Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorOlaya Flórez, John Jairo
dc.contributor.advisorAperador Chaparro, Willian
dc.contributor.authorMacías Ramírez, Hugo Alejandro
dc.date.accessioned2020-12-16T22:38:34Z
dc.date.available2020-12-16T22:38:34Z
dc.date.issued2020-12-15
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78728
dc.description.abstractThis thesis studied the mechanical, tribological and electrochemical properties of TiWSiN thin films. The thin films were deposited by reactive magnetron co-sputtering using equipment of two and three targets. Films were produced under four different conditions: i) by modifying the silicon content; ii) varying the nitrogen content; iii) applying the Taguchi method to find optimal deposition conditions; and iv) under the optimal conditions found, varying the silicon and nitrogen content. Comparative coatings of TiWSi, TiWN, TiSiN and WSiN were also deposited. The coatings were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and nanoindentation. It was found that silicon and nitrogen have effects on the microstructure, chemical composition and morphology, which affect the mechanical, tribological and electrochemical properties of the thin films. Hardness of 26GPa was achieved, as well as low wear rates and low friction coefficients. However, the electrochemical properties did not show improved behavior in comparison with the substrate
dc.description.abstractEn la presente investigación se estudiaron las propiedades mecánicas, tribológicas y electroquímicas de recubrimientos de TiWSiN. Los recubrimientos se depositaron por el proceso de co-sputtering reactivo utilizando equipos con una configuración de dos y tres blancos. Se fabricaron recubrimientos bajo cuatro condiciones diferentes: i) modificando el contenido de silicio; ii) variando el contenido de nitrógeno; iii) aplicando el método Taguchi para encontrar condiciones óptimas de depósito; y iv) utilizando las condiciones óptimas encontradas, variando el contenido de silicio y nitrógeno. También se depositaron recubrimientos comparativos de TiWSi, TiWN, TiSiN y WSiN. Los recubrimientos fueron caracterizados por las técnicas de difracción de rayos X (XRD), espectroscopía de fotoelectrones emitidos por rayos X (XPS), microscopía electrónica de barrido (SEM), microscopía de fuerza atómica (AFM) y nanoindentación. Se evidenció que el silicio y el nitrógeno tienen efectos importantes en la microestructura, composición química y morfología que inciden en las propiedades mecánicas, tribológicas y electroquímicas de los recubrimientos. Se lograron durezas de 26GPa, bajas tasas de desgaste y bajos coeficientes de fricción. Sin embargo, las propiedades electroquímicas no presentaron un comportamiento significativamente superior al del sustrato.
dc.description.sponsorshipMinciencias, Universidad Nacional de Colombia sede Bogotá, centro de investigación cooperativa en Biomateriales, CIC biomaGUNE, Universidad de San Buenaventura sede Bogotá, Universidad Militar Nueva Granada, centro de nanobiomédica de la Universidad Adam Mickiewicz.
dc.format.extent214
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
dc.titleRecubrimientos nanoestructurados de Ti-W-Si-N depositados mediante la técnica de co-sputtering magnetrón reactivo
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Ingeniería de Superficies y Nanomateriales
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.contributor.researchgroupGRUPO DE INVESTIGACIÓN AFIS (ANÁLISIS DE FALLAS, INTEGRIDAD Y SUPERFICIES)
dc.description.degreelevelDoctorado
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesJ. Musil, Physical and Mechanical Properties of Hard Nanocomposite Films Prepared by Reactive Magnetron Sputtering, in: A. Cavaleiro, J.T.M.D. Hosson (Eds.), Nanostructured Coat., Springer New York, 2006: pp. 407–463. http://link.springer.com.ezproxy.unal.edu.co/chapter/10.1007/978-0-387-48756-4_10 (accessed September 3, 2015)
dc.relation.referencesT.E. Twardowski, Introduction to Nanocomposite Materials: Properties, Processing, Characterization, DEStech Publications, Inc, 2007
dc.relation.referencesJ. Musil, P. Zeman, P. Baroch, 4.13 - Hard Nanocomposite Coatings, in: S.H.F.B.J.V.T. Yilbas (Ed.), Compr. Mater. Process., Elsevier, Oxford, 2014: pp. 325–353
dc.relation.referencesD.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Segunda, Elsevier Inc, Oxford, UK., 2010
dc.relation.referencesJ.M. Albella, Láminas delgadas y recubrimientos: preparación, propiedades y aplicaciones, Editorial CSIC - CSIC Press, 2003
dc.relation.referencesD. Satas, A. Tracton, eds., Coatings Technology Handbook, Segunda, Marcel Dekker, New York, 2001. C:\Users\Hugo\Documents\Apuntes tesis\Libros Sputtering\Coatings Technology Handbook.pdf
dc.relation.referencesR.F. Bunshah, Handbook of hard coatings: deposition technologies, properties and applications, Noyes Publications ; William Andrew Pub., Park Ridge, N.J.; Norwich, N.Y., 2001
dc.relation.referencesM. Jaroš, J. Musil, R. Čerstvý, S. Haviar, Effect of energy on structure, microstructure and mechanical properties of hard Ti(Al,V)Nx films prepared by magnetron sputtering, Surf. Coat. Technol. (n.d.). https://doi.org/10.1016/j.surfcoat.2017.06.074
dc.relation.referencesJ.A. Thornton, The microstructure of sputter‐deposited coatings, J. Vac. Sci. Technol. A. 4 (1986) 3059–3065. https://doi.org/10.1116/1.573628
dc.relation.referencesH.O. Pierson, Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps., William Andrew, 1996
dc.relation.referencesJ.-L. Vallés, I. Vergara, Tribología con nanomateriales, Investig. Cienc. (2008) 48–57
dc.relation.referencesK. Holmberg, Friction science saves energy, VTT Impulse Mag. (2009) 18–25
dc.relation.referencesJ.C. Caicedo, L. Yate, J. Montes, Improving the physicochemical surface properties on AISI D3 steel coated with Ti-W-N, Surf. Coat. Technol. 205 (2011) 2947–2953. https://doi.org/10.1016/j.surfcoat.2010.11.005
dc.relation.referencesA.A. Voevodin, D.V. Shtansky, E.A. Levashov, J.J. Moore, eds., Nanostructured Thin Films and Nanodispersion Strengthened Coatings, Springer and Business Media Inc, Dordrecht, 2004. http://link.springer.com/10.1007/1-4020-2222-0 (accessed September 19, 2015).
dc.relation.referencesT.E. Twardowski, Introduction to Nanocomposite Materials: Properties, Processing, Characterization, DEStech Publications, Inc, 2007.
dc.relation.referencesF. Díaz, Introducción a los nanomateriales, (2012). http://olimpia.cuautitlan2.unam.mx/pagina_ingenieria/mecanica/mat/mat_mec/m6/Introduccion%20a%20los%20nanomateriales.pdf (accessed September 13, 2015).
dc.relation.referencesA.A. Voevodin, D.V. Shtansky, E.A. Levashov, J.J. Moore, Nanostructured Thin Films and Nanodispersion Strengthened Coatings, Springer Science & Business Media, 2006.
dc.relation.referencesA.S.H. Makhlouf, D. Scharnweber, Handbook of Nanoceramic and Nanocomposite Coatings and Materials, Butterworth-Heinemann, 2015.
dc.relation.referencesA.J. Detor, A.M. Hodge, E. Chason, Y. Wang, H. Xu, M. Conyers, A. Nikroo, A. Hamza, Stress and microstructure evolution in thick sputtered films, Acta Mater. 57 (2009) 2055–2065. https://doi.org/10.1016/j.actamat.2008.12.042
dc.relation.referencesS.T. Oyama, The chemistry of transition metal carbides and nitrides, Springer Science and Business Media Inc, 1996
dc.relation.referencesM. Donachie, Titanium: A Technical Guide, Segunda Edición, ASM international, USA, 2000
dc.relation.referencesS. Zhang, W. Zhu, TiN coating of tool steels: a review, J. Mater. Process. Technol. 39 (1993) 165–177. https://doi.org/10.1016/0924-0136(93)90016-Y
dc.relation.referencesE. Lassner, W.-D. Schubert, Tungsten, Properties, chemistry, technology of the elements, alloys, and chemical compounds, Kluwer Academic/Plenum Publishers, New York, 1999.
dc.relation.referencesC.L. Rollinson, The chemistry of chromium, molybdenum and tungsten, Pergamon Press, 1975
dc.relation.referencesW. Jeitschko, R. Pottgen, R.-D. Hoffmann, Structural Chemistry of Hard Materials, in: R. Riedel (Ed.), Handb. Ceram. Hard Mater., Wiley-VCH Verlag GmbH, 2000: pp. 2–40. http://onlinelibrary.wiley.com/doi/10.1002/9783527618217.ch1/summary (accessed September 21, 2015).
dc.relation.referencesM. Herrmann, H. Klemm, Chr. Schubert, Silicon Nitride Based Hard Materials, in: R. Riedel (Ed.), Handb. Ceram. Hard Mater., Wiley-VCH Verlag GmbH, 2000: pp. 749–801
dc.relation.referencesC. Yuangyai, H.B. Nembhard, Chapter 8 - Design of Experiments: A Key to Innovation in Nanotechnology, in: Emerg. Nanotechnologies Manuf., William Andrew Publishing, Boston, 2010: pp. 207–234. https://doi.org/10.1016/B978-0-8155-1583-8.00008-9
dc.relation.referencesM. Sivapragash, P. Kumaradhas, B. Stanly Jones Retnam, X. Felix Joseph, U.T.S. Pillai, Taguchi based genetic approach for optimizing the PVD process parameter for coating ZrN on AZ91D magnesium alloy, Mater. Des. 90 (2016) 713–722
dc.relation.referencesB. Wang, S. Wei, L. Guo, Y. Wang, Y. Liang, B. Xu, F. Pan, A. Tang, X. Chen, Effect of deposition parameters on properties of TiO2 films deposited by reactive magnetron sputtering, Ceram. Int. 43 (2017) 10991–10998. https://doi.org/10.1016/j.ceramint.2017.05.139
dc.relation.referencesD. Yu, C. Wang, X. Cheng, F. Zhang, Optimization of hybrid PVD process of TiAlN coatings by Taguchi method, Appl. Surf. Sci. 255 (2008) 1865–1869. https://doi.org/10.1016/j.apsusc.2008.06.204
dc.relation.referencesC. Montero-Ocampo, E.A. Ramírez-Ceja, J.A. Hidalgo-Badillo, Effect of codeposition parameters on the hardness and adhesion of TiVN coatings, Ceram. Int. 41 (2015) 11013–11023. https://doi.org/10.1016/j.ceramint.2015.05.046
dc.relation.referencesY.-W. Lin, H.-A. Chen, G.-P. Yu, J.-H. Huang, Effect of bias on the structure and properties of TiZrN thin films deposited by unbalanced magnetron sputtering, Thin Solid Films. 618, Part A (2016) 13–20. https://doi.org/10.1016/j.tsf.2016.05.021
dc.relation.referencesD.Y. Chen, C.H. Tsai, W.J. Yang, D.W. Liu, C.Y. Hsu, Reactive co-sputter deposition and properties of CrAlSiN hard films for enhancement of cutting tools, Int. J. Refract. Met. Hard Mater. 58 (2016) 110–116. https://doi.org/10.1016/j.ijrmhm.2016.04.006
dc.relation.referencesD. Yang, C. Liu, X. Liu, M. Qi, G. Lin, EIS diagnosis on the corrosion behavior of TiN coated NiTi surgical alloy, Curr. Appl. Phys. 5 (2005) 417–421. https://doi.org/10.1016/j.cap.2004.11.002
dc.relation.referencesM.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, John Wiley & Sons, Ltd, 2008. https://doi.org/10.1002/9780470381588
dc.relation.referencesM. Danışman, The corrosion behavior of nanocrystalline nickel based thin films, Mater. Chem. Phys. 171 (2016) 276–280. https://doi.org/10.1016/j.matchemphys.2016.01.018
dc.relation.referencesA. Lasia, Electrochemical Impedance Spectroscopy and its Applications, Springer-Verlag, New York, 2014. https://doi.org/10.1007/978-1-4614-8933-7
dc.relation.referencesM. Weil, W.-D. Schubert, The Beautiful Colours of Tungsten Oxides, (2013). https://pdfs.semanticscholar.org/c477/efb0be273f9ab630401ca6f47e7514dc1dde.pdf?_ga=2.185929705.1562938630.1576561637-1261920055.1570291803
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalCo-sputtering
dc.subject.proposalCo-sputtering
dc.subject.proposalRecubrimientos nanoestructurados
dc.subject.proposalNanostructured thin films
dc.subject.proposalTiWSiN
dc.subject.proposalTiWSiN
dc.subject.proposalHardness of thin films
dc.subject.proposalPulverización catódica
dc.subject.proposalNanodureza
dc.subject.proposalWear of thin films
dc.subject.proposalCorrosion of thin films
dc.subject.proposalDesgaste recubrimientos
dc.subject.proposalCorrosión recubrimientos
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito