Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorMúnera Galarza, Alejandro
dc.contributor.advisorRojas Barreto, Manuel
dc.contributor.advisorCardenas, Fernando
dc.contributor.authorCárdenas Molano, Melissa Andrea Netsash
dc.date.accessioned2021-01-15T18:06:28Z
dc.date.available2021-01-15T18:06:28Z
dc.date.issued2020-08-11
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78771
dc.description.abstractSuperior Colliculus (SC) is a crucial structure for vertebrate survival given its role in organizing behavioral responses to unexpected visual stimuli. SC is anatomically and functionally connected with aversive stimuli processing structures such as the amygdala (AM). However, little is known about their electrophysiological activity in response to paired presentation of visual and somatosensory stimuli in anaesthetized rats. The main purpose of the present study was to compare electrophysiological activity in SC and AM during paired and unpaired presentation of visual and somatosensory stimuli in rats under anesthesia (urethane, 1,5 g/kg) Eight males Wistar rats (380 ± 20gr, with ad libitum access to food and water, 12:12h light-dark cycle and temperature 20±2˚C) were implanted with unilateral recording electrodes in SC and AM and stimulating electrodes at the contralateral whisker pad. Stable components of unpaired visual (light flash) and somatosensory (whisker pad electric shock) stimuli evoked potentials in SC and AM were characterized. Paired presentation of visual and somatosensory stimuli induced significant changes in AM, but no SC visual-evoked potential: 1) increasing of P1N1a peak-to-peak amplitude; and, 2) increasing of absolute spectral power for all frequency band (except theta). A second round of unpaired presentations of visual stimuli induced reversion of the above mentioned changes; in addition, unpairing of visual stimuli induced another significant changes: 1) increased N2 area under the curve in SC; and, 2) diminished P2 area under the curve in AM. Taken together such results indicate that early components of AM evoked potential are sensitive to visual stimuli pairing, while late components of both SC and AM evoked potentials are sensitive to visual stimuli unpairing.
dc.description.abstractEl Colículo Superior (CS) tiene gran relevancia para la supervivencia de los vertebrados pues es capaz de desencadenar comportamientos reflejos ante estímulos visuales sorpresivos. Se asocia anatómico-funcionalmente a otras estructuras encargadas del procesamiento emocional de estímulos potencialmente aversivos, como la Amígdala (AM). Sin embargo, a la fecha poco se sabe de la actividad electrofisiológica de dichas estructuras ante la presentación emparejada de estímulos visuales y somatosensoriales en ratas anestesiadas. El objetivo de esta investigación fue comparar la respuesta electrofisiológica en CS y AM frente a la presentación emparejada y no-emparejada de estímulos visuales y somatosensoriales en ratas bajo anestesia (uretano, 1,5 g/kg). Se utilizaron 8 ratas Wistar (380 ± 20gr, con comida y agua ad libitum, ciclo luz-oscuridad de 12:12h y temperatura 20±2˚C) con electrodos de registro unilateralmente implantados en CS y AM y electrodos de estimulación en el parche de vibrisas contralateral. Se caracterizaron los componentes estables de los potenciales provocados en CS y AM por estímulos luminosos (destello de luz) y somatosensoriales (choque eléctrico en las vibrisas) no-emparejados. La presentación emparejada del estímulo visual con el somatosensorial indujo cambios en los potenciales provocados visuales en AM, pero no en CS, con respecto a la presentación no-emparejada: 1) aumento significativo de la amplitud pico a pico del componente P1N1a; y 2) aumento significativo de la potencia espectral absoluta en todas las bandas de frecuencia (a excepción de la banda theta). Al volver a presentar el estímulo visual de forma no-emparejada, los cambios anteriormente citados se revirtieron, llegando al nivel basal; además, esta segunda presentación no-emparejada del estímulo visual, provocó: 1) aumento significativo del área bajo la curva del componente N2 en CS; y 2) disminución significativa del área bajo la curva del componente P2 en AM. Estos resultados indican que los componentes tempranos del potencial provocado en AM son sensibles al emparejamiento del estímulo visual, mientras que los componentes tardíos de los potenciales provocados en CS y AM son sensibles al desemparejamiento del mismo.
dc.format.extent127
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc610 - Medicina y salud
dc.titleCaracterización electroencefalográfica de la ruta subcortical colículo superior – amígdala, vía tálamo, durante la asociación de estímulos condicionado e incondicionado: Evaluación de la integración sensorial multimodal en colículo superior y amígdala
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Neurociencias
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAlbuquerque, F. S. & Silva, R. H. (2009). A amígdala e a tênue fronteira entre memória e emoção. Revista de Psiquiatria do Rio Grande do Sul, 31.
dc.relation.referencesAntonov, I., Antonova, I., Kandel, E. R., & Hawkins, R. D. (2001). The contribution of activity-dependent synaptic plasticity to classical conditioning in Aplysia. J.Neurosci., 21, 6413-6422
dc.relation.referencesArmony, J. L., Servan-Schreiber, D., Cohen, J. D., & LeDoux, J. E. (1997). Computational modeling of emotion: explorations through the anatomy and physiology of fear conditioning. Trends Cogn Sci., 1, 28-34
dc.relation.referencesBao, J. X., Kandel, E. R., & Hawkins, R. D. (1998). Involvement of presynaptic and postsynaptic mechanisms in a cellular analog of classical conditioning at Aplysia sensory-motor neuron synapses in isolated cell culture. J.Neurosci., 18, 458-466.
dc.relation.referencesBergstrom, H. C. & Johnson, L. R. (2014). An organization of visual and auditory fear conditioning in the lateral amygdala. Neurobiol.Learn.Mem., 116, 1-13
dc.relation.referencesBergstrom, H. C., McDonald, C. G., Dey, S., Tang, H., Selwyn, R. G., & Johnson, L. R. (2013). The structure of Pavlovian fear conditioning in the amygdala. Brain Struct.Funct., 218, 1569-1589.
dc.relation.referencesBergstrom, H. C., McDonald, C. G., & Johnson, L. R. (2011). Pavlovian fear conditioning activates a common pattern of neurons in the lateral amygdala of individual brains. PLoS.One., 6, e15698.
dc.relation.referencesBindi, R. P., Baldo, M. V. C., & Canteras, N. S. (2018). Roles of the anterior basolateral amygdalar nucleus during exposure to a live predator and to a predator-associated context. Behav.Brain Res., 342, 51-56
dc.relation.referencesBlackwell, K. T. & Alkon, D. L. (1999). Ryanodine receptor modulation of in vitro associative learning in Hermissenda crassicornis. Brain Res., 822, 114-125
dc.relation.referencesBlair, H. T., Schafe, G. E., Bauer, E. P., Rodrigues, S. M., & LeDoux, J. E. (2001). Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn.Mem., 8, 229-242
dc.relation.referencesBlair, H. T., Sotres-Bayon, F., Moita, M. A., & LeDoux, J. E. (2005). The lateral amygdala processes the value of conditioned and unconditioned aversive stimuli. Neuroscience, 133, 561-569.
dc.relation.referencesBlair, H. T., Tinkelman, A., Moita, M. A., & LeDoux, J. E. (2003). Associative plasticity in neurons of the lateral amygdala during auditory fear conditioning. Ann.N.Y.Acad.Sci., 985, 485-487
dc.relation.referencesBoehnke, S. E., Berg, D. J., Marino, R. A., Baldi, P. F., Itti, L., & Munoz, D. P. (2011). Visual adaptation and novelty responses in the superior colliculus. Eur.J.Neurosci., 34, 766-779.
dc.relation.referencesBonebakker, A. E., Bonke, B., Klein, J., Wolters, G., Stijnen, T., Passchier, J. et al. (1996). Information processing during general anesthesia: evidence for unconscious memory. Mem.Cognit., 24, 766-776.
dc.relation.referencesBoussaoud, D., Jouffrais, C., & Bremmer, F. (1998). Eye position effects on the neuronal activity of dorsal premotor cortex in the macaque monkey. J.Neurophysiol., 80, 1132-1150
dc.relation.referencesBrown, S. & Shäffer, E. A. (1888). An Investigation into the Functions of the Occipital and Temporal Lobes of the Monkey's Brain. Philos.Trans.R.Soc.Lond B Biol.Sci., 179, 307-327.
dc.relation.referencesBucy, P. C. & Kluver, H. (1955). An anatomical investigation of the temporal lobe in the monkey (Macaca mulatta). J.Comp Neurol., 103, 151-251.
dc.relation.referencesCampese, V. D., Sears, R. M., Moscarello, J. M., Diaz-Mataix, L., Cain, C. K., & LeDoux, J. E. (2016). The Neural Foundations of Reaction and Action in Aversive Motivation. Curr.Top.Behav.Neurosci., 27, 171-195.
dc.relation.referencesCanteras, N. S., Resstel, L. B., Bertoglio, L. J., Carobrez, A. P., & Guimaraes, F. S. (2010). Neuroanatomy of anxiety. Curr.Top.Behav.Neurosci., 2, 77-96.
dc.relation.referencesCartford, M. C., Gohl, E. B., Singson, M., & Lavond, D. G. (1997). The effects of reversible inactivation of the red nucleus on learning-related and auditory-evoked unit activity in the pontine nuclei of classically conditioned rabbits. Learn.Mem., 3, 519-531
dc.relation.referencesCavallo, J. S., Hamilton, B. N., & Farley, J. (2014). Behavioral and neural bases of extinction learning in Hermissenda. Front Behav.Neurosci., 8, 277.
dc.relation.referencesCavallo, J. S., Hamilton, B. N., & Farley, J. (2014). In vitro extinction learning in Hermissenda: involvement of conditioned inhibition molecules. Front Behav.Neurosci., 8, 354
dc.relation.referencesChaaya, N., Jacques, A., Belmer, A., Richard, D. J., Bartlett, S. E., Battle, A. R. et al. (2019). Localization of Contextual and Context Removed Auditory Fear Memory within the Basolateral Amygdala Complex. Neuroscience, 398, 231-251
dc.relation.referencesChachich, M. E. & Powell, D. A. (2004). The role of claustrum in Pavlovian heart rate conditioning in the rabbit (Oryctolagus cuniculus): anatomical, electrophysiological, and lesion studies. Behav.Neurosci., 118, 514-525
dc.relation.referencesChang-Hwan, I. (2018). Computational EEG Analysis. Seoul: Springer Nature Singapore Pte Ltd
dc.relation.referencesCisler, J. M. & Koster, E. H. (2010). Mechanisms of attentional biases towards threat in anxiety disorders: An integrative review. Clin.Psychol.Rev., 30, 203-216
dc.relation.referencesCohen, J. D. & Castro-Alamancos, M. A. (2007). Early sensory pathways for detection of fearful conditioned stimuli: tectal and thalamic relays. J.Neurosci., 27, 7762-7776.
dc.relation.referencesCohen, J. D. & Castro-Alamancos, M. A. (2010). Neural correlates of active avoidance behavior in superior colliculus. J.Neurosci., 30, 8502-8511
dc.relation.referencesCork, R. C., Heaton, J. F., Campbell, C. E., & Kihlstrom, J. F. (1996). Is there implicit memory after propofol sedation? Br.J.Anaesth., 76, 492-498.
dc.relation.referencesCrow, T. & Tian, L. M. (2006). Pavlovian conditioning in Hermissenda: a circuit analysis. Biol.Bull., 210, 289-297
dc.relation.referencesDe Lima, M. A., Baldo, M. V., & Canteras, N. S. (2017). A role for the anteromedial thalamic nucleus in the acquisition of contextual fear memory to predatory threats. Brain Struct.Funct., 222, 113-129
dc.relation.referencesDe, C. A. & Codispoti, M. (2015). Can the Outputs of LGN Y-Cells Support Emotion Recognition? A Computational Study. Comput.Intell.Neurosci., 2015, 695921
dc.relation.referencesDe Oliveira, R. C., Falconi-Sobrinho, L. L., da Silva, S. R., Jr., & Coimbra, N. C. (2017). 5-Hydroxytryptamine2A/2C receptors of nucleus raphe magnus and gigantocellularis/paragigantocellularis pars alpha reticular nuclei modulate the unconditioned fear-induced antinociception evoked by electrical stimulation of deep layers of the superior colliculus and dorsal periaqueductal grey matter. Behav.Brain Res., 316, 294-304.
dc.relation.referencesDean, P. & Redgrave, P. (1984). Superior colliculus and visual neglect in rat and hamster. III. Functional implications. Brain Res., 320, 155-163
dc.relation.referencesDean, P. & Redgrave, P. (1984). The superior colliculus and visual neglect in rat and hamster. I. Behavioural evidence. Brain Res., 320, 129-141
dc.relation.referencesDebiec, J. & LeDoux, J. E. (2004). Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience, 129, 267-272
dc.relation.referencesDeeprose, C., Andrade, J., Varma, S., & Edwards, N. (2004). Unconscious learning during surgery with propofol anaesthesia. Br.J.Anaesth., 92, 171-177.
dc.relation.referencesDomjam, M. (2010). Principios de Aprenzidaje y Conducta. (6 ed.) México: Wadsworth.
dc.relation.referencesDoron, N. N. & LeDoux, J. E. (1999). Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. J.Comp Neurol., 412, 383-409.
dc.relation.referencesDyer, R. S. & Annau, Z. (1977). Flash evoked potentials from rat superior colliculus. Pharmacol.Biochem.Behav., 6, 453-459
dc.relation.referencesEngel Jr, J., Bragin, A., Staba, R., & Mody, I. (2009). High-frequency oscillations: What is normal and what is not? Epilepsia, 50, 598-604.
dc.relation.referencesFarley, J. & Alkon, D. L. (1987). In vitro associative conditioning of Hermissenda: cumulative depolarization of type B photoreceptors and short-term associative behavioral changes. J.Neurophysiol., 57, 1639-1668
dc.relation.referencesFarley, S. J., Albazboz, H., De Corte, B. J., Radley, J. J., & Freeman, J. H. (2018). Amygdala central nucleus modulation of cerebellar learning with a visual conditioned stimulus. Neurobiol.Learn.Mem., 150, 84-92.
dc.relation.referencesFedele, T., Tzovara, A., Steiger, B., Hilfiker, P., Grunwald, T., Stieglitz, L. et al. (2020). The relation between neuronal firing, local field potentials and hemodynamic activity in the human amygdala in response to aversive dynamic visual stimuli. NeuroImage, 213, 116705.
dc.relation.referencesFenton, G. E., Spicer, C. H., Halliday, D. M., Mason, R., & Stevenson, C. W. (2013). Basolateral amygdala activity during the retrieval of associative learning under anesthesia. Neuroscience, 233, 146-156
dc.relation.referencesFiala, J. C., Grossberg, S., & Bullock, D. (1996). Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response. J.Neurosci., 16, 3760-3774.
dc.relation.referencesFioriti, L., Myers, C., Huang, Y. Y., Li, X., Stephan, J. S., Trifilieff, P. et al. (2015). The Persistence of Hippocampal-Based Memory Requires Protein Synthesis Mediated by the Prion-like Protein CPEB3. Neuron, 86, 1433-1448.
dc.relation.referencesFreitas-Ferrari, M. C., Hallak, J. E., Trzesniak, C., Filho, A. S., Machado-de-Sousa, J. P., Chagas, M. H. et al. (2010). Neuroimaging in social anxiety disorder: a systematic review of the literature. Prog.Neuropsychopharmacol.Biol.Psychiatry, 34, 565-580
dc.relation.referencesFreund, T. F. & Katona, I. (2007). Perisomatic inhibition. Neuron, 56, 33-42
dc.relation.referencesGalvez, R., Weiss, C., Weible, A. P., & Disterhoft, J. F. (2006). Vibrissa-signaled eyeblink conditioning induces somatosensory cortical plasticity. J.Neurosci., 26, 6062-6068
dc.relation.referencesGarcia, R., Paquereau, J., Vouimba, R. M., & Jaffard, R. (1998). Footshock stress but not contextual fear conditioning induces long-term enhancement of auditory-evoked potentials in the basolateral amygdala of the freely behaving rat. Eur.J.Neurosci., 10, 457-463
dc.relation.referencesGharaei, S., Arabzadeh, E., & Solomon, S. G. (2018). Integration of visual and whisker signals in rat superior colliculus. Sci.Rep., 8, 16445.
dc.relation.referencesGoldstein, E. B., Blanco, M. J., & Sampedro Suárez, L. (2009). Sensación y percepción. (1 ed., 2 reimp ed.) Madrid: Paraninfo
dc.relation.referencesGoodale, M. A. & Murison, R. C. (1975). The effects of lesions of the superior colliculus on locomotor orientation and the orienting reflex in the rat. Brain Res., 88, 243-261
dc.relation.referencesHarris, A. P., Lennen, R. J., Marshall, I., Jansen, M. A., Pernet, C. R., Brydges, N. M. et al. (2015). Imaging learned fear circuitry in awake mice using fMRI. Eur.J.Neurosci., 42, 2125-2134
dc.relation.referencesHattori, S., Yoon, T., Disterhoft, J. F., & Weiss, C. (2014). Functional reorganization of a prefrontal cortical network mediating consolidation of trace eyeblink conditioning. J.Neurosci., 34, 1432-1445.
dc.relation.referencesHawkins, R. D., Clark, G. A., & Kandel, E. R. (2006). Operant conditioning of gill withdrawal in Aplysia. J.Neurosci., 26, 2443-2448.
dc.relation.referencesHawkins, R. D., Greene, W., & Kandel, E. R. (1998). Classical conditioning, differential conditioning, and second-order conditioning of the Aplysia gill-withdrawal reflex in a simplified mantle organ preparation. Behav.Neurosci., 112, 636-645
dc.relation.referencesHetzler, B. E., McLester-Davis, L. W. Y., & Tenpas, S. E. (2019). Methylphenidate and alcohol effects on flash-evoked potentials, body temperature, and behavior in Long-Evans rats. Alcohol, 77, 79-89.
dc.relation.referencesHoldstock, T. L. (1969). Autonomic reactivity following septal and amygdaloid lesions in white rats. Physiology & Behavior, 4, 603-606.
dc.relation.referencesHu, B., Lin, X., Huang, L. S., Yang, L., Feng, H., & Sui, J. F. (2009). Involvement of the ipsilateral and contralateral cerebellum in the acquisition of unilateral classical eyeblink conditioning in guinea pigs. Acta Pharmacol.Sin., 30, 141-152.
dc.relation.referencesHylin, M. J., Orsi, S. A., Moore, A. N., & Dash, P. K. (2013). Disruption of the perineuronal net in the hippocampus or medial prefrontal cortex impairs fear conditioning. Learn.Mem., 20, 267-273.
dc.relation.referencesIsa, T. & Yoshida, M. (2009). Saccade control after V1 lesion revisited. Curr.Opin.Neurobiol., 19, 608-614
dc.relation.referencesIto, W. & Morozov, A. (2019). Prefrontal-amygdala plasticity enabled by observational fear. Neuropsychopharmacology, 44, 1778-1787.
dc.relation.referencesIwata, J., LeDoux, J. E., Meeley, M. P., Arneric, S., & Reis, D. J. (1986). Intrinsic neurons in the amygdaloid field projected to by the medial geniculate body mediate emotional responses conditioned to acoustic stimuli. Brain Res., 383, 195-214
dc.relation.referencesIzquierdo, I., Furini, C. R., & Myskiw, J. C. (2016). Fear Memory. Physiol Rev., 96, 695-750
dc.relation.referencesJacques, A., Chaaya, N., Hettiarachchi, C., Carmody, M. L., Beecher, K., Belmer, A. et al. (2019). Microtopography of fear memory consolidation and extinction retrieval within prefrontal cortex and amygdala. Psychopharmacology (Berl), 236, 383-397.
dc.relation.referencesJanak, P. H. & Tye, K. M. (2015). From circuits to behaviour in the amygdala. Nature, 517, 284-292
dc.relation.referencesJosselyn, S. A., Kohler, S., & Frankland, P. W. (2015). Finding the engram. Nat.Rev.Neurosci., 16, 521-534
dc.relation.referencesJosselyn, S. A., Kohler, S., & Frankland, P. W. (2017). Heroes of the Engram. J.Neurosci., 37, 4647-4657
dc.relation.referencesJosselyn, S. A. & Frankland, P. W. (2018). Memory Allocation: Mechanisms and Function. Annual Review of Neuroscience, 41, 389-413.
dc.relation.referencesKandel, E. R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science, 294, 1030-1038
dc.relation.referencesKandel, E. R., Dudai, Y., & Mayford, M. R. (2014). The molecular and systems biology of memory. Cell, 157, 163-186.
dc.relation.referencesim, N., Kong, M. S., Jo, K. I., Kim, E. J., & Choi, J. S. (2015). Increased tone-offset response in the lateral nucleus of the amygdala underlies trace fear conditioning. Neurobiol.Learn.Mem., 126, 7-17.
dc.relation.referencesKim, W. B. & Cho, J. H. (2017). Encoding of Discriminative Fear Memory by Input-Specific LTP in the Amygdala. Neuron, 95, 1129-1146.
dc.relation.referencesKinoshita, M., Kato, R., Isa, K., Kobayashi, K., Kobayashi, K., Onoe, H. et al. (2019). Dissecting the circuit for blindsight to reveal the critical role of pulvinar and superior colliculus. Nat.Commun., 10, 135.
dc.relation.referencesKnippenberg, J. M., Maes, J. H., Coenen, A. M., & van, L. G. (2009). Effect of appetitive Pavlovian conditioning on the N150 of the amygdalar Auditory Evoked Potential in the rat. Brain Res., 1267, 57-64.
dc.relation.referencesKnippenberg, J. M., Maes, J. H., Kuniecki, M. J., Buyse, B. A., Coenen, A. M., & van, L. G. (2008). N150 in amygdalar ERPs in the rat: is there modulation by anticipatory fear? Physiol Behav., 93, 222-228
dc.relation.referencesKonno, S. & Ohtsuka, K. (1997). Accommodation and pupilloconstriction areas in the cat midbrain. Jpn.J.Ophthalmol., 41, 43-48.
dc.relation.referencesKortelainen, J., Vipin, A., Thow, X. Y., Mir, H., Thakor, N., Al-Nashash, H. et al. (2014). Effect of isoflurane on somatosensory evoked potentials in a rat model. Conf.Proc.IEEE Eng Med.Biol.Soc., 2014, 4286-4289
dc.relation.referencesKoutalidis, O., Foster, A., & Weisz, D. J. (1988). Parallel pathways can conduct visual CS information during classical conditioning of the NM response. J.Neurosci., 8, 417-427.
dc.relation.referencesKraft, A., Grimsen, C., Kehrer, S., Bahnemann, M., Spang, K., Prass, M. et al. (2014). Neurological and neuropsychological characteristics of occipital, occipito-temporal and occipito-parietal infarction. Cortex, 56, 38-50.
dc.relation.referencesKuniecki, M., Coenen, A. M., & Kaiser, J. (2002). Correlation between long latency evoked potentials from amygdala and evoked cardiac response to fear conditioned stimulus in rats. Acta Neurobiol.Exp.(Wars.), 62, 85-92
dc.relation.referencesKyojimaekawa, Toshiakitakeda, Maekawa, K., & Takeda, T. (1975). Mossy fiber responses evoked in the cerebellar flocculus of rabbits by stimulation of the optic pathway. Brain Res., 98, 590-595.
dc.relation.referencesLand, R., Engler, G., Kral, A., & Engel, A. K. (2012). Auditory evoked bursts in mouse visual cortex during isoflurane anesthesia. PLoS.One., 7, e49855.
dc.relation.referencesLaviolette, S. R., Lipski, W. J., & Grace, A. A. (2005). A subpopulation of neurons in the medial prefrontal cortex encodes emotional learning with burst and frequency codes through a dopamine D4 receptor-dependent basolateral amygdala input. J.Neurosci., 25, 6066-6075.
dc.relation.referencesLaviolette, S. R., Lipski, W. J., & Grace, A. A. (2005). A subpopulation of neurons in the medial prefrontal cortex encodes emotional learning with burst and frequency codes through a dopamine D4 receptor-dependent basolateral amygdala input. J.Neurosci., 25, 6066-6075.
dc.relation.referencesLe, Q. V., Nishimaru, H., Matsumoto, J., Takamura, Y., Nguyen, M. N., Mao, C. V. et al. (2019). Gamma oscillations in the superior colliculus and pulvinar in response to faces support discrimination performance in monkeys. Neuropsychologia, 128, 87-95.
dc.relation.referencesLeal-Campanario, R., Delgado-Garcia, J. M., & Gruart, A. (2006). Microstimulation of the somatosensory cortex can substitute for vibrissa stimulation during Pavlovian conditioning. Proc.Natl.Acad.Sci.U.S.A, 103, 10052-10057.
dc.relation.referencesLeDoux, J. (2003). The emotional brain, fear, and the amygdala. Cell Mol.Neurobiol., 23, 727-738.
dc.relation.referencesLeDoux, J. (2007). The amygdala. Curr.Biol., 17, R868-R874.
dc.relation.referencesLeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73, 653-676.
dc.relation.referencesLeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155-184.
dc.relation.referencesLeDoux, J. E. (2014). Coming to terms with fear. Proc.Natl.Acad.Sci.U.S.A, 111, 2871-2878.
dc.relation.referencesLeDoux, J. E. & Brown, R. (2017). A higher-order theory of emotional consciousness. Proc.Natl.Acad.Sci.U.S.A, 114, E2016-E2025
dc.relation.referencesLeDoux, J. E., Cicchetti, P., Xagoraris, A., & Romanski, L. M. (1990). The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J.Neurosci., 10, 1062-1069.
dc.relation.referencesLeDoux, J. E., Farb, C., & Ruggiero, D. A. (1990). Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J.Neurosci., 10, 1043-1054
dc.relation.referencesLeDoux, J. E., Iwata, J., Cicchetti, P., & Reis, D. J. (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J.Neurosci., 8, 2517-2529
dc.relation.referencesLeDoux, J. E., Iwata, J., Pearl, D., & Reis, D. J. (1986). Disruption of auditory but not visual learning by destruction of intrinsic neurons in the rat medial geniculate body. Brain Res., 371, 395-399.
dc.relation.referencesLeDoux, J. E., Ruggiero, D. A., & Reis, D. J. (1985). Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat. J.Comp Neurol., 242, 182-213
dc.relation.referencesLeDoux, J. E., Sakaguchi, A., Iwata, J., & Reis, D. J. (1985). Auditory emotional memories: establishment by projections from the medial geniculate nucleus to the posterior neostriatum and/or dorsal amygdala. Ann.N.Y.Acad.Sci., 444, 463-464.
dc.relation.referenceseDoux, J. E., Sakaguchi, A., Iwata, J., & Reis, D. J. (1986). Interruption of projections from the medial geniculate body to an archi-neostriatal field disrupts the classical conditioning of emotional responses to acoustic stimuli. Neuroscience, 17, 615-627.
dc.relation.referencesLent, R. (2010). Cem bilhões de neurônios: Conceitos fundamentais de Neurociência. (2 ed.) Rio de Janeiro: Atheneu
dc.relation.referencesLinke, R., De Lima, A. D., Schwegler, H., & Pape, H. C. (1999). Direct synaptic connections of axons from superior colliculus with identified thalamo-amygdaloid projection neurons in the rat: possible substrates of a subcortical visual pathway to the amygdala. J.Comp Neurol., 403, 158-170.
dc.relation.referencesLithari, C., Moratti, S., & Weisz, N. (2015). Thalamocortical interactions underlying visual fear conditioning in humans. Hum.Brain Mapp., 36, 4592-4603.
dc.relation.referencesLubow, R. E., Rifkin, B., & Alek, M. (1976). The context effect: The relationship between stimulus preexposure and environmental preexposure determines subsequent learning. Journal of Experimental Psychology: Animal Behavior Processes, 2, 38-47.
dc.relation.referencesLuck, S. J. (2014). An Introduction to the Event-related Potential Technique. MIT Press.
dc.relation.referencesaior, R. S., Hori, E., Barros, M., Teixeira, D. S., Tavares, M. C., Ono, T. et al. (2011). Superior colliculus lesions impair threat responsiveness in infant capuchin monkeys. Neurosci.Lett., 504, 257-260
dc.relation.referencesMaren, S. (1999). Neurotoxic or electrolytic lesions of the ventral subiculum produce deficits in the acquisition and expression of Pavlovian fear conditioning in rats. Behav.Neurosci., 113, 283-290.
dc.relation.referencesMaren, S. (2001). Neurobiology of Pavlovian fear conditioning. Annual Review of Neuroscience, 24, 897-931
dc.relation.referencesMaren, S. (2017). Synapse-Specific Encoding of Fear Memory in the Amygdala. Neuron, 95, 988-990.
dc.relation.referencesMaren, S. & Quirk, G. J. (2004). Neuronal signalling of fear memory. Nat.Rev.Neurosci., 5, 844-852.
dc.relation.referencesMiller, A. M., Miller, R. B., Obermeyer, W. H., Behan, M., & Benca, R. M. (1999). The pretectum mediates rapid eye movement sleep regulation by light. Behav.Neurosci., 113, 755-765.
dc.relation.referencesMirochnik, R. & Pezaris, J. (2019). Contemporary approaches to visual prostheses. Military Medical Research, 19.
dc.relation.referencesMirolli, M., Mannella, F., & Baldassarre, G. (2010). The Roles of the Amygdala in the Affective Regulation of Body, Brain, and Behaviour. Connection Science
dc.relation.referencesMitra, R. (2019). Neuronal Plasticity in the Amygdala Following Predator Stress Exposure. Front Behav.Neurosci., 13, 25
dc.relation.referencesMobbs, D., Adolphs, R., Fanselow, M. S., Barrett, L. F., LeDoux, J. E., Ressler, K. et al. (2019). Viewpoints: Approaches to defining and investigating fear. Nat.Neurosci., 22, 1205-1216
dc.relation.referencesNargeot, R., Petrissans, C., & Simmers, J. (2007). Behavioral and in vitro correlates of compulsive-like food seeking induced by operant conditioning in Aplysia. J.Neurosci., 27, 8059-8070
dc.relation.referencesOh, M. M. & Disterhoft, J. F. (2010). Neuron Excitability and Learning. In G.F.Koob, M. Le Moal, & R. F. Thompson (Eds.), Encyclopedia of Behavioral Neuroscience (pp. 416-424). Academic Press.
dc.relation.referencesOverton, P., Dean, P., & Redgrave, P. (1985). Detection of visual stimuli in far periphery by rats: possible role of superior colliculus. Exp.Brain Res., 59, 559-569.
dc.relation.referencesOya, H., Kawasaki, H., Howard, M. A., III, & Adolphs, R. (2002). Electrophysiological responses in the human amygdala discriminate emotion categories of complex visual stimuli. J.Neurosci., 22, 9502-9512.
dc.relation.referencesPare, D. (2003). Role of the basolateral amygdala in memory consolidation. Prog.Neurobiol., 70, 409-420.
dc.relation.referencesPark, S., Lee, J., Park, K., Kim, J., Song, B., Hong, I. et al. (2016). Sound tuning of amygdala plasticity in auditory fear conditioning. Sci.Rep., 6, 31069.
dc.relation.referencesPaxinos, G. & Watson, C. (2007). The rat brain in stereotaxic coordinates. (6th ed ed.) Amsterdam: Academic Press/Elsevier
dc.relation.referencesPechtel, P. & Pizzagalli, D. A. (2011). Effects of early life stress on cognitive and affective function: an integrated review of human literature. Psychopharmacology (Berl), 214, 55-70.
dc.relation.referencesPetruno, S. K., Clark, R. E., & Reinagel, P. (2013). Evidence that primary visual cortex is required for image, orientation, and motion discrimination by rats. PLoS.One., 8, e56543
dc.relation.referencesPezze, M. A., Marshall, H. J., Domonkos, A., & Cassaday, H. J. (2016). Effects of dopamine D1 modulation of the anterior cingulate cortex in a fear conditioning procedure. Prog.Neuropsychopharmacol.Biol.Psychiatry, 65, 60-67
dc.relation.referencesPitkanen, A., Savander, M., Nurminen, N., & Ylinen, A. (2003). Intrinsic synaptic circuitry of the amygdala. Ann.N.Y.Acad.Sci., 985, 34-49
dc.relation.referencesPonnusamy, R., Poulos, A. M., & Fanselow, M. S. (2007). Amygdala-dependent and amygdala-independent pathways for contextual fear conditioning. Neuroscience, 147, 919-927
dc.relation.referencesProtopopescu, X., Pan, H., Tuescher, O., Cloitre, M., Goldstein, M., Engelien, W. et al. (2005). Differential time courses and specificity of amygdala activity in posttraumatic stress disorder subjects and normal control subjects. Biol.Psychiatry, 57, 464-473
dc.relation.referencesPurves, D., Augustine, G. J., Fitzpatrick, D., Klajn, D. S., & Argüelles Luis, J. (2017). Neurociencia. 5a ed., 1a reimp.
dc.relation.referencesRabinak, C. A., Orsini, C. A., Zimmerman, J. M., & Maren, S. (2009). The amygdala is not necessary for unconditioned stimulus inflation after Pavlovian fear conditioning in rats. Learn.Mem., 16, 645-654
dc.relation.referencesRafal, R. D., Koller, K., Bultitude, J. H., Mullins, P., Ward, R., Mitchell, A. S. et al. (2015). Connectivity between the superior colliculus and the amygdala in humans and macaque monkeys: virtual dissection with probabilistic DTI tractography. J.Neurophysiol., 114, 1947-1962
dc.relation.referencesRedell, J. B., Xue-Bian, J. J., Bubb, M. R., & Crow, T. (2007). One-trial in vitro conditioning regulates an association between the beta-thymosin repeat protein Csp24 and actin. Neuroscience, 148, 413-420
dc.relation.referencesRedolar Ripoll, D. (2017). Neurociencia cognitiva. (1 ed., 2 reimp. ed.) Madrid etc: Médica Panamericana
dc.relation.referencesReinagel, P. (2001). How do visual neurons respond in the real world? Curr.Opin.Neurobiol., 11, 437-442.
dc.relation.referencesReinagel, P. (2001). Neurobiology: The many faces of adaptation. Nature, 412, 776-777
dc.relation.referencesRepa, J. C., Muller, J., Apergis, J., Desrochers, T. M., Zhou, Y., & LeDoux, J. E. (2001). Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat.Neurosci., 4, 724-731.
dc.relation.referencesRessler, R. L. & Maren, S. (2019). Synaptic encoding of fear memories in the amygdala. Curr.Opin.Neurobiol., 54, 54-59
dc.relation.referencesReyes, F. D., Mozzachiodi, R., Baxter, D. A., & Byrne, J. H. (2005). Reinforcement in an in vitro analog of appetitive classical conditioning of feeding behavior in Aplysia: blockade by a dopamine antagonist. Learn.Mem., 12, 216-220.
dc.relation.referencesReznikov, R., Bambico, F. R., Diwan, M., Raymond, R. J., Nashed, M. G., Nobrega, J. N. et al. (2018). Prefrontal Cortex Deep Brain Stimulation Improves Fear and Anxiety-Like Behavior and Reduces Basolateral Amygdala Activity in a Preclinical Model of Posttraumatic Stress Disorder. Neuropsychopharmacology, 43, 1099-1106
dc.relation.referencesRojas, M. J., Navas, J. A., Greene, S. A., & Rector, D. M. (2008). Discrimination of auditory stimuli during isoflurane anesthesia. Comp Med., 58, 454-457.
dc.relation.referencesRoot, J. C., Tuescher, O., Cunningham-Bussel, A., Pan, H., Epstein, J., Altemus, M. et al. (2009). Frontolimbic function and cortisol reactivity in response to emotional stimuli. Neuroreport, 20, 429-434.
dc.relation.referencesRosen, H. R. & Rich, B. A. (2010). Neurocognitive correlates of emotional stimulus processing in pediatric bipolar disorder: a review. Postgrad.Med., 122, 94-104
dc.relation.referencesRosenkranz, J. A. & Grace, A. A. (2002). Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning. Nature, 417, 282-287.
dc.relation.referencesRosenkranz, J. A. & Urban, J. (2020). Handbook of Amygdala Structure and Function.
dc.relation.referencesRyan, S., Li, C., Menigoz, A., Hazra, R., Dabrowska, J., Ehrlich, D. et al. (2018). Repeated shock stress facilitates basolateral amygdala synaptic plasticity through decreased cAMP-specific phosphodiesterase type IV (PDE4) expression. Brain Struct.Funct., 223, 1731-1745
dc.relation.referencesSah, P., Faber, E. S., Lopez de, A. M., & Power, J. (2003). The amygdaloid complex: anatomy and physiology. Physiol Rev., 83, 803-834
dc.relation.referencesSamuel, N., Taub, A. H., Paz, R., & Raz, A. (2018). Implicit aversive memory under anaesthesia in animal models: a narrative review. Br.J.Anaesth., 121, 219-232.
dc.relation.referencesSchacter, D. L. (2011). Forgotten ideas, neglected pioneers Richard Semon and the story of memory. New York: Routledge.
dc.relation.referencesSchafe, G. E., Nader, K., Blair, H. T., & LeDoux, J. E. (2001). Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci., 24, 540-546
dc.relation.referencesScheffer-Teixeira, R., Belchior, H., Leao, R. N., Ribeiro, S., & Tort, A. B. (2013). On high-frequency field oscillations (>100 Hz) and the spectral leakage of spiking activity. J.Neurosci., 33, 1535-1539.
dc.relation.referencesSchiffman, H. R. (2004). Sensación y percepción un enfoque integrador. (1 . ed. en español trad. de la 5 ed. en inglés ed.) México etc: Manual Moderno
dc.relation.referencesSefton, J. (1969). The elecrical activity in the superior colliculus in the rat. Vision Res., 9, 207-222
dc.relation.referencesShalev, L., Paz, R., & Avidan, G. (2018). Visual Aversive Learning Compromises Sensory Discrimination. J.Neurosci., 38, 2766-2779.
dc.relation.referencesSharpley, C. F. (2010). A review of the neurobiological effects of psychotherapy for depression. Psychotherapy.(Chic.), 47, 603-615.
dc.relation.referencesShi, C. & Davis, M. (2001). Visual Pathways Involved in Fear Conditioning Measured with Fear-Potentiated Startle: Behavioral and Anatomic Studies. The Journal of Neuroscience, 21, 9844
dc.relation.referencesShi, C. & Davis, M. (2001). Visual Pathways Involved in Fear Conditioning Measured with Fear-Potentiated Startle: Behavioral and Anatomic Studies. The Journal of Neuroscience, 21
dc.relation.referencesSplittgerber, R. & Snell, R. S. (2019). Neuroanatomía clínica. 8 ed. rev.
dc.relation.referencesStaib, M. & Bach, D. R. (2018). Stimulus-invariant auditory cortex threat encoding during fear conditioning with simple and complex sounds. Neuroimage., 166, 276-284
dc.relation.referencesSunada, H., Lukowiak, K., & Sakakibara, M. (2012). In vitro aversion conditioning in Lymnaea. Short communication. Acta Biol.Hung., 63 Suppl 2, 190-193
dc.relation.referencesTeicher, M. H. & Samson, J. A. (2016). Annual Research Review: Enduring neurobiological effects of childhood abuse and neglect. J.Child Psychol.Psychiatry, 57, 241-266.
dc.relation.referencesTonegawa, S., Liu, X., Ramirez, S., & Redondo, R. (2015). Memory Engram Cells Have Come of Age. Neuron, 87, 918-931
dc.relation.referencesTonge, D., Chan, K., Zhu, N., Panjwani, A., Arno, M., Lynham, S. et al. (2008). Enhancement of axonal regeneration by in vitro conditioning and its inhibition by cyclopentenone prostaglandins. J.Cell Sci., 121, 2565-2577
dc.relation.referencesTroncoso, J., Munera, A., & Delgado-Garcia, J. M. (2004). Classical conditioning of eyelid and mystacial vibrissae responses in conscious mice. Learn.Mem., 11, 724-726
dc.relation.referencesUrtubia, C. (2006). Neurobiología de la visión. Barcelona: Edicions UPS
dc.relation.referencesWalker, D., Yang, Y., Ratti, E., Corsi, M., Trist, D., & Davis, M. (2009). Differential effects of the CRF-R1 antagonist GSK876008 on fear-potentiated, light- and CRF-enhanced startle suggest preferential involvement in sustained vs phasic threat responses. Neuropsychopharmacology, 34, 1533-1542.
dc.relation.referencesWatanabe, S., Kato, I., Sato, S., & Norita, M. (1993). Direct projection from the nucleus of the optic tract to the medial vestibular nucleus in the cat. Neurosci.Res., 17, 325-329.
dc.relation.referencesWei, P., Liu, N., Zhang, Z., Liu, X., Tang, Y., He, X. et al. (2015). Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat.Commun., 6, 6756.
dc.relation.referencesWeiskrantz, L. (1956). Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J.Comp Physiol Psychol., 49, 381-391
dc.relation.referencesWellman, L. L., Fitzpatrick, M. E., Machida, M., & Sanford, L. D. (2014). The basolateral amygdala determines the effects of fear memory on sleep in an animal model of PTSD. Exp.Brain Res., 232, 1555-1565
dc.relation.referencesWerness, S. A., Fay, S. D., Blackwell, K. T., Vogl, T. P., & Alkon, D. L. (1992). Associative learning in a network model of Hermissenda crassicornis. I. Theory. Biol.Cybern., 68, 125-133.
dc.relation.referencesWestby, G. W., Keay, K. A., Redgrave, P., Dean, P., & Bannister, M. (1990). Output pathways from the rat superior colliculus mediating approach and avoidance have different sensory properties. Exp.Brain Res., 81, 626-638.
dc.relation.referencesWhishaw, I. Q. & Kolb, B. (2005). The behavior of the laboratory rat a handbook with tests. Oxford: Oxford University Press.
dc.relation.referencesWiemer, J. & Pauli, P. (2016). Enhanced functional connectivity between sensorimotor and visual cortex predicts covariation bias in spider phobia. Biol.Psychol., 121, 128-137
dc.relation.referencesWigestrand, M. B., Schiff, H. C., Fyhn, M., LeDoux, J. E., & Sears, R. M. (2017). Primary auditory cortex regulates threat memory specificity. Learn.Mem., 24, 55-58
dc.relation.referencesWilensky, A. E., Schafe, G. E., Kristensen, M. P., & LeDoux, J. E. (2006). Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J.Neurosci., 26, 12387-12396
dc.relation.referencesWilensky, A. E., Schafe, G. E., & LeDoux, J. E. (2000). The amygdala modulates memory consolidation of fear-motivated inhibitory avoidance learning but not classical fear conditioning. J.Neurosci., 20, 7059-7066
dc.relation.referencesWoodson, W., Farb, C. R., & LeDoux, J. E. (2000). Afferents from the auditory thalamus synapse on inhibitory interneurons in the lateral nucleus of the amygdala. Synapse, 38, 124-137
dc.relation.referencesXintaras, C., Ulrich, C. E., Sobecki, M. F., & Terrill, R. E. (1966). Brain potentials studied by computer analysis. Arch.Environ.Health, 13, 223-232
dc.relation.referencesYilmazer-Hanke, D. M., Faber-Zuschratter, H., Linke, R., & Schwegler, H. (2002). Contribution of amygdala neurons containing peptides and calcium-binding proteins to fear-potentiated startle and exploration-related anxiety in inbred Roman high- and low-avoidance rats. Eur.J.Neurosci., 15, 1206-1218
dc.relation.referencesZheng, Z. & Keifer, J. (2009). PKA has a critical role in synaptic delivery of GluR1- and GluR4-containing AMPARs during initial stages of acquisition of in vitro classical conditioning. J.Neurophysiol., 101, 2539-2549
dc.relation.referencesZimmerman, J. M., Rabinak, C. A., McLachlan, I. G., & Maren, S. (2007). The central nucleus of the amygdala is essential for acquiring and expressing conditional fear after overtraining. Learn.Mem., 14, 634-644.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalRata
dc.subject.proposalRat
dc.subject.proposalAprendizaje
dc.subject.proposalLearning
dc.subject.proposalAmígdala
dc.subject.proposalElectrophysiology
dc.subject.proposalSuperior colliculus
dc.subject.proposalColículo superior
dc.subject.proposalAmygdala
dc.subject.proposalElectrofisiología
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito