 157, no. 1, pp. 44–47, 2012.
dc.relation.referencesJ. Zhang, H. Di, Y. Deng, and R. D. K. Misra, “Materials Science & Engineering A Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite – ferrite dual phase steel,” Mater. Sci. Eng. A, vol. 627, pp. 230–240, 2015.
dc.relation.referencesM. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, “Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite / martensite dual-phase steels and the effect of aging,” Acta Mater., vol. 59, no. 2, pp. 658–670, 2011.
dc.relation.referencesN. Saeidi, F. Ashra, and B. Niroumand, “Materials Science & Engineering A Development of a new ultra fi ne grained dual phase steel and examination of the effect of grain size on tensile deformation behavior,” vol. 599, pp. 145–149, 2014.
dc.relation.referencesM. Kuna, Finite Elements in Fracture Mechanics. 2013.
dc.relation.referencesT. L. Anderson, Fracture Mechanics: Fundamentals and Applications. 2005.
dc.relation.referencesM. E. Hernández, A. H., Espejo, Mecánica de Fractura y Análisis de Falla. 2002
dc.relation.referencesASTM Int., “Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC E399,” pp. 1–33, 2015.
dc.relation.referencesJ. Bris and L. Llanes, “Evaluación de la tenacidad de fractura en aceros sinterizados de alta densidad,” 2006.
dc.relation.referencesJ. R. Rice, “A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks,” J. Appl. Mech., vol. 35, no. 2, p. 379, 1968.
dc.relation.referencesJ. L. Arana and J. J. Gonzales, Mecanica de Fractura. 2002.
dc.relation.referencesX.-K. Zhu and J. A. Joyce, “Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization,” Eng. Fract. Mech., vol. 85, pp. 1–46, 2012.
dc.relation.referencesJ. Begley and J. Landes, “The J integral as a fracture criterion,” Astm Stp 514, pp. 1–23, 1972.
dc.relation.referencesJ. R. Rice, P. C. Paris, and J. G. Merkle, “Some Further Results of J-Integral Analysis and Estimates,” in Progress in Flaw Growth and Fracture Toughness Testing, 1973, pp. 231–245.
dc.relation.referencesASTM Int., “Standard Test Method for Measurement of Fracture Toughness E1820,” no. April 2000, pp. 1–56, 2001.
dc.relation.referencesP. Taylor and A. A. Jaoude, “Systems Science & Control Engineering : An Open Analytic and linear prognostic model for a vehicle suspension system subject to fatigue,” no. January, pp. 37–41, 2015.
dc.relation.referencesP. Paris and F. Erdogan, “A Critical Analysis of Crack Propagation Laws,” 1963.
dc.relation.referencesASTM Int., “Standard Test Method for Measurement of Fatigue Crack Growth Rates E647,” vol. i, pp. 1–48, 2016.
dc.relation.referencesV. B. Dutta, S. Suresh, and R. O. Ritchie, “Fatigue Crack Propagation in Dual-Phase Steels " Effects of Ferritic-Martensitic Microstructures on Crack Path Morphology,” vol. 15, no. June, pp. 1193–1207, 1984.
dc.relation.referencesS. Li, Y. Kang, and S. Kuang, “Effects of microstructure on fatigue crack growth behavior in cold-rolled dual phase steels,” Mater. Sci. Eng. A, vol. 612, pp. 153–161, 2014
dc.relation.referencesA. R. Ingraffea, “Chapter 0: Computational Fracture Mechanics,” no. 2002, 2007.
dc.relation.referencesR. D. Cook, “Finite Element Modeling for Stress Analysis.” Jhon Wiley & Sons, Inc., p. 320, 1995
dc.relation.referencesR. D. Henshell and K. G. Shaw, “Crack tip finite elements are unnecessary,” Int. J. Numer. Methods Eng., vol. 9, no. 3, pp. 495–507, 1975.
dc.relation.referencesR. S. Barsoum, “On the use of isoparametric finite elements in linear fracture mechanics,” Int. J. Numer. Methods Eng., vol. 10, no. 1, pp. 25–37, 1976.
dc.relation.referencesI. Milne, Comprehensive Structural Integrity: Fracture of Materials from Nano to Macro. 2003
dc.relation.referencesS. K. Chan, I. S. Tuba, and W. K. Wilson, “On the finite element method in linear fracture mechanics,” Eng. Fract. Mech., vol. 2, no. 1, pp. 1–17, 1970.
dc.relation.referencesD. M. Parks, “A stiffness derivative finite element technique for determination of crack tip stress intensity factors,” Int. J. Fract., vol. 10, no. 4, pp. 487–502, 1974.
dc.relation.referencesT. K. Hellen, “On the method of virtual crack extensions,” Int. J. Numer. Methods Eng., vol. 9, no. 1, pp. 187–207, 1975.
dc.relation.referencesE. F. Rybicki and M. F. Kanninen, “A finite element calculation of stress intensity factors by a modified crack closure integral,” Eng. Fract. Mech., vol. 9, no. 4, pp. 931–938, 1977.
dc.relation.referencesT. Belytschko and T. Black, “Elastic crack growth in finite elements with minimal remeshing,” Int. J. Numer. Methods Eng., vol. 45, no. 5, pp. 601–620, 1999
dc.relation.referencesN. Moës, J. Dolbow, and T. Belytschko, “A finite element method for crack growth without remeshing,” Int. J. Numer. Methods Eng., vol. 46, no. 1, pp. 131–150, 1999.
dc.relation.referencesJ. M. Melenk and I. Babuška, “The partition of unity finite element method: Basic theory and applications,” Comput. Methods Appl. Mech. Eng., vol. 139, no. 1–4, pp. 289–314, 1996.
dc.relation.referencesZ. Zhuang, Z. Liu, and B. Cheng, Extended Finite Element Method. 2014.
dc.relation.referencesS. Mohanty, S. Majumdar, and K. Natesan, “Modeling of Steam Generator Tube Rupture Usin Extended Finite Element Method,” 2013
dc.relation.referencesD. Montgomery, “Diseño y análisis de experimentos,” Limusa Wiley. pp. 21–692, 2004.
dc.relation.referencesE. Menendez. and L. O. Jamed., “Una propuesta para el cálculo de la potencia en el anova,” vol. 27, no. 2, pp. 194–205, 2006.
dc.relation.referencesK. W. Andrews, “Empirical formulae for the calculation of some triansformation temperatures,” Journal of the iron and steel Institute, no. July. pp. 721–727, 1965.
dc.relation.referencesASTM Int., “Preparation of Metallographic Specimens E3,” Area, vol. 03, no. July, pp. 1–17, 2001.
dc.relation.referencesASTM Int., “Standard Test Methods for Tension Testing of Metallic Materials E8,” Astm, no. C, pp. 1–27, 2009.
dc.relation.referencesY. J. Chao, J. D. Ward, and R. G. Sands, “Charpy impact energy, fracture toughness and ductile-brittle transition temperature of dual-phase 590 Steel,” Mater. Des., vol. 28, no. 2, pp. 551–557, 2007.
dc.relation.referencesG. Krauss, “Steels: heat treatment and processing principles,” ASM Int. 1990, p. 497, 1990.
dc.relation.referencesE. Pan, H. Di, G. Jiang, and C. Bao, “Effect of heat treatment on microstructures and mechanical properties of hot-dip galvanized DP steels,” Acta Metall. Sin. (English Lett., vol. 27, no. 3, pp. 469–475, 2014.
dc.relation.referencesJ. R. Mohanty, B. B. Verma, and P. K. Ray, “Determination of fatigue crack growth rate from experimental data: a new approach,” Int. J. Microstruct. Mater. Prop., vol. 5, no. 1, p. 79, 2010.
dc.relation.referencesK. Sudhakar and E. Dwarakadasa, “A study on fatigue crack growth in dual phase martensitic steel in air environment,” Bull. Mater. Sci., vol. 23, no. 3, pp. 193–199, 2000.
dc.relation.referencesR. Idris and Y. Prawoto, “Influence of ferrite fraction within martensite matrix on fatigue crack propagation : An experimental verification with dual phase steel,” Mater. Sci. Eng. A, vol. 552, pp. 547–554, 2012
dc.relation.referencesG. R. Speich, “Properties and Selection: Irons Steels and High Performance Alloys Vol 1,” Technology, no. Dual Phase Steels, p. 3470, 2001.
dc.relation.referencesZ. Sami, S. Tahar, and H. Mohamed, “Materials Science & Engineering A Microstructure and Charpy impact properties of ferrite – martensite dual phase API X70 linepipe steel,” Mater. Sci. Eng. A, vol. 598, pp. 338–342, 2014.
dc.relation.referencesK. K. Alaneme, “Fracture Toughness ( K 1C ) Evaluation for Dual Phase Medium Carbon Low Alloy Steels Using Circumferential Notched Tensile ( CNT ) Specimens,” vol. 14, no. 2, pp. 155–160, 2011.
dc.relation.referencesS. Ulu, H. Aytekin, and G. Said, “An alternative Approach to the Fracture Toughness of Dual Phase Steels,” vol. 31, no. May, pp. 360–370, 2014.
dc.relation.referencesD. G. Lyonel Reinhardt, J.A. Cordes, “Using Co-Simulation to Extend the Usage of XFEM,” pp. 1–17, 2011.
dc.relation.referencesAbaqus, “Abaqus 6.14 Abaqus Analysis,” vol. IV, 2014.
dc.relation.referencesJ. Shi, J. Lua, H. Waisman, P. Liu, T. Belytschko, N. Sukumar, and Y. Liang, “X-FEM toolkit for automated crack onset and growth prediction,” no. April, pp. 2008–2008, 2008
dc.relation.referencesX. T. Miao, C. Y. Zhou, and X. H. He, “Analysis of Limit Loads for CT Specimens with Cracks Based on Extended Finite Element Method,” Procedia Eng., vol. 130, pp. 763–774, 2015.
dc.relation.referencesS. P. Kumar, “Parametric Sensitivities of XFEM Based Prognosis for Quasi-static Tensile Crack Growth Parametric Sensitivities of XFEM Based Prognosis for Quasi-static Tensile Crack Growth,” 2017.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalAceros de Fase Dual
dc.subject.proposalDual Phase Steel
dc.subject.proposalTenacidad de Fractura
dc.subject.proposalFracture Toughness
dc.subject.proposalJ Integral
dc.subject.proposalIntegral J
dc.subject.proposalFatiga
dc.subject.proposalFatigue Strength
dc.subject.proposalXFEM
dc.subject.proposalXFEM
dc.subject.proposalParis Law.
dc.subject.proposalLey de Paris.
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito