Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorPoveda Jaramillo, Germán
dc.contributor.authorBedoya Soto, Juan Mauricio
dc.date.accessioned2021-01-14T22:30:12Z
dc.date.available2021-01-14T22:30:12Z
dc.date.issued2020-09-15
dc.identifier.citationBedoya-Soto, J.M. (2020). Land Atmosphere Interactions in Tropical South America and Colombia at Multiple Timescales. PhD Thesis. Universidad Nacional de Colombia.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78749
dc.description.abstractIn this thesis, we have studied diverse land-atmosphere interactions (LAI) in Tropical South America (TropSA) and Colombia at several timescales. First, we evaluated the specific role of LAI during the 2009-2011 extreme ENSO phases at continental scale. In particular, we developed a simplified model of LAI on TropSA using graph theory based on linear and non-linear metrics at interannual timescales. Over a specific region of the Central Andes of Colombia (CAC), we explored the seasonal variability of the diurnal cycle of rainfall. A moisture recycling model was implemented to provide evidence supporting the key role of LAI in this variability. The results of the thesis indicate that the strength of land-atmosphere processes in TropSA is influenced by ENSO and depends on the availability of water and energy in soil layers. Soil moisture plays a relevant role at the interannual scale in the coupling between temperature and rainfall through ENSO in this region. The structural model of links developed under the influence of ENSO establishes that surface temperature is a key variable in diagnosing the dynamics of the LAI in TropSA. On shorter space scales, moisture recycling contributes to the understanding of the seasonal dynamics of moisture sources explaining the shifting phase of the diurnal cycle of rainfall through the year over the CAC. The thesis highlights the active role of LAI in the hydroclimatic dynamics of the explored spatiotemporal contexts and the importance to continue improving our understanding of these mechanisms. (Tomado de la fuente)
dc.description.abstractEn esta tesis se han estudiado las interacciones tierra-atmósfera (ITA) sobre Suramérica Tropical (SATrop) y Colombia en múltiples escalas temporales. Evaluamos el papel específico de las ITA durante las fases extremas del ENSO 2009-2011 a escala continental en SATrop y Colombia. Asimismo, desarrollamos un modelo simplificado de las ITA sobre SATrop usando teoría de grafos basado en métricas lineales y no lineales a escala de tiempo interanual. A escala local, exploramos la variabilidad estacional del ciclo diurno de la lluvia en una región específica de los Andes Centrales de Colombia (ACC), e implementamos un modelo de reciclaje de humedad para encontrar evidencias que soporten nuestra hipótesis del papel de las ITA en este contexto. Los resultados de la tesis indican que la potencia de los procesos tierra-atmósfera sobre SATrop está influenciada por ENSO y depende de la disponibilidad de agua y energía en las capas del suelo. La humedad en el suelo tiene un papel relevante a nivel interanual en el acoplamiento entre temperatura y lluvia a través de ENSO en esta región. El modelo estructural de enlaces que se construyó bajo la influencia de ENSO establece que la temperatura superficial es una variable clave para diagnosticar la dinámica de las ITA en SATrop. En la región de estudio sobre los ACC, encontramos que el ciclo diurno es predominantemente unimodal durante todo el año, pero su fase cambia con la fase del ciclo anual. El reciclaje de humedad, como una expresión de las ITA, aporta a la comprensión de la dinámica estacional de este ciclo diurno promedio de lluvia en los ACC. En síntesis, la tesis determinó el papel activo de las ITA en la dinámica hidroclimática de los contextos espacio-temporales explorados y la necesidad de seguir mejorando nuestro entendimiento de estos mecanismos. (Tomado de la fuente)
dc.format.extent151 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
dc.titleLand atmosphere interactions in Tropical South America and Colombia at multiple timescales
dc.typeTrabajo de grado - Doctorado
dc.rights.spaAcceso abierto
dc.description.additionalLínea de investigación: Hidroclimatología
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Recursos Hidráulicos
dc.contributor.colaboratorTrenberth, Kevin
dc.contributor.colaboratorVélez, Jorge Julián
dc.contributor.colaboratorSauchyn, David
dc.contributor.colaboratorAristizabal, Edier
dc.contributor.colaboratorCarmona, Alejandra
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellín
dc.description.degreelevelDoctorado
dc.description.degreenameTesis de Doctor en Ingeniería - Recursos Hidráulicos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttp://repositorio.una.,edu.co
dc.publisher.departmentDepartamento de Geociencias y Medo Ambiente
dc.publisher.facultyFacultad de Minas
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAceituno, P. (1989), On the functioning of the Southern Oscillation in the South American sector. Part II. Upper-air circulation. Journal of Climate, 2(4), 341-355.
dc.relation.referencesAcker, J.G., and Leptoukh, G. (2007), Online analysis enhances use of NASA earth science data, Eos, Trans. AGU, Vol. 88, No. 2, p. 14 and 17.
dc.relation.referencesAlbergel, C., Dorigo, W., Reichle, R.H., Balsamo, G., De Rosnay, P., Muñoz-Sabater, J., Isaksen, L., De Jeu, R. and Wagner, W. (2013), Skill and Global Trend Analysis of Soil Moisture from Reanalyses and Microwave Remote Sensing. J. Hydrometeor, 14, 1259–1277, doi: 10.1175/JHM-D-12-0161.1
dc.relation.referencesAlvarez-Villa, O.D., Vélez, J.I., and Poveda, G. (2011), Improved long-term mean annual rainfall fields for Colombia, Int. J. Climatol., 31(14), 2194-2212.
dc.relation.referencesAmador, J.A. and Magaña, V.O. (1999), Dynamics of the low-level jet over the Caribbean, in 23rd Conference on Hurricanes and Tropical Meteorology, pp. 868869, Am. Meteorol. Soc., Dallas, Tex.
dc.relation.referencesArias, P. A., Martínez, J. A., & Vieira, S. C. (2015), Moisture sources to the 2010–2012 anomalous wet season in northern South America. Climate dynamics, 45(9-10), 2861-2884., doi: 10.1007/s00382-015-2511-7
dc.relation.referencesArmenteras, D., Rudas, G., Rodriguez, N., Sua, S., & Romero, M. (2006). Patterns and causes of deforestation in the Colombian Amazon. Ecological indicators, 6(2), 353-368.
dc.relation.referencesAvila, L. A., & Stewart, S. R. (2013), Atlantic hurricane season of 2011. Mon. Wea. Rev., 141(8), 2577-2596.
dc.relation.referencesBagley, J. E., Desai, A. R., Harding, K. J., Snyder, P. K., & Foley, J. A. (2014), Drought and deforestation: Has land cover change influenced recent precipitation extremes in the Amazon?. Journal of Climate, 27(1), 345-361.
dc.relation.referencesBalsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F. and De Rosnay, P. (2015), ERA-Interim/Land: a global land surface reanalysis data set. Hydrology and Earth System Sciences, 19(1), 389-407.
dc.relation.referencesBarreiro, M., Chang, P., & Saravanan, R. (2002), Variability of the South Atlantic convergence zone simulated by an atmospheric general circulation model. Journal of Climate, 15(7), 745-763.
dc.relation.referencesBarreiro, M. and Diaz N. (2011), Land-atmosphere coupling in El Niño influence over South America. Atm. Sc. Lett., 12, 351-355, doi: 10.1002/asl.348
dc.relation.referencesBarreiro, M., Díaz, N., & Renom, M. (2014), Role of the global oceans and land–atmosphere interaction on summertime interdecadal variability over northern Argentina. Climate dynamics, 42(7-8), 1733-1753.
dc.relation.referencesBaisya, H., Pattnaik, S., and Rajesh, P. V. (2017), Land surface‐precipitation feedback analysis for a landfalling monsoon depression in the I ndian region. Journal of Advances in Modeling Earth Systems, 9(1), 712-726.
dc.relation.referencesBedoya-Soto J.M. and Poveda G. (2008), Sobre una posible influencia de la precipitación del Valle de San Nicolás en eventos de precipitación sobre el Valle de Aburrá. VIII CCMCI - Cambio climático, recursos naturales y desarrollo sostenible.
dc.relation.referencesBedoya-Soto, M., C. Contreras and F. Ruiz (2010), Alteraciones del régimen hidrológico y de la oferta hídrica por variabilidad y cambio climático en Colombia. Estudio Nacional del Agua 2010, pp 282-320. IDEAM. ISBN: 978-958-8067-32-2.
dc.relation.referencesBedoya-Soto, J.M., Poveda, G., Trenberth, K.E., and Vélez-Upegui, J.J. (2018), Interannual hydroclimatic variability and the 2009–2011 extreme ENSO phases in Colombia: from Andean glaciers to Caribbean lowlands. Theor. Appl. Climatol., 1-14.
dc.relation.referencesBedoya-Soto, J. M., Aristizábal, E., Carmona, A. M., & Poveda, G. (2019). Seasonal Shift of the Diurnal Cycle of Rainfall Over Medellin's Valley, Central Andes of Colombia (1998–2005). Frontiers in Earth Science, 7, 92.
dc.relation.referencesBedoya-Soto, J.M., Poveda, G., and Sauchyn, D. (2018), New insights on land surface-atmosphere feedbacks in tropical South America at interannual timescales. Water 2018, 10(8), 1095.
dc.relation.referencesBerbery, E. H., & Barros, V. R. (2002), The hydrologic cycle of the La Plata basin in South America. J. Hydrometeor., 3(6), 630-645.
dc.relation.referencesBerg, A., Lintner, B.R., Findell, K., Seneviratne, S.I., van den Hurk, B., Ducharne, A., Chéruy, F., Hagemann, S., Lawrence, D.M., Malyshev, S. and Meier, A. (2015), Interannual Coupling between Summertime Surface Temperature and Precipitation over Land: Processes and Implications for Climate Change. J. Climate, 28, 1308–1328.
dc.relation.referencesBetts, A. K., Ball, J. H., Beljaars, A. C., Miller, M. J., & Viterbo, P. A. (1996), The land surface‐atmosphere interaction: A review based on observational and global modeling perspectives. Journal of Geophysical Research: Atmospheres, 101(D3), 7209-7225.
dc.relation.referencesBjornsson, H., and S. A. Venegas (1997), A manual for EOF and SVD analyses of climatic data. Report No. 97-1; McGill University: Montréal, QC, Canada.
dc.relation.referencesBoening, C., Willis, J. K., Landerer, F. W., Nerem, R. S. & Fasullo, J. (2012), The 2011 La Niña: So strong, the oceans fell. Geophys. Res. Lett., 39, L19602, doi:10.1029/2012GL053055.
dc.relation.referencesBoers, N., Bookhagen, B., Marwan, N., & Kurths, J. (2016), Spatiotemporal characteristics and synchronization of extreme rainfall in South America with focus on the Andes Mountain range. Climate dynamics, 46(1-2), 601-617.
dc.relation.referencesBoers, N., Marwan, N., Barbosa, H. M., & Kurths, J. (2017), A deforestation-induced tipping point for the South American monsoon system. Scientific reports, 7, 41489.
dc.relation.referencesBosmans, J. H. C., van der Ent, R. J., Haarsma, R. J., Drijfhout, S. S., & Hilgen, F. J. (2020). Precession‐and obliquity‐induced changes in moisture sources for enhanced precipitation over the Mediterranean Sea. Paleoceanography and Paleoclimatology, 35(1), e2019PA003655.
dc.relation.referencesBracco, A., Falasca, F., Nenes, A., Fountalis, I., & Dovrolis, C. (2018), Advancing climate science with knowledge-discovery through data mining. npj Climate and Atmospheric Science, 1(1), 1-6.
dc.relation.referencesBrubaker, K. L., & Entekhabi, D. (1996), Analysis of feedback mechanisms in land‐atmosphere interaction. Water Resources Research, 32(5), 1343-1357.
dc.relation.referencesBuiles-Jaramillo, A., Marwan, N., Poveda, G., and Kurths, J. (2018), Nonlinear interactions between the Amazon River basin and the Tropical North Atlantic at interannual timescales. Climate Dynamics, 1-19, https://doi.org/10.1007/s00382-017-3785-8.
dc.relation.referencesBuiles-Jaramillo, A., Ramos, A. M., & Poveda, G. (2018), Atmosphere-land bridge between the Pacific and tropical North Atlantic SST’s through the Amazon River basin during the 2005 and 2010 droughts. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(8), 085705.
dc.relation.referencesCatalano, F., Alessandri, A., De Felice, M., Zhu, Z., and Myneni, R. B. (2016), Observationally based analysis of land–atmosphere coupling. Earth System Dynamics, 7(1), 251-266.
dc.relation.referencesCEPAL, Comisión Económica para América Latina y el Caribe (2012), Valoración de daños y pérdidas. Ola invernal en Colombia, 2010-2011 Bogotá: Mission BID-CEPAL.
dc.relation.referencesCollini, E. A., Berbery, E. H., Barros, V. R., & Pyle, M. E. (2008), How does soil moisture influence the early stages of the South American monsoon?. Journal of Climate, 21(2), 195-213.
dc.relation.referencesCuartas, L. A., & Poveda, G. (2002). Balance atmosférico de humedad y estimación de la precipitación reciclada en Colombia según el Reanálisis NCEP/NCAR. Meteor. Colombiana, 5, 49-57.
dc.relation.referencesDee, D.P., and Coauthors (2011), The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J.R. Meteorol. Soc., 137, 553-597, doi: 10.1002/qj.828
dc.relation.referencesDirmeyer, P. A., C. A. Schlosser, and K. L. Brubaker (2009),Precipitation, recycling, and land memory: An integrated analysis. J. Hydrometeor., 10, 278-288, doi: 10.1175/2008JHM1016.1
dc.relation.referencesDole, R., Hoerling, M., Perlwitz, J., Eischeid, J., Pegion, P., Zhang, T., ... & Murray, D. (2011), Was there a basis for anticipating the 2010 Russian heat wave?. Geophys. Res. Lett., 38, L06702, doi:10.1029/2010GL046582.
dc.relation.referencesDominguez, F., Hu, H., & Martinez, J. A. (2020). Two-Layer Dynamic Recycling Model (2L-DRM): Learning from Moisture Tracking Models of Different Complexity. Journal of Hydrometeorology, 21(1), 3-16.
dc.relation.referencesDonges, J. F., Petrova, I., Loew, A., Marwan, N., & Kurths, J. (2015), How complex climate networks complement eigen techniques for the statistical analysis of climatological data. Climate dynamics, 45(9-10), 2407-2424.
dc.relation.referencesDurán-Quesada, A.M., Gimeno, L., Amador, J.A., and Nieto, R. (2010), Moisture sources for Central America: Identification of moisture sources using a Lagrangian analysis technique, J. Geophys. Res., 115, D05103, doi:10.1029/2009JD012455
dc.relation.referencesDurán-Quesada, A. M., Reboita, M., & Gimeno, L. (2012), Precipitation in tropical America and the associated sources of moisture: a short review. Hydrological sciences journal, 57(4), 612-624.
dc.relation.referencesDurán-Quesada, A. M., Gimeno, L., & Amador, J. (2017), Role of moisture transport for Central American precipitation. Earth System Dynamics, 8(1), 147-161.
dc.relation.referencesEltahir, E. A. (1998), A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765-776, doi: 10.1029/97WR03499
dc.relation.referencesEnfield, D. B., Mestas‐Nuñez, A. M., & Trimble, P. J. (2001), The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophysical Research Letters, 28(10), 2077-2080.
dc.relation.referencesEntekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., ... & Kimball, J. (2010). The soil moisture active passive (SMAP) mission. Proceedings of the IEEE, 98(5), 704-716.
dc.relation.referencesErfanian, A., Wang, G., & Fomenko, L. (2017), Unprecedented drought over tropical South America in 2016: significantly under-predicted by tropical SST. Scientific Reports, 7(1), 5811. doi:10.1038/s41598-017-05373-2
dc.relation.referencesEslava, J.A., (1994), Acerca de la distribución espacio-temporal de la precipitación en la región del Pacífico Colombiano. Atmósfera, 22, 71-80.
dc.relation.referencesEspinoza Villar, J.C., Ronchail, J., Guyot, J.L., Cochonneau, G., Naziano, F., Lavado, W., De Oliveira, E., Pombosa, R. and Vauchel, P., (2009), Spatio‐temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(11), 1574-1594.
dc.relation.referencesEspinoza, J. C., Ronchail, J., Frappart, F., Lavado, W., Santini, W., & Guyot, J. L. (2013), The major floods in the Amazonas River and tributaries (Western Amazon basin) during the 1970–2012 period: A focus on the 2012 flood. Journal of Hydrometeorology, 14(3), 1000-1008.
dc.relation.referencesEspinoza, J. C., Garreaud, R., Poveda, G., Arias, P. A., Molina-Carpio, J., Masiokas, M., & Scaff, L. (2020). Hydroclimate of the Andes Part I: Main climatic features. Frontiers in Earth Science, 8, 64.
dc.relation.referencesEtter, A., McAlpine, C., Wilson, K., Phinn, S., & Possingham, H. (2006). Regional patterns of agricultural land use and deforestation in Colombia. Agriculture, ecosystems & environment, 114(2-4), 369-386.
dc.relation.referencesFindell, K. L., Keys, P. W., Van Der Ent, R. J., Lintner, B. R., Berg, A., & Krasting, J. P. (2019). Rising temperatures increase importance of oceanic evaporation as a source for continental precipitation. Journal of Climate, 32(22), 7713-7726.
dc.relation.referencesFolkins, I., Mitovski, T., and Pierce, J.R. (2014), A simple way to improve the diurnal cycle in convective rainfall over land in climate models. J. Geophys. Res.: Atm.,5, 2113-2140.
dc.relation.referencesGarreaud, R. D., Vuille, M., Compagnucci, R., & Marengo, J. (2009), Present-day south american climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 281(3-4), 180-195.
dc.relation.referencesGalarneau Jr, T. J., Hamill, T. M., Dole, R. M., & Perlwitz, J. (2012), A multiscale analysis of the extreme weather events over western Russia and northern Pakistan during July 2010. Mon. Wea. Rev., 140(5), 1639-1664.
dc.relation.referencesGentine, P., Entekhabi, D., & Polcher, J. (2011), The diurnal behavior of evaporative fraction in the soil–vegetation–atmospheric boundary layer continuum. Journal of Hydrometeorology, 12(6), 1530-1546.
dc.relation.referencesGentine, P., Holtslag, A. A., D'Andrea, F., & Ek, M. (2013), Surface and atmospheric controls on the onset of moist convection over land. Journal of Hydrometeorology, 14(5), 1443-1462.
dc.relation.referencesGentine, P., Massmann, A., Lintner, B. R., Hamed Alemohammad, S., Fu, R., Green, J. K., Kennedy, D., and Vilà-Guerau de Arellano, J. (2019), Land–atmosphere interactions in the tropics, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-12.
dc.relation.referencesGimeno, L., Stohl, A., Trigo, R.M., Dominguez, F., Yoshimura, K., Yu, L., Drumond, A., Durán‐Quesada, A.M. and Nieto, R. (2012), Oceanic and terrestrial sources of continental precipitation. Rev. Geophys., 50, 4003, doi: 10.1029/2012RG000389
dc.relation.referencesGrimm, A.M., and Tedeschi R.G. (2009), ENSO and extreme rainfall events in South America. J. Climate, 22, 1589-1609, doi:10.1175/2008JCLI2429.1
dc.relation.referencesGuo, L., van der Ent, R. J., Klingaman, N. P., Demory, M. E., Vidale, P. L., Turner, A. G., & Chevuturi, A. (2019), Moisture sources for East Asian precipitation: Mean seasonal cycle and interannual variability. Journal of Hydrometeorology, 20(4), 657-672.
dc.relation.referencesGrumm, R. H. (2011), The central European and Russian heat event of July–August 2010. Bull. Amer. Meteorol. Soc., 92(10), 1285-1296.
dc.relation.referencesGutiérrez, F., and Dracup, J. A. (2001), An analysis of the feasibility of long-range streamflow forecasting for Colombia using El Nino–Southern Oscillation indicators. Journal of Hydrology, 246(1), 181-196.
dc.relation.referencesHaghighi, E., & Kirchner, J. W. (2017), Near‐surface turbulence as a missing link in modeling evapotranspiration‐soil moisture relationships. Water Resources Research, 53(7), 5320-5344.
dc.relation.referencesHastenrath, S. (1990), Climate dynamics of the tropics. Kluwer Academic Publishers.
dc.relation.referencesHouze Jr, R. A., Rasmussen, K. L., Medina, S., Brodzik, S. R., & Romatschke, U. (2011), Anomalous atmospheric events leading to the summer 2010 floods in Pakistan. Bull. Amer. Meteorol. Soc.y, 92(3), 291-298.
dc.relation.referencesHouze, R.A. (2012), Orographic effects on precipitating clouds, Rev. Geophys., doi:10.1029/2011RG000365.
dc.relation.referencesHoyos, N., J. Escobar, J.C. Restrepo, A.M. Arango, and J.C. Ortiz (2013), Impact of the 2010-2011 La Nina phenomenon in Colombia, South America: The human toll of an extreme weather event, Appl. Geog., 39, 16-25, doi:10.1016/j.apgeog.2012.11.018
dc.relation.referencesHoyos, I., F. Dominguez, J. Caon-Barriga, J. A. Martínez, R. Nieto, L. Gimeno, and P. A. Dirmeyer (2017), Moisture origin and transport processes in Colombia, northern South America, Clim. Dyn., doi:10.1007/s00382-017-3653-6.
dc.relation.referencesHurtado, A.F., and Poveda, G. (2009), Linear and global space-time dependence and Taylor hypotheses for rainfall in the tropical Andes, J. Geophys. Res., 114, D10105, doi:10.1029/2008JD011074.
dc.relation.referencesHurtado-Montoya, A.F., and Mesa-Sánchez, O.J. (2009), Reconstrucción de los campos de precipitación mensual en Colombia, DYNA, 81(186), 251-258.
dc.relation.referencesIDEAM (2013), Glaciares de Colombia. Más que montañas con hielo. Bogotá, 344 p.
dc.relation.referencesIGAC-IDEAM-DANE (2011), Reporte final de áreas afectadas por inundaciones 2010-2011 con información de imágenes de satélite a Junio 6 de 2011. IDEAM, Bogota.
dc.relation.referencesJaramillo, L., Poveda, G., and Mejía, J.F. (2017), Mesoscale convective systems and other precipitation features over the tropical Americas and surrounding seas as seen by TRMM, Int. J. Climatol., doi:10.1002/joc.5009.
dc.relation.referencesJimenez-Sanchez, G. (2018), The Orinoco Low-Level Jet. The Pennsylvania State University. Doctoral Thesis
dc.relation.referencesJiménez‐Sánchez, G., Markowski, P. M., Jewtoukoff, V., Young, G. S., & Stensrud, D. J. (2019), The Orinoco Low‐Level Jet: An Investigation of Its Characteristics and Evolution Using the WRF Model. Journal of Geophysical Research: Atmospheres, 124(20), 10696-10711.
dc.relation.referencesKeys, P. W. (2016). The precipitationshed: Concepts, methods, and applications (Doctoral dissertation, Stockholm Resilience Centre, Stockholm University).
dc.relation.referencesKeys, P. W., Wang-Erlandsson, L., & Gordon, L. J. (2016a). Revealing invisible water: moisture recycling as an ecosystem service. PloS one, 11(3), e0151993.
dc.relation.referencesKeys, P. W., & Wang-Erlandsson, L. (2018). On the social dynamics of moisture recycling. Earth System Dynamics, 9(2), 829.
dc.relation.referencesKerr, Y. H., Waldteufel, P., Wigneron, J. P., Delwart, S., Cabot, F., Boutin, J., & Juglea, S. E. (2010). The SMOS mission: New tool for monitoring key elements ofthe global water cycle. Proceedings of the IEEE, 98(5), 666-687.
dc.relation.referencesKilleen, T.J., Douglas, M., Consiglio T., Jorgensen, P.M., and Mejía, J. (2007), Dry spots and wet spots in the Andean hotspot. J. Biogeography, 34, 1357-1373. doi:10.1111/j.1365-557 2699.2006.01682.x
dc.relation.referencesKleinberg, J. M. (1999), Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM), 46(5), 604-632.
dc.relation.referencesKnist, S., Goergen, K., Buonomo, E., Christensen, O.B., Colette, A., Cardoso, R.M., Fealy, R., Fernández, J., García‐Díez, M., Jacob, D. and Kartsios, S. (2017), Land‐atmosphere coupling in EURO‐CORDEX evaluation experiments. Journal of Geophysical Research: Atmospheres, 122(1), 79-103.
dc.relation.referencesKolstad, E. W., Barnes, E. A., & Sobolowski, S. P. (2017), Quantifying the role of land–atmosphere feedbacks in mediating near‐surface temperature persistence. Quart. J. Roy. Meteorol. Soc.y, 143(704), 1620-1631.
dc.relation.referencesKonings, A. G., Dekker, S. C., Rietkerk, M., & Katul, G. G. (2011), Drought sensitivity of patterned vegetation determined by rainfall‐land surface feedbacks. Journal of Geophysical Research: Biogeosciences, 116(G4).
dc.relation.referencesKoster, R. D., and M. J. Suarez (1999), A simple framework for examining the interannual variability of land surface moisture fluxes. J. Climate, 12, 1911-1917.
dc.relation.referencesKoster, R. D., P. A. Dirmeyer , Z. Guo, G. Bonan, E. Chan, P. Cox, and T. Yamada, (2004), Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138-1140.
dc.relation.referencesKretschmer, M., Coumou, D., Donges, J. F., & Runge, J. (2016), Using causal effect networks to analyze different Arctic drivers of midlatitude winter circulation. Journal of Climate, 29(11), 4069-4081.
dc.relation.referencesLanderer, F. W., and S. C. Swenson (2012), Accuracy of scaled GRACE terrestrial water storage estimates, Water Resour. Res., 48, W04531, doi:10.1029/2011WR011453.
dc.relation.referencesLau, W. K., & Kim, K. M. (2012), The 2010 Pakistan flood and Russian heat wave: Teleconnection of hydrometeorological extremes. J. Hydrometeor., 13(1), 392-403.
dc.relation.referencesLeón, G.E., and Narávez G. (2001), Caracterización y zonificación climática de la región Andina, Meteorología Colombiana, 4 121-126.
dc.relation.referencesLettau, H., Lettau, K., & Molion, L. C. B. (1979), Amazonia's hydrologic cycle and the role of atmospheric recycling in assessing deforestation effects. Monthly Weather Review, 107(3), 227-238.
dc.relation.referencesLevine, P.A., J.T. Randerson, Y. Chen, M.S. Pritchard, M. Xu, and F.M. Hoffman (2019), Soil Moisture Variability Intensifies and Prolongs Eastern Amazon Temperature and Carbon Cycle Response to El Niño–Southern Oscillation. J. Climate, 32, 1273–1292, https://doi.org/10.1175/JCLI-D-18-0150.1
dc.relation.referencesLewis, S.L., P.M. Brando, O. L. Phillips, G.M.F. van der Heijden, and D. Nepstad (2011), The 2010 Amazon drought, Science, 331, 554 doi:10.1126/science.1200807.
dc.relation.referencesLiang, X. S. (2013), The Liang-Kleeman information flow: Theory and applications. Entropy, 15(1), 327-360.
dc.relation.referencesLiang, X. (2014), Unraveling the cause-effect relation between time series. Physical Review E, 90(5), 052150.
dc.relation.referencesLiang, X. S (2015), Normalizing the causality between time series. Physical Review E, 92(2), 022126.
dc.relation.referencesLópez, M.E., and Howell, W.E. (1967), Katabatic winds in the Equatorial Andes, J. Atmos. Sci., 24(1), 29-35.
dc.relation.referencesMa, H. Y., Mechoso, C. R., Xue, Y., Xiao, H., Wu, C. M., Li, J. L., & De Sales, F. (2011), Impact of land surface processes on the South American warm season climate. Climate dynamics, 37(1-2), 187-203.
dc.relation.referencesMapes, B.E., Warner, T.T., Xu, M., and Negri, A.J. (2003a), Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context, Mon. Wea. Rev., 131, 799-812.
dc.relation.referencesMapes, B. E., T. T. Warner, and M. Xu (2003), Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131, 830-844.
dc.relation.referencesMarengo, J. A., Soares, W. R., Saulo, C., & Nicolini, M. (2004), Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: Characteristics and temporal variability. J. Climate, 17(12), 2261-2280.
dc.relation.referencesMarengo, J.A., Nobre, C.A., Tomasella, J., Oyama, M.D., Sampaio de Oliveira, G., De Oliveira, R., Camargo, H., Alves, L.M. and Brown, I.F. (2008), The drought of Amazonia in 2005. Journal of climate, 21(3), 495-516.
dc.relation.referencesMarengo, J. A., J. Tomasella, L. M. Alves, W. R. Soares, and D. A. Rodriguez (2011), The drought of 2010 in the context of historical droughts in the Amazon region. Geophys. Res. Lett., 38. doi: 10.1029/2011GL047436
dc.relation.referencesMartínez, M.T., (1993), Principales sistemas sinópticos en Colombia y su influencia en el comportamiento del tiempo, Atmósfera, 16, 1-10.
dc.relation.referencesMayer, M., K. E. Trenberth, L. Haimberger, and J. T. Fasullo (2013), The Response of Tropical Atmospheric Energy Budgets to ENSO. J. Climate, 26, 4710-4724.
dc.relation.referencesMedvigy, D., Walko, R. L., & Avissar, R. (2011), Effects of deforestation on spatiotemporal distributions of precipitation in South America. Journal of Climate, 24(8), 2147-2163.
dc.relation.referencesMejia, J.F., and Poveda, G. (2005), Atmospheric environments of mesoscale convective systems over Colombia during 1999 using TRMM radar and microwave products and NCEP/NCAR reanalysis [in Spanish], Rev. Acad. Colomb. Cienc., 29(113), 495514.
dc.relation.referencesMenéndez, C.G., Giles, J., Ruscica, R. et al. (2019), Temperature variability and soil–atmosphere interaction in South America simulated by two regional climate models. Clim Dyn. https://doi.org/10.1007/s00382-019-04668-6.
dc.relation.referencesMiralles, D., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., & Dolman, A. J. (2011), Global land-surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences, 453-469.
dc.relation.referencesMiralles, D. G., Gentine, P., Seneviratne, S. I., & Teuling, A. J. (2019), Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Annals of the New York Academy of Sciences, 1436(1), 19.
dc.relation.referencesMisra, V., & DiNapoli, S. M. (2013), The observed teleconnection between the equatorial Amazon and the Intra-Americas Seas. Climate dynamics, 40(11-12), 2637-2649.
dc.relation.referencesMo, K. C., and E. H. Berbery, (2011), Drought and persistent wet spells over South America based on observations and the US CLIVAR drought experiments. J. Climate, 24, 1801-1820.
dc.relation.referencesMuñoz, E., Busalacchi, A. J., Nigam, S., & Ruiz-Barradas, A. (2008), Winter and summer structure of the Caribbean low-level jet. Journal of Climate, 21(6), 1260-1276.
dc.relation.referencesNegrón Juárez, R. I., Li, W., Fu, R., Fernandes, K., & de Oliveira Cardoso, A. (2009), Comparison of precipitation datasets over the tropical South American and African continents. J. Hydrometeor., 10(1), 289-299.
dc.relation.referencesNicolai‐Shaw, N., Gudmundsson, L., Hirschi, M., & Seneviratne, S. I. (2016), Long‐term predictability of soil moisture dynamics at the global scale: Persistence versus large‐scale drivers. Geophysical Research Letters, 43(16), 8554-8562.
dc.relation.referencesOhmura, A. (2001), Physical basis for the temperature-based melt-index method. J. Appl. Meteor., 40(4), 753-761.
dc.relation.referencesOrlowsky, B., & Seneviratne, S. I. (2010), Statistical analyses of land–atmosphere feedbacks and their possible pitfalls. Journal of Climate, 23(14), 3918-3932.
dc.relation.referencesOster, R., (1979), Las precipitaciones en Colombia. Revista Colombia Geográfica, Instituto Geográfico Agustín Codazzi, Bogotá, Vol. VI, No. 2.
dc.relation.referencesOtto, F. E. L., N. Massey, G. J. vanOldenborgh, R. G. Jones, and M. R. Allen (2012), Reconciling two approaches to attribution of the 2010 Russian heat wave, Geophys. Res. Lett., 39, L04702, doi:10.1029/2011GL050422.
dc.relation.referencesPabón, J.D. and Dorado, J. (2008), Intraseasonal variability of rainfall over northern South America and Caribbean region. Earth Sci. Res. J., Vol.12, No. 2, 194-212.
dc.relation.referencesPaegle, J. N., & Mo, K. C. (2002), Linkages between summer rainfall variability over South America and sea surface temperature anomalies. Journal of Climate, 15(12), 1389-1407.
dc.relation.referencesPita Suárez-Cobián, (1959), El período diurno en las lluvias de los Andes ecuatoriales, Rev. Acad. Colomb. Cienc., Vol X (41), 327-335.
dc.relation.referencesPosada-Marín, J. A., Rendón, A. M., Salazar, J. F., Mejía, J. F., and Villegas, J. C. (2018), WRF downscaling improves ERA-Interim representation of precipitation around a tropical Andean valley during El Niño: implications for GCM-scale simulation of precipitation over complex terrain. Clim.Dyn., 1-21.
dc.relation.referencesPoveda, G., and O. J. Mesa (1997), Feedbacks between hydrological processes in tropical South America and large scale oceanic atmospheric phenomena, J. Climate, 10, 2690-2702.
dc.relation.referencesPoveda, G., and Mesa, O.J. (1999), The CHOCO low-level jet and two others jets over Colombia: Climatology and variability during ENSO [in Spanish], Rev. Acad. Colomb. Cienc., 23(89), 517-528.
dc.relation.referencesPoveda, G., and Mesa, O.J. (2000), On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-atmosphere-land interaction by a low-level jet, Geophys. Res. Lett., 27, 1675-1678.
dc.relation.referencesPoveda G, Jaramillo A, Gil MM, Quiceno N, Mantilla R. (2001), Seasonality in ENSO related precipitation, river discharges, soil moisture, and vegetation index (NDVI) in Colombia. Water Resour Res 37(8):2169–2178
dc.relation.referencesPoveda G, Mesa OJ, Waylen PR. (2003), Non-linear forecasting of river flows in Colombia based upon ENSO and its associated economic value for hydropower generation. In: Diaz H, Morehouse B (eds) Climate and water. Transboundary challenges in the Americas. Kluwer, Dordrecht, pp 351–371
dc.relation.referencesPoveda, G. (2004), The hydro-climatology of Colombia: A synthesis from inter-decadal to diurnal timescales. Rev. Acad. Colomb. Cienc., 28(107), 201-222.
dc.relation.referencesPoveda, G., and Coauthors (2005), The diurnal cycle of precipitation in the tropical Andes of Colombia. Mon. Wea. Rev., 133, 228-240.
dc.relation.referencesPoveda, G., O.J. Mesa, L.F. Salazar, P.A. Arias, H.A. Moreno, S.C. Vieira, P. A. Agudelo, V.G. Toro, and J. F. Alvarez (2005), The diurnal cycle of precipitation in the Tropical Andes of Colombia. Mon. Wea. Rev., 133, 228-240. doi: http://dx.doi.org/10.1175/MWR-2853.1
dc.relation.referencesPoveda, G., P. R. Waylen, and R. Pulwarty (2006), Modern climate variability in northern South America and southern Mesoamerica, Palaeogeo. Palaeoclim. Palaeoecol., 234, 3-27.
dc.relation.referencesPoveda, G., Vélez, J.I., Mesa, O.J., Cuartas, A., Barco, J., Mantilla, R.I., Mejía, J.F., Hoyos, C.D., Ramírez, J.M., Ceballos, L.I. and Zuluaga, M.D. (2007), Linking long-term water balances and statistical scaling to estimate river flows along the drainage network of Colombia, J. Hydrol. Eng., 12(1), 4-13.
dc.relation.referencesPoveda, G., and K. Pineda (2009), Reassessment of Colombia’s tropical glaciers retreat rates: Are they bound to disappear during the 2010-2020 decade?, Advan. Geos., 22, 107-116.
dc.relation.referencesPoveda, G., D. M. Alvarez, and O. A. Rueda (2011), Hydroclimatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth´s most important biodiversity hotspots, Clim. Dyn., 36, 2233-2249.
dc.relation.referencesPoveda, G., (2011), Mixed memory, (non) Hurst effect, and maximum entropy of rainfall in the tropical Andes, Adv. Water Resour., 34(2), 243-256.
dc.relation.referencesPoveda, G., L. Jaramillo, and L. F. Vallejo (2014), Seasonal precipitation patterns along pathways of South American low‐level jets and aerial rivers. Water Resour. Res.,50, doi: 10.1002/2013WR014087
dc.relation.referencesPoveda, G., and Salas, H.D. (2015), Statistical scaling, Shannon entropy, and generalized space-time q-entropy of rainfall fields in tropical South America, Chaos, 25, 075409; doi:634 10.1063/1.4922595.
dc.relation.referencesPoveda (2020), Garantizar la Integridad de los Ecosistemas de Colombia: Condición Básica para Preservar la Biodiversidad y Desarrollar la Bioeconomía. Departamento Geociencias y Medio Ambiente. Universidad Nacional de Colombia.
dc.relation.referencesRocha, V. M., Correia, F. W. S., & Fonseca, P. A. M. (2015), Reciclagem de precipitação na Amazônia: Um estudo de revisão. Revista brasileira de meteorologia, 30(1), 59-70.
dc.relation.referencesRonchail, J., Bourrel, L., Cochonneau, G., Vauchel, P., Phillips, L., Castro, A., Guyot, J., De Oliveira, E. (2005), Inundations in the Mamoré basin (south-western Amazon—Bolivia) and sea-surface temperature in the Pacific and Atlantic Oceans. Journal of Hydrology, 302(1-4), 223-238.
dc.relation.referencesRoy, S. B. (2009), Mesoscale vegetation‐atmosphere feedbacks in Amazonia. Journal of Geophysical Research: Atmospheres, 114(D20).
dc.relation.referencesRueda, O.A., and Poveda, G. (2006), Variabilidad espacial y temporal del Chorro del Chocó y su efecto en la hidroclimatología del Pacífico Colombiano. Meteorología Colombiana, No. 10, 132-145.
dc.relation.referencesRunge, J., Petoukhov, V., & Kurths, J. (2014), Quantifying the strength and delay of climatic interactions: The ambiguities of cross correlation and a novel measure based on graphical models. Journal of Climate, 27(2), 720-739.
dc.relation.referencesRunge, J. (2015), Quantifying information transfer and mediation along causal pathways in complex systems. Physical Review E, 92(6), 062829.
dc.relation.referencesRuscica, R. C., Sörensson, A. A., & Menendez, C. G. (2014), Hydrological links in Southeastern South America: soil moisture memory and coupling within a hot spot. International Journal of Climatology, 34(14), 3641-3653.
dc.relation.referencesRuscica, R. C., Sörensson, A. A., & Menéndez, C. G. (2015), Pathways between soil moisture and precipitation in southeastern South America. Atmospheric Science Letters, 16(3), 267-272.
dc.relation.referencesSakamoto, M., Ambrizzi, T. and Poveda, G. (2011), Moisture sources and life cycle of convective systems over western Colombia. Advances in Meteorology, Article ID 890759, 11 p.; DOI:10.1155/2011/890759.
dc.relation.referencesSalas, H.D. and Poveda, G. (2015), Scaling of entropy and multi-scaling of the time generalized q-entropy in rainfall and streamflows, Physica A, 423, 11-26.
dc.relation.referencesSalati, E., Dall'Olio, A., Matsui, E., & Gat, J. R. (1979), Recycling of water in the Amazon basin: an isotopic study. Water resources research, 15(5), 1250-1258.
dc.relation.referencesSchär, C., D. Lüthi, U. Beyerle, and E. Heise (1999), The soil-precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722-741.
dc.relation.referencesSchmidt, R., (1952), Die Niederschlagsverteilung im andinen Kolumbien, Bonner Geogr., Abhandlungen, Heft 9 1952.
dc.relation.referencesSchmit, T. J., Griffith, P., Gunshor, M. M., Daniels, J. M., Goodman, S. J., & Lebair, W. J. (2017), A closer look at the ABI on the GOES-R series. Bulletin of the American Meteorological Society, 98(4), 681-698.
dc.relation.referencesSchneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., & Rudolf, B. (2014), GPCC's new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theoretical and Applied Climatology, 115(1-2), 15-40.
dc.relation.referencesSchreiber, T. (2000), Measuring information transfer. Physical review letters,85(2), 461.
dc.relation.referencesSeneviratne, S. I., Lüthi, D., Litschi, M., & Schär, C. (2006), Land–atmosphere coupling and climate change in Europe. Nature, 443(7108), 205-209.
dc.relation.referencesSeneviratne, S. I., & Stöckli, R. (2008), The role of land-atmosphere interactions for climate variability in Europe. In Climate Variability and Extremes during the Past 100 years (pp. 179-193), Springer Netherlands.
dc.relation.referencesSeneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, and A.J. Teuling (2010), Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125-161.
dc.relation.referencesSierra, J.P., Arias, P.A. and Vieira, S.C. (2015), Precipitation over Northern South America and Its Seasonal Variability as Simulated by the CMIP5 Models, Adv. Meteorol., Article ID 634720, 22 pages.
dc.relation.referencesSnow, J.W., (1976), The climate of northern South America, In: Climates of Central and South America, W. Schwerdtfeger (ed.), Elsevier, Amsterdam, 295-403.
dc.relation.referencesSorensson, A. A., & Men´ Endez, C. G. (2011), Summer soil—precipitation coupling in South America. Tellus A: Dynamic Meteorology and Oceanography, 63(1), 56-68.
dc.relation.referencesStensrud, D. J. (1996), Importance of low-level jets to climate: A review. Journal of Climate, 9(8), 1698-1711.
dc.relation.referencesTaylor, C. M., de Jeu, R. A., Guichard, F., Harris, P. P., & Dorigo, W. A. (2012), Afternoon rain more likely over drier soils.Nature,489, 423-426.
dc.relation.referencesTaylor, C. M. (2015), Detecting soil moisture impacts on convective initiation in Europe. Geophysical Research Letters, 42(11), 4631-4638.
dc.relation.referencesTorrealba, E.R., and Amador, J.A. (2010), La corriente en chorro de bajo nivel sobre los Llanos Venezolanos de Sur America. Revista de Climatologia, Vol. 10, 1-20.
dc.relation.referencesTootle GA, Piechota TC, Gutierrez F. (2008), The relationships between Pacific and Atlantic Ocean sea surface temperatures and Colombian streamflow variability. J Hydrol 349(3-4):268–276
dc.relation.referencesTrenberth, K. E. (1999), Atmospheric moisture recycling: Role of advection and local evaporation. J. Climate, 12, 1368-1381.
dc.relation.referencesTrenberth, K. E., and D. J. Shea (2005),Relationships between precipitation and surface temperature. Geophys. Res. Lett., 32, L14703, doi:10.1029/2005GL022760.
dc.relation.referencesTrenberth, K.E. (2012), Framing the way to relate climate extremes to climate change. Clim. Chang., 115 , 283-290, doi: 10.1007/s10584-012-0441-5.
dc.relation.referencesTrenberth, K. E., and J. T. Fasullo (2012), Climate extremes and climate change: The Russian Heat Wave and other Climate Extremes of 2010. J. Geophys. Res., 117, D17103, doi: 10.1029/2012JD018020.
dc.relation.referencesTrenberth, K. E., Dai, A., Rasmussen, R. M., & Parsons, D. B. (2003), The changing character of precipitation. Bulletin of the American Meteorological Society, 84(9), 1205-1218.
dc.relation.referencesTrewartha, G.T., (1981), The Earth’s Problem Climates. University of Wisconsin Press, 366 pp.
dc.relation.referencesTrojer, H., (1958), Meteorología y climatología de la vertiente del Pacífico Colombiano, Rev. Acad. Colomb. Cienc., Vol X (40), 199-219.
dc.relation.referencesTrojer, H., (1959), Fundamentos para una zonificación meteorológica y climatológica del trópico y especialmente de Colombia, Seminarios Cenicafé, pp. 289-373.
dc.relation.referencesTsonis, A. A., & Roebber, P. J. (2004), The architecture of the climate network. Physica A: Statistical Mechanics and its Applications, 333, 497-504.
dc.relation.referencesTuinenburg, O. A., & Staal, A. (2020). Tracking the global flows of atmospheric moisture and associated uncertainties. Hydrology and Earth System Sciences, 24(5), 2419-2435.
dc.relation.referencesvan der Ent, R. J., H. H. Savenije, B. Schaefli, and S. C. Steele‐Dunne (2010), Origin and fate of atmospheric moisture over continents. Water Resour. Res., 46, doi: 10.1029/2010WR009127
dc.relation.referencesvan der Ent, R. V., Tuinenburg, O. A., Knoche, H. R., Kunstmann, H., & Savenije, H. H. G. (2013). Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking?.
dc.relation.referencesvan der Ent, R. J. (2014). A new view on the hydrological cycle over continents. Doctoral Thesis.
dc.relation.referencesvan der Ent, R. J., & Tuinenburg, O. A. (2017). The residence time of water in the atmosphere revisited. Hydrology and Earth System Sciences, 21(2), 779-790.
dc.relation.referencesVera, C., W. Higgins, J. Amador, T. Ambrizzi, R. Garreaud, D. Gochis and C. Zhang (2006), Toward a unified view of the American monsoon systems. J. Climate, 19, 4977-5000.
dc.relation.referencesVera, C., Baez, J., Douglas, M., Emmanuel C., Marengo, J., Meitin, J., Nicolini, M., Nogues-Paegle, J., Penalba, O., Salio, P., Saulo, C., Silva, M., Silva, P., and Zipser, E. (2006), The South American low-level jet experiment. BAMS, 87, 63-77.
dc.relation.referencesVon Storch, H., & Zwiers, F. W. (2001), Statistical analysis in climate research. Cambridge university press.
dc.relation.referencesWang, C., and Enfield, D.B. (2001), The tropical western hemisphere warm pool, Geophys. Res. Lett., 28, 1635-1638.
dc.relation.referencesWang, C., and Enfield, D.B. (2003), A further study of the tropical western hemisphere warm pool, J. Clim., 16, 1476-1493.
dc.relation.referencesWang, H., & Fu, R. (2004), Influence of cross-Andes flow on the South American low-level jet. J.Climate, 17(6), 1247-1262.
dc.relation.referencesWang, C., Enfield, D.B., Lee, S.-K., and Landsea, C.W. (2006), Influences of the Atlantic warm pool on western hemisphere summer rainfall and Atlantic hurricanes, J. Clim., 19, 3011-3028.
dc.relation.referencesWang, C. (2007), Variability of the Caribbean low-level jet and its relations to climate, Clim. Dyn., 29, 411-422.
dc.relation.referencesWang, H., & Fu, R. (2004), Influence of cross-Andes flow on the South American low-level jet. Journal of climate, 17(6), 1247-1262.
dc.relation.referencesWarner, T.T., Mapes, B.E., and Xu, M. (2003), Diurnal patterns of rainfall in northwestern South America. Part II: Model simulations. Mon. Wea. Rev., 131, 813-829
dc.relation.referencesWebster, P. J., Toma, V. E., & Kim, H. M. (2011), Were the 2010 Pakistan floods predictable?. Geophys. Res. Lett., 38(4).
dc.relation.referencesWei, J., & Dirmeyer, P. A. (2012), Dissecting soil moisture‐precipitation coupling. Geophysical Research Letters, 39(19).
dc.relation.referencesWei, J., & Dirmeyer, P. A. (2019). Sensitivity of land precipitation to surface evapotranspiration: a nonlocal perspective based on water vapor transport. Geophysical Research Letters, 46(21), 12588-12597.
dc.relation.referencesWohl, E., Barros, A., Brunsell, N., Chappell, N. A., Coe, M., Giambelluca, T., Goldsmith, S., Harmon, R., Hendrickx, J.M., Juvik, J., McDonnell, J. (2012), The hydrology of the humid tropics. Nature Climate Change, 2(9), 655-662.
dc.relation.referencesWhyte, F. S., Taylor, M. A., Stephenson, T. S., & Campbell, J. D. (2008), Features of the Caribbean low level jet. International Journal of Climatology: A Journal of the Royal Meteorological Society, 28(1), 119-128.
dc.relation.referencesXue, Y., De Sales, F., Li, W. P., Mechoso, C. R., Nobre, C. A., & Juang, H. M. (2006), Role of land surface processes in South American monsoon development. Journal of climate, 19(5), 741-762.
dc.relation.referencesYepes, J., Poveda, G., Mejía, J. F., Moreno, L., and Rueda, C. (2019), CHOCO-JEX: A Research Experiment Focused on the CHOCO Low-level Jet over the Far Eastern Pacific and Western Colombia. Bulletin of the American Meteorological Society, (2019).
dc.relation.referencesYin, L., R. Fu, Y.-F. Zhang, P. A. Arias, D. N. Fernando, W. Li, K. Fernandes, and A. R. Bowerman (2014), What controls the interannual variation of the wet season onsets over the Amazon?, J. Geophys. Res. Atmos., 119, 2314–2328, doi:10.1002/2013JD021349.
dc.relation.referencesZhang, R., & Delworth, T. L. (2007), Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophysical Research Letters, 34(23).
dc.relation.referencesZhang, C., Tang, Q., & Chen, D. (2017). Recent changes in the moisture source of precipitation over the Tibetan Plateau. Journal of Climate, 30(5), 1807-1819.
dc.relation.referencesZemp, D.C., Schleussner, C.F., Barbosa, H.M.J., Van der Ent, R.J., Donges, J.F., Heinke, J., Sampaio, G. and Rammig, A. (2014), On the importance of cascading moisture recycling in South America. Atmospheric Chemistry & Physics Discussions, 14, 17479-17526.
dc.relation.referencesZemp, D.C., Schleussner, C.F., Barbosa, H.M., Hirota, M., Montade, V., Sampaio, G., Staal, A., Wang-Erlandsson, L. and Rammig, A., (2017), Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nature Communications, 8(1), 1-10.
dc.relation.referencesZemp, D. C., Schleussner, C. F., Barbosa, H. D. M. J., & Rammig, A. (2017A), Deforestation effects on Amazon forest resilience. Geophysical Research Letters, 44(12), 6182-6190.
dc.relation.referencesZuluaga, M.D., and Poveda, G. (2004), Diagnostics of mesoscale convective systems over Colombia and the eastern tropical Pacific during 1998-2002 [in Spanish], Avances en Recursos Hidráulicos, 11, 145-160.
dc.relation.referencesZuluaga, M.D., and Houze, R.A. (2015), Extreme convection of the near-equatorial Americas, Africa, and adjoining oceans as seen by TRMM. Mon. Wea. Rev., 143, 298-316.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalInteracciones Suelo-Atmósfera
dc.subject.proposalLand-Atmosphere Interactions
dc.subject.proposalCiclo Diurno
dc.subject.proposalFeedbacks
dc.subject.proposalDiurnal Cycles
dc.subject.proposalENSO
dc.subject.proposalVariabilidad Climática
dc.subject.proposalSuramérica Tropical
dc.subject.proposalClimate Variability
dc.subject.proposalTropical South America
dc.title.translatedInteracciones suelo-atmósfera en Suramérica tropical y Colombia en múltiples escalas de tempo
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito