Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorArango Aramburo, Santiago
dc.contributor.authorMontoya Duque, Laura
dc.date.accessioned2021-01-18T15:07:44Z
dc.date.available2021-01-18T15:07:44Z
dc.date.issued2020-11-03
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78792
dc.description.abstractLa reducción de emisiones de gases de efecto invernadero en el sector energético es una prioridad a nivel global. Para lograr dicha reducción, los esfuerzos deben enfocarse en los sectores de mayor potencial de conversión. En Colombia, la matriz eléctrica es considerada limpia, pero esto no da cuenta de la situación en zonas desconectadas de la red (ZNI), donde la gran mayoría de demanda energética se suple a partir de combustibles fósiles. La energización solar en ZNI es posible si el sector privado se suma a los actuales esfuerzos del sector público, pero para incentivar a los actores privados debe contarse con modelos de negocio que mitiguen los riesgos y reduzcan las barreras existentes. En África, el modelo de negocio Pay-as-you-go (PAYG) ha resultado exitoso en la aceleración de energización solar en zonas desconectadas por parte de compañías solares privadas. En este artículo se plantea un modelo de Dinámica de Sistemas para evaluar los potenciales impactos del PAYG en Colombia. Los resultados indican que las condiciones actuales del mercado ZNI impiden que el PAYG tenga un efecto significativo, pues es un modelo orientado a incentivar el pago de los usuarios finales, mientras que en Colombia las compañías reciben la mayor parte del recaudo directamente del Estado. Se obtienen mejores resultados cuando se plantea una situación hipotética de reducción de subsidios, abriendo la puerta para evaluaciones futuras de una política de este estilo
dc.description.abstractThe reduction of greenhouse gas emissions in the energy sector is a global priority. To achieve such reduction efforts must focus on the opportunities with the highest potential. In Colombia, the electricity matrix is considered clean, but that is without accounting for the situation in off-grid areas known as Non-Interconnected Zones (NIZ), where the vast majority of energy demand is supplied using fossil fuels. Solar energization in NIZ is possible if the private sector joins the current efforts of the public sector, but to achieve so, there must be business models that mitigate risks and reduce existing barriers. In Africa, the Pay-as-you-go (PAYG) business model has been successful to incentivize private solar companies and accelerate off-grid solar energization. This article proposes a System Dynamics model to evaluate the potential impacts of PAYG in Colombia. The results show that the current conditions of the NIZ market do not allow PAYG having a significant effect, since it is a model aimed at encouraging payment from end users whereas companies currently receive most of the money collection directly from the State. Better results were obtained in a hypothetical situation of subsidy reduction, opening the door for future evaluations of new policies geared to that purpose.
dc.format.extent50
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energía
dc.titleAnálisis del modelo de negocio “Pay-as-you-go” para energización rural en zonas no interconectadas de Colombia
dc.title.alternativeAnalysis of the Pay-as-you-go business model for solar energy diffusion in Colombian off-grid regions
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectModelamiento y simulación de incentivos para la eficiencia energética en Zonas No Interconectadas (ZNI) - código HERMES 47501
dc.description.additionalLínea de Investigación: Energización de Zonas No Interconectadas
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Sistemas Energéticos
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesH. Ritchie and M. Roser, “Energy Production & Changing Energy Sources,” 2019. https://ourworldindata.org/energy-production-and-changing-energy-sources#global-total-energy-production-long-run-view-by-source (accessed Feb. 18, 2019).
dc.relation.referencesEA, CO2 Emissions from Fuel Combustion 2019. OECD, 2019.
dc.relation.referencesUNEP, “GOAL 7: Affordable and clean energy | UNEP - UN Environment Programme.” https://www.unenvironment.org/explore-topics/sustainable-development-goals/why-do-sustainable-development-goals-matter/goal-7 (accessed Feb. 17, 2020).
dc.relation.referencesI. Scott, “A business model for success: Enterprises serving the base of the pyramid with off-grid solar lighting,” Renewable and Sustainable Energy Reviews, vol. 70. Elsevier Ltd, pp. 50–55, Apr. 01, 2017, doi: 10.1016/j.rser.2016.11.179.
dc.relation.referencesA. A. Eras-Almeida, M. Fernández, J. Eisman, J. G. Martín, E. Caamaño, and M. A. Egido-Aguilera, “Lessons Learned from Rural Electrification Experiences with Third Generation Solar Home Systems in Latin America: Case Studies in Peru, Mexico, and Bolivia,” Sustainability, vol. 11, no. 24, p. 7139, Dec. 2019, doi: 10.3390/su11247139.
dc.relation.referencesSEforALL (Sustainable Energy for All), “Energizing Finance: Scaling and Refining Finance in Countries with Large Energy Access Gaps 2017 | Sustainable Energy for All,” 2017. Accessed: Mar. 17, 2020. [Online]. Available: https://www.seforall.org/publications/energizing-finance-scaling-and-refining-finance-in-countries-with-large-energy-access.
dc.relation.referencesIDEAM, PNUD, MADS, DNP, and CANCILLERIA, Inventario Nacional y Departamental De Gases Efecto Invernadero - De Gases Efecto. Bogotá, Colombia, 2016.
dc.relation.referencesUPME, “Informe mensual de variables de generación y del mercado eléctrico colombiano – Marzo de 2017,” 2017, Accessed: May 02, 2018. [Online]. Available: http://www.siel.gov.co/portals/0/generacion/2017/Informe_de_variables_Mar_2017.pdf.
dc.relation.referencesMinisterio de Minas y Energía and UPME, “Plan de acción indicativo de eficiencia energética 2017 - 2022. PROURE,” p. 157, 2016, [Online]. Available: http://www.upme.gov.co/SeccionDemanda/Normatividad/PAI_PROURE_2017-2022.pdf.
dc.relation.referencesH. Rodriguez Murcia, “Formulación de una Propuesta para una Acción de Mitigación Nacionalmente Apropiada (NAMA) para las Zonas No Interconectadas (ZNI) de Colombia,” 2016. [Online]. Available: http://www.olade.org/cooperacion-olade-gobierno-de-canada/cooperacion-canadiense-mdlp-y-namas/.
dc.relation.referencesSuperintendencia de Servicios Públicos Domiciliarios, “Energía - Sistema Único de Información Superservicios,” 2020. http://www.sui.gov.co/web/energia (accessed Jun. 02, 2020).
dc.relation.referencesMinisterio de Minas y Energía, “Energía Eléctrica - Fondos Especiales.” https://www.minenergia.gov.co/fondos-especiales2 (accessed May 05, 2019).
dc.relation.referencesT. Gómez-Navarro and D. Ribó-Pérez, “Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia,” Renew. Sustain. Energy Rev., vol. 90, no. March, pp. 131–141, 2018, doi: 10.1016/j.rser.2018.03.015.
dc.relation.referencesPNUD, “Pueblos indígenas y los Objetivos de Desarrollo del Milenio | El PNUD en Colombia,” 2013. http://www.co.undp.org/content/colombia/es/home/library/mdg/pueblos-indigenas-y-los-objetivos-de-desarrollo-del-milenio.html (accessed Feb. 18, 2019).
dc.relation.referencesZ. Csereklyei, M. d. M. Rubio-Varas, and D. Stern, “Energy and Economic Growth: The Stylized Facts,” Energy J., vol. 0, no. 2, pp. 223–256, 2016, doi: http://dx.doi.org/10.5547/01956574.37.2.zcse.
dc.relation.referencesA. Belke, F. Dobnik, and C. Dreger, “Energy consumption and economic growth: New insights into the cointegration relationship,” Energy Econ., vol. 33, no. 5, pp. 782–789, 2011, doi: 10.1016/j.eneco.2011.02.005.
dc.relation.referencesR. Ferguson, W. Wilkinson, and R. Hill, “Electricity use and economic development,” Energy Policy, vol. 28, no. 13, pp. 923–934, 2000, doi: 10.1016/S0301-4215(00)00081-1.
dc.relation.referencesM. S. Alam, B. K. Bala, A. M. Z. Huq, and M. A. Matin, “A model for the quality of life as a function of electrical energy consumption,” Energy, vol. 16, no. 4, pp. 739–745, Apr. 1991, doi: 10.1016/0360-5442(91)90023-F.
dc.relation.referencesJ. G. Lambert, C. A. S. Hall, S. Balogh, A. Gupta, and M. Arnold, “Energy, EROI and quality of life,” Energy Policy, vol. 64, pp. 153–167, Jan. 2014, doi: 10.1016/J.ENPOL.2013.07.001.
dc.relation.referencesC. Pasten and J. C. Santamarina, “Energy and quality of life,” Energy Policy, vol. 49, pp. 468–476, Oct. 2012, doi: 10.1016/J.ENPOL.2012.06.051.
dc.relation.referencesCEPAL, “Configuración territorial de las provincias de Colombia Ruralidad y redes,” 2017.
dc.relation.referencesWorld Bank, “Población rural (% de la población total) | Data,” 2017. https://datos.bancomundial.org/indicador/SP.RUR.TOTL.ZS?locations=CO&view=chart (accessed Jan. 25, 2019).
dc.relation.referencesSuperintendencia de Servicios Públicos Domiciliarios, “Zonas No Interconectadas - ZNI. Diagnóstico de la prestación del servicio de energía eléctrica 2017,” Bogotá, Colombia, 2017.
dc.relation.referencesDANE, “Pobreza Monetaria y Multidimensional en Colombia 2015,” 2015. https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza-y-condiciones-de-vida/pobreza-y-desigualdad/pobreza-monetaria-y-multidimensional-en-colombia-2015#pobreza-monetaria-y-multidimensional-en-colombia-2015 (accessed Jan. 27, 2019).
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural - MADR, “Programas y proyectos.” https://www.minagricultura.gov.co/paginas/default.aspx (accessed Feb. 20, 2019).
dc.relation.referencesUPME, “Planes UPME,” 2019. https://www1.upme.gov.co/Paginas/planes.aspx (accessed Feb. 20, 2020).
dc.relation.referencesSuperintendencia de Servicios Públicos Domiciliarios, “Zonas No Interconectadas - ZNI. Diagnóstico de la prestación del servicio de energía eléctrica 2019,” Bogotá, Colombia, 2019.
dc.relation.referencesDepartamento Nacional de Planeación, “DNP - Sinergia | Seguimiento,” 2020. https://sinergiapp.dnp.gov.co/#HomeSeguimiento (accessed Jun. 02, 2020).
dc.relation.referencesW. Hediger, “Reconciling ‘weak’ and ‘strong’ sustainability,” Int. J. Soc. Econ., vol. 26, no. 7/8/9, pp. 1120–1144, Jul. 1999, doi: 10.1108/03068299910245859.
dc.relation.referencesW. HEDIGER, “Weak and strong sustainability, environmental conservation and economic growth,” Nat. Resour. Model., vol. 19, no. 3, pp. 359–394, Jun. 2008, doi: 10.1111/j.1939-7445.2006.tb00185.x.
dc.relation.referencesB. Sovacool and I. M. Drupady, Energy Access, Poverty, and Development: The Governance of Small-Scale ... - Benjamin K. Sovacool, Ira Martina Drupady - Google Libros. Ashgate Publishing, 2012.
dc.relation.referencesUnidad de Planeación Minero Energética, Plan Indicativo de Expansión de Cobertura - 2013 - 2017. 2018.
dc.relation.referencesIPSE, “Informe de gestión. Vigencia 2019,” Colombia, 2019. [Online]. Available: http://www.ipse.gov.co/ipse/informes-de-gestion/category/359-informe-de-gestion-2019.
dc.relation.references“Fondo de Energías No Convencionales y Gestión Eficiente de la Energía,” 2019. https://fenoge.com/ (accessed Apr. 01, 2020).
dc.relation.referencesM. Yaqoot, P. Diwan, and T. C. Kandpal, “Review of barriers to the dissemination of decentralized renewable energy systems,” Renew. Sustain. Energy Rev., vol. 58, pp. 477–490, May 2016, doi: 10.1016/j.rser.2015.12.224.
dc.relation.referencesS. Sen and S. Ganguly, “Opportunities, barriers and issues with renewable energy development – A discussion,” Renew. Sustain. Energy Rev., vol. 69, pp. 1170–1181, Mar. 2017, doi: 10.1016/j.rser.2016.09.137.
dc.relation.referencesS. Mandelli, J. Barbieri, R. Mereu, and E. Colombo, “Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review,” Renew. Sustain. Energy Rev., vol. 58, pp. 1621–1646, May 2016, doi: 10.1016/j.rser.2015.12.338.
dc.relation.referencesE. Karakaya and P. Sriwannawit, “Barriers to the adoption of photovoltaic systems: The state of the art,” Renew. Sustain. Energy Rev., vol. 49, pp. 60–66, Sep. 2015, doi: 10.1016/j.rser.2015.04.058.
dc.relation.referencesA. M. Rosso-Cerón and V. Kafarov, “Barriers to social acceptance of renewable energy systems in Colombia,” Curr. Opin. Chem. Eng., vol. 10, pp. 103–110, 2015, doi: 10.1016/j.coche.2015.08.003.
dc.relation.referencesH. Ahlborg and L. Hammar, “Drivers and barriers to rural electrification in Tanzania and Mozambique – Grid-extension, off-grid, and renewable energy technologies,” Renew. Energy, vol. 61, pp. 117–124, Jan. 2014, doi: 10.1016/j.renene.2012.09.057.
dc.relation.references. Ribó-Pérez, “Análisis y selección de estrategias para el fomento de las energías no convencionales en Colombia a partir de la priorización de las barreras para su desarrollo basado en Analytical Network Process,” Universitat Politècnica de València, 2014.
dc.relation.referencesOrganización Internacional del Trabajo, “Panorama Laboral 2017 América Latina y el Caribe,” OIT, vol. 1, no. primera edicion, p. 156, 2017, doi: 10.1007/s13398-014-0173-7.2.
dc.relation.referencesP. Rolffs, R. Byrne, and D. Ockwell, “Financing sustainable energy for all: pay-as-you-go vs. traditional solar finance approaches in Kenya,” 2014, Accessed: Jun. 03, 2019. [Online]. Available: http://sro.sussex.ac.uk/id/eprint/52474/.
dc.relation.referencesP. Rolffs, D. Ockwell, and R. Byrne, “Beyond technology and finance : pay-as-you-go sustainable energy access and theories of social change,” vol. 47, pp. 2609–2627, 2015, doi: 10.1177/0308518X15615368.
dc.relation.referencesD. Ockwell et al., “Can Pay-As-You-Go, Digitally Enabled Business Models Support Sustainability Transformations in Developing Countries? Outstanding Questions and a Theoretical Basis for Future Research,” Sustainability, vol. 11, no. 7, p. 2105, Apr. 2019, doi: 10.3390/su11072105.
dc.relation.referencesL. S. MARINCOLA et al., “Solar lighting with pay-as-you go technology,” Dec. 20, 2012.
dc.relation.referencesP. Alstone, D. Gershenson, N. Turman-Bryant, D. M. Kammen, and A. Jacobson, “Off-grid power and connectivity. Pay-As-You-Go financing and digital supply chains for pico-solar,” 2015.
dc.relation.referencesJ. Amankwah-Amoah, “Solar Energy in Sub-Saharan Africa: The Challenges and Opportunities of Technological Leapfrogging,” Thunderbird Int. Bus. Rev., vol. 57, no. 1, pp. 15–31, Jan. 2015, doi: 10.1002/tie.21677.
dc.relation.referencesC. Muchunku, K. Ulsrud, D. Palit, and W. Jonker-Klunne, “Diffusion of solar PV in East Africa: What can be learned from private sector delivery models?,” Wiley Interdiscip. Rev. Energy Environ., vol. 7, no. 3, p. e282, May 2018, doi: 10.1002/wene.282.
dc.relation.referencesS. Feron, “Sustainability of Off-Grid Photovoltaic Systems for Rural Electrification in Developing Countries: A Review,” Sustainability, vol. 8, no. 12, pp. 1–26, 2016.
dc.relation.referencesJ. Barrie and H. J. Cruickshank, “Shedding light on the last mile: A study on the diffusion of Pay As You Go Solar Home Systems in Central East Africa,” Energy Policy, vol. 107, pp. 425–436, Aug. 2017, doi: 10.1016/j.enpol.2017.05.016.
dc.relation.referencesS. Collings and A. Munyehirwe, “Pay-as-you-go solar PV in Rwanda: evidence of benefits to users and issues of affordability,” 2016. Accessed: Jun. 04, 2020. [Online]. Available: https://journals.openedition.org/factsreports/4189.
dc.relation.referencesS. Sanyal, J. Prins, F. Visco, and A. Pinchot, “Stimulating Pay-as-you-go energy access in Kenya and Tanzania: the role of development finance,” 2016.
dc.relation.referencesP. Yadav, A. P. Heynen, and D. Palit, “Pay-As-You-Go financing: A model for viable and widespread deployment of solar home systems in rural India,” Energy Sustain. Dev., vol. 48, pp. 139–153, Feb. 2019, doi: 10.1016/j.esd.2018.12.005.
dc.relation.referencesP. Reichert and U. Trivella, “Increasing energy access: the rise of pay-as-you-go solar and innovative financing partnerships,” Enterp. Dev. Microfinance, vol. 26, no. 3, pp. 248–261, Sep. 2015, doi: 10.3362/1755-1986.2015.022.
dc.relation.referencesE. M. Rogers, Diffusion of Innovations. New York.: Free Press of Glencoe, 1962.
dc.relation.referencesF. M. Bass, “Comments on ‘A New Product Growth for Model Consumer Durables The Bass Model,’” Manage. Sci., vol. 50, no. 12_supplement, pp. 1833–1840, Dec. 2004, doi: 10.1287/mnsc.1040.0300.
dc.relation.referencesL. A. Ardila Franco, “Evaluación de estrategias para incentivar un transporte particular bajo en carbono en Colombia,” p. 174, 2014, [Online]. Available: http://www.bdigital.unal.edu.co/39661/.
dc.relation.referencesJ. Arias-Gaviria, S. X. Carvajal-Quintero, and S. Arango-Aramburo, “Understanding dynamics and policy for renewable energy diffusion in Colombia,” Renew. Energy, vol. 139, pp. 1111–1119, 2019, doi: 10.1016/j.renene.2019.02.138.
dc.relation.referencesM. Jimenez, C. J. Franco, and I. Dyner, “Diffusion of renewable energy technologies: the need for policy in Colombia,” Energy, vol. 111, pp. 818–829, 2016, [Online]. Available: https://doi.org/%0A10.1016/j.energy.2016.06.051.
dc.relation.referencesA. a. Radomes and S. Arango, “Renewable energy technology diffusion: an analysis of photovoltaic-system support schemes in Medellín, Colombia,” J. Clean. Prod, vol. 92, pp. 152–161, 2015, [Online]. Available: https://doi.org/10.1016/j.jclepro.2014.12.090.
dc.relation.referencesV. Duscha et al., “Renewable energy deployment in Europe up to 2030 and the aim of a triple dividend,” Energy Policy, vol. 95, pp. 314–323, Aug. 2016, doi: 10.1016/j.enpol.2016.05.011.
dc.relation.referencesA. Aslani, P. Helo, and M. Naaranoja, “Role of renewable energy policies in energy dependency in Finland: System dynamics approach,” Appl. Energy, vol. 113, pp. 758–765, Jan. 2014, doi: 10.1016/j.apenergy.2013.08.015.
dc.relation.referencesS. Movilla, L. J. Miguel, and L. F. Blázquez, “A system dynamics approach for the photovoltaic energy market in Spain¤,” Energy Policy, vol. 60, pp. 142–154, Sep. 2013, doi: 10.1016/j.enpol.2013.04.072.
dc.relation.referencesA. D. Tigabu, F. Berkhout, and P. van Beukering, “The diffusion of a renewable energy technology and innovation system functioning: Comparing bio-digestion in Kenya and Rwanda,” Technol. Forecast. Soc. Change, vol. 90, pp. 331–345, Jan. 2015, doi: 10.1016/j.techfore.2013.09.019.
dc.relation.referencesA. D. Tigabu, “Analysing the diffusion and adoption of renewable energy technologies in Africa: The functions of innovation systems perspective,” African J. Sci. Technol. Innov. Dev., vol. 10, no. 5, pp. 615–624, Jul. 2018, doi: 10.1080/20421338.2017.1366130.
dc.relation.referencesI. Mauleón, “Photovoltaic learning rate estimation: Issues and implications,” Renew. Sustain. Energy Rev., vol. 65, pp. 507–524, Nov. 2016, doi: 10.1016/j.rser.2016.06.070.
dc.relation.referencesA. M. Elshurafa, S. R. Albardi, S. Bigerna, and C. A. Bollino, “Estimating the learning curve of solar PV balance–of–system for over 20 countries: Implications and policy recommendations,” J. Clean. Prod., vol. 196, pp. 122–134, Sep. 2018, doi: 10.1016/j.jclepro.2018.06.016.
dc.relation.referencesJ. Sterman, Business Dynamics: systems thinking and modeling for a complex world. McGraw-Hill Higher Education, 2000.
dc.relation.referencesSuperintendencia de Servicios Públicos Domiciliarios, Zonas No Interconectadas – ZNI: Diagnóstico de la Prestación del Servicio de Energía Eléctrica 2018. 2018.
dc.relation.referencesC.-O. Wene, Experience curves for energy technology policy. Paris, France: International Energy Agency, Paris (France). IEA, 2000.
dc.relation.referencesWorld Bank, “Crecimiento de la población rural (% anual) - Colombia | Data,” 2019. https://datos.bancomundial.org/indicator/SP.RUR.TOTL.ZG?locations=CO (accessed Feb. 29, 2020).
dc.relation.referencesCREG, “RESOLUCIÓN No. 091 (26 OCT. 2007).” 2007.
dc.relation.referencesY. Barlas, “Formal aspects of model validity and validation in system dynamics,” Syst. Dyn. Rev., vol. 12, no. 3, pp. 183–210, 1996, doi: 10.1002/(SICI)1099-1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4.
dc.relation.referencesS. Collings and A. Munyehirwe, Pay-as-you-go solar PV in Rwanda: evidence of benefits to users and issues of affordability, no. Special Issue 15. Institut Veolia Environnement, 2016.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalZonas No Interconectadas
dc.subject.proposalNon-Interconnected Zones
dc.subject.proposalOff-grid Energy
dc.subject.proposalPay-as-you-go
dc.subject.proposalPay-as-you-go
dc.subject.proposalEnergización Rural
dc.subject.proposalRural Energization
dc.subject.proposalEnergía Solar
dc.subject.proposalSolar Energy
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito