Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorMonsalve Arias, Mónica
dc.contributor.advisorRodríguez Baracaldo, Rodolfo
dc.contributor.authorCoudert, Loïc
dc.date.accessioned2021-01-14T19:54:23Z
dc.date.available2021-01-14T19:54:23Z
dc.date.issued2020-01-13
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78742
dc.description.abstractEl uso de fibras naturales como refuerzo para materiales de la construcción civil ha crecido en las últimas décadas y abre un nuevo campo de investigación y de industrialización. Estás fibras tienen buenas propiedades mecánicas y presentan las ventajas de ser biodegradables, económicas, y abundantes. Sin embargo, el problema mayor de las fibras naturales es su tendencia a ser muy sensible al medio ambiente alcalino de una matriz cementante, y a degradarse rápidamente, necesitando así un tratamiento preventivo. En este trabajo se investiga el efecto de dos de estos tratamientos, una alcalinización con hidróxido de sodio y un recubrimiento superficial con parafina liquida, en las propiedades mecánicas un mortero reforzado con fibras. El material compuesto aquí investigado se presenta en forma de láminas de mortero reforzados con tejidos de fique, una fibra natural colombiana. Se evaluó la eficiencia de los tratamientos en las fibras mediante espectroscopia infrarroja con transformada de Fourier (FTIR), ensayos de tracción, microscopía electrónica de barrido (SEM) y medición de la tasa de absorción de agua. Se analizó el comportamiento en flexión de las láminas, calculando la energía promedio absorbida y el esfuerzo máximo admisible. Se concluyó que ambos tratamientos protegen eficientemente la superficie de las fibras y que no tienen influencia significativa en la resistencia mecánica. El recubrimiento con parafina parece afectar negativamente la capacidad de absorción de energía del material compuesto.
dc.description.abstractThe study of the use of natural fibers as reinforcement for materials in civil construction has grown during the last decades and opens a new field of investigation and industrialization. They have good mechanical properties and present the advantages of being biodegradable, economic, and abundant. However, the major problem of natural fibers is their tendency of being very sensitive to the alkaline environment of a cementitious matrix, and to degrade quite rapidly, thus requiring preventive treatment. This work investigates the effect of two of these treatments, an alkalization with sodium hydroxide, and a superficial covering with liquid paraffin, on the mechanical properties of a fiber reinforced mortar. The composite material thus researched is presented in the form of mortar sheets reinforced with fique fabrics, a natural Colombian fiber. The efficiency of the treatments on the fibers was evaluated by Fourier transform spectrophotometry (FTIR), tensile tests, electronic microscopy observation (SEM) and measurement of the water absorption rate. The bending behavior of the sheets was analyzed, calculating the average energy absorbed and the maximum admissible stress. It was concluded that, without being optimal, both treatments efficiently protect the surface of the fibers and do not have a significant influence on the mechanical resistance. The paraffin coating seems to negatively affect the energy absorption capacity of the composite material.
dc.format.extent110
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civil
dc.titleInfluencia del tratamiento superficial de las fibras de fique en las propiedades mecánicas del compuesto fibra-matriz cementante
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de investigación: Materiales sostenibles para la construcción civil
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1. Plant-based natural fibre reinforced cement composites: A review. Onuaguluchi, O., & Banthia, N. 16 de 02 de 2016, Cement and Concrete Composites, págs. 96-108.
dc.relation.referencesNatural fiber reinforced concrete. Torgal, F., & Jalali, S. 2011, Fibrous and Composite Materials for Civil Engineering Applications, págs. 154-167.
dc.relation.referencesKeulemans, G. The problem with reinforced concrete. Theconversation. [En línea] 29 de 11 de 2018. http://theconversation.com/the-problem-with-reinforced-concrete-56078.
dc.relation.referencesInfluence of jute fiber on concrete properties. Islam, M. S., & Ahmed, S. J. 2018, Construction and Building Materials, 189, págs. 768-776.
dc.relation.referencesImprovement of mechanical properties of green concrete by treatment of the vegetals fibers. Sellami, A., Merzoud, M., & Amziane, S. 2013, Construction and Building Materials, 47, págs. 1117-1124.
dc.relation.referencesDurability of alkali-sensitive fibres in concrete. Bergström, S. G., & Gram, H. 1984, International Journal of Cement Composites and Lightweight Concrete, 6, págs. 75-80.
dc.relation.referencesGornet, Laurent. Généralités sur les matériaux composites. Engineering school. s.l. : cel-00470296v1, 2008.
dc.relation.referencesAucher, Jérémie. Etude comparative de composites à matrices thermoplastique ou thermodurcissable. INSA de Rouen : s.n., 2009. NNT : 2009ISAM0012. tel-00557897.
dc.relation.referencesRafaï, Noureddine. Les composants de la matrice cementaire (rappels et intéractions). CPBC. 2008.
dc.relation.referencesPortland cement: its composition, raw materials, manufacture, testing and analysis. Meade, Richard Kidder. 1906, The Chemical Publishing Co, págs. 4-14.
dc.relation.referencesPierre Witier, Gérard Platret. Analyse et caractérisation de matériaux de construction. s.l. : Éditions Techniques ingénieur, 2009.
dc.relation.referencesMineral-based matrices for textile-reinforced concrete. Mechtcherine, V., Schneider, K., Brameshuber, W. 2016, Textile Fibre Composites in Civil Engineering, págs. 25-43.
dc.relation.referencesFlexural Strengthening of Reinforced Concrete Beams with Textile Reinforced Concrete (TRC). Amir, S. L., Raphael, C., Emmanuel, F., & Patrice, H. 2011, Advances in FRP Composites in Civil Engineering, págs. 665-667.
dc.relation.referencesStat of the Art Review : Strengthening of Reinforced Concrete Structures - Different Strengthening Techniques . Khalid Heiza, Ahmed Nabil, Nageh Meleka, Magdy Tayel. 2014. Sixth International Conference on Nano-Technology in Construction (NTC).
dc.relation.referencesManufacturing of textiles for civil engineering applications. Gries, Raina, Quadflieg, & Stolyarov. 2016, Textile Fibre Composites in Civil Engineering, págs. 3-24.
dc.relation.referencesManufacturing methods for textile-reinforced concrete. Brameshuber, W. 2016, Textile Fibre Composites in Civil Engineering, págs. 45-59.
dc.relation.referencesBraided reinforcements for composites. Gessler, A. 2011, Composite Reinforcements for Optimum Performance, págs. 116-156.
dc.relation.referencesVilfayeau, Jérôme. Modélisation numérique du procédé de tissage des renforts fibreux pour matériauxcomposites. s.l. : INSA de Lyon, 2014. tel-01153224.
dc.relation.referencesInvestigations on the bearing behaviour and application potential of textile reinforced concrete. Hegger, J., & Voss, S. 2008, Engineering Structures, 30, págs. 2050-2056.
dc.relation.referencesContribution to direct tensile testing of textile reinforced concrete (TRC) composites. Contamine, R., Larbi, A. S., & Hamelin, P. 2011, Materials Science and Engineering: A, 528, págs. 8589-8598.
dc.relation.referencesBonds in textile-reinforced concrete composites. Peled, A. 2016, Textile Fibre Composites in Civil Engineering, págs. 63-99.
dc.relation.referencesGeometrical characteristics and efficiency of textile fabrics for reinforcing cement composites. Peled, A. 2000, Cement and Concrete Research, págs. 781-790.
dc.relation.referencesFiber-reinforced concrete: An overview after 30 years of development. Zollo, R. F. 1997, Cement and Concrete Composites, 19, págs. 107-122.
dc.relation.referencesFracture energy of natural fibre reinforced concrete. Merta, I., & Tschegg, E. 2013, Construction and Building Materials, 40, págs. 991-997.
dc.relation.referencesAn appropriate vacuum technology for manufacture of corrugated fique fiber reinforced cementitious sheets. Delvasto, Toro, Perdomo, & Gutiérrez. 2010, Construction and Building Materials, págs. 187-192.
dc.relation.referencesFique fiber-reinforced polyester composites: Effects of fiber surface treatments on mechanical behavior. Gañán, P., & Mondragon, I. 2004, Journal of Materials Science, 39, págs. 3121-3128.
dc.relation.referencesAmilcar Mojica Pimiento, Joaquin Paredes Vega. El Cultivo Del Fique En El Departamento de Santander. 2004.
dc.relation.referencesDaniel Cruz Hermida, Rodoflo Medina Terán. Cadena Agroindustrial del Fique. http://bibliotecadigital.agronet.gov.co. [En línea] 08 de 02 de 2008. http://bibliotecadigital.agronet.gov.co/bitstream/11348/5260/1/2008519105246_BULLETS_CADEFIQUE_2008.pdf.
dc.relation.referencesImprovement of mechanical properties of green concrete by treatment of the vegetals fibers. A.Sellami, M.Merzoud, S.Amziane. 2013, Construction and Building Materials, Vol. 47, págs. 1117-1124.
dc.relation.referencesFique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application. Hoyos, C. G., Alvarez, V. A., Rojo, P. G., & Vázquez, A. 5, 2012, Fibers and Polymers, Vol. 13, págs. 632–640.
dc.relation.referencesFibras de fique una alternativa para el reforzamiento de plásticos. Influencia de la modificación superficial. . Mario Fernando Muñoz-Velez, Miguel Angel Hidalgo-Salazar, José Herminsul Mina-Hernandez. 2, 2014, Biotecnología en el Sector Agropecuario y Agroindustrial , Vol. 12, págs. 60-70.
dc.relation.referencesJabbar, Abdul. Sustainable Jute-Based Composite Materials. SpringerBriefs in Applied Sciences and Technology. 2017.
dc.relation.referencesStudies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar. Ramakrishna, G., & Sundararajan, T. 2005, Cement and Concrete Composites, págs. 575-582.
dc.relation.referencesDegradation mechanisms of natural fiber in the matrix of cement composites. Wei, J., & Meyer, C. 2015, Cement and Concrete Research, págs. 1-16.
dc.relation.referencesEffect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Dhakal, H., Zhang, Z., & Richardson, M. 2007, Composites Science and Technology, págs. 1674–1683.
dc.relation.referencesChemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Mwaikambo, Ansell,. 2002, Journal of Applied Polymer Science, págs. 2222-2234
dc.relation.referencesMechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Venkateshwaran, N., ElayaPerumal, A., Alavudeen, A., & Thiruchitrambalam, M. 2011, Materials and Design, págs. 4017-4021.
dc.relation.referencesDevelopment of vegetable fibre–mortar composites of improved durability. Filho, Ghavami, England, Scrivener. 2003, Cement and Concrete Composites, págs. 185-196.
dc.relation.referencesEffect of silica fume on steel fiber bond characteristics in reactive powder concrete. Chan, Y., & Chu, S. 7, 2004, Cement and Concrete Research, Vol. 34, págs. 1167-1172.
dc.relation.referencesEffect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Cai, M., Takagi, H., Nakagaito, A. N., Li, Y., & Waterhouse, G. I. 2016, Composites Part A: Applied Science and Manufacturing, Vol. 90, págs. 589-597.
dc.relation.referencesCharacterization of fiber surface treatments in natural fiber composites by infrared and Raman spectroscopy. Mosiewicki, Marcovich, Aranguren. 2011, Interface Engineering of Natural Fibre Composites for Maximum Performance, págs. 117-145.
dc.relation.referencesDry etching plasma applied to fique fibers: influence on their mechanical properties and surface appearance. P. Luna, A. Mariño, J. Lizarazo-Marriaga, O. Beltrán. 2017, Procedia Engineering, págs. 141-147.
dc.relation.referencesUso de fibras naturales de lechuguilla como refuerzo en concreto. César A. Juárez Alvarado, Patricia Rodríguez López, Raymundo Rivera Villarreal, Ma. de los Ángeles Rechy de Von Roth. 2004, Ingenierías, págs. 7-19.
dc.relation.referencesEffect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Ming Caia, Hitoshi Takagi, Antonio N.Nakagaito, YanLi, Geoffrey I.N. Waterhouse. 2016, Composites Part A: Applied Science and Manufacturing, Volume 90,, págs. 589-597.
dc.relation.referencesFique fiber-reinforced polyester composites : Effects of fiber surface treatments on mechanical behavior. P. Gañan, I. Mondragon. 2004, Journal of Material Science, Vol. 39, págs. 3121-3128.
dc.relation.referencesCharacterization of natural fiber surfaces and natural fiber composites. Sgriccia, N., Hawley, M., & Misra, M. 10, 2008, Composites Part A: Applied Science and Manufacturing, Vol. 39, págs. 1632–1637.
dc.relation.referencesStatistical methods in psychology journals: Guidelines and explanations. Wilkinson. 1999, American Psychologist, págs. 594-604.
dc.relation.referencesSaporta. Probabilités, analyse des données et statistique. 2011.
dc.relation.referencesHinkelmann. Design and analysis of experiments. 2012.
dc.relation.referencesMontgomery. Design and analysis of experiments. 2020.
dc.relation.referencesLuna, P., Lizarazo-Marriaga, J., Luna, L., Ortiz, J., Mayorga, D.,. Mechanical behavior of natural fiber textile reinforced mortar sheets. s.l. : Universidad Nacional de Colombia, 2018.
dc.relation.referencesPerformance of “Agave lecheguilla” natural fiber in portland cement composites exposed to severe environment conditions. Juárez, C., Durán, A., Valdez, P., & Fajardo, G. 2007, Building and Environment, págs. 1151–1157.
dc.relation.referencesChemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. Li, X., Tabil, L. G., & Panigrahi, S. 2007, Journal of Polymers and the Environnement, págs. 25-33.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalFibras de fique
dc.subject.proposalFique fibers
dc.subject.proposalMortero
dc.subject.proposalMortar
dc.subject.proposalAlkalization
dc.subject.proposalAlcalinización
dc.subject.proposalParafina
dc.subject.proposalParaffin
dc.subject.proposalEnergy absorption
dc.subject.proposalAbsorción de energía
dc.subject.proposalSustainable composite materials
dc.subject.proposalComportamiento mecánico
dc.subject.proposalCivil construction
dc.subject.proposalMateriales compuestos sostenibles
dc.subject.proposalConstrucción civil
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito