Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorClavijo Penagos, Josué Itsman
dc.contributor.authorMedina Linares, Luisa Fernanda
dc.date.accessioned2021-01-18T17:02:06Z
dc.date.available2021-01-18T17:02:06Z
dc.date.issued2021-01-18
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78794
dc.description.abstractFilms made with kesterite absorbents have acquired special interest in the photovoltaic industry because they allow to acquire energy conversion efficiencies greater than 12%. They have a bandwidth of 1,5 eV and represent an economic and innocuous alternative for the environment. Among the methods developed for the synthesis of CZTS, the process based on precursor solutions (CBD, Chemical Bath Deposition) appears as an attractive technique, because it includes the use of less toxic substances, allows obtaining large areas of film and its costs production rates are lower than other chemical methods. In practice, cells made with CBD-synthesized kesterite absorbents report low energy conversion efficiencies, which highlights the importance of investigating and evaluating the technique. In general terms, this monographic research contemplates a critical documentary review of the advantages, challenges and limitations of the synthesis by the CBD method on a laboratory scale of kesterite thin films. In the first section I expose the operation of the semiconductors used in photovoltaic devices, structural and electronic characteristics of kesterite. Then, I include a description of the experimental process used in the synthesis of kesterite from chemical solutions, as well as a review of the most important parameters in the synthesis according to the reports available in the literature and the modifications to the technique. In conclusion, the synthesis of CZTS by the CBD technique is a chemically complex process, which involves a large number of equilibrium reactions and metal-binder systems that can vary according to the concentration of the precursors, annealing temperature and sulfidation as well as the use of complexing agents. Therefore, the appraisals made in this review are a conceptual starting point that make way to future research to optimize the technique and characterization processes of the CZTS film synthesized by CBD in photovoltaic devices.
dc.description.abstractLas películas elaboradas con absorbentes de kesterita han adquirido especial interés en la industria fotovoltaica por cuanto permiten conseguir eficiencias de conversión de energía superiores al 12%, presentan un ancho de banda de 1,5 eV y representan una alternativa económica e inocua para el medio ambiente. Dentro de los métodos químicos desarrollados para la síntesis de CZTS, el proceso basado en disoluciones precursoras (CBD, Chemical Bath Deposition) figura como una técnica atractiva, porque incluye el uso de sustancias menos tóxicas, permite la obtención de grandes áreas de película y sus costos de producción son inferiores en comparación con otros métodos químicos. En la práctica, las celdas construidas con absorbentes de kesterita sintetizados por CBD reportan bajas eficiencias de conversión de energía, lo que pone en evidencia la importancia de indagar y evaluar la técnica. En términos generales, el presente estudio monográfico contempla una revisión crítica documental de las ventajas, retos y limitaciones que tiene la síntesis por el método CBD a escala de laboratorio de películas delgadas de kesterita. En el primer apartado expongo el funcionamiento que tienen los semiconductores empleados en dispositivos fotovoltaicos, características estructurales y electrónicas de la kesterita. Posteriormente incluyo una descripción del proceso experimental empleado en la síntesis de kesterita a partir de disoluciones químicas, así como una revisión de los parámetros más importantes en la síntesis de acuerdo con los reportes disponibles en la literatura y las modificaciones a la técnica. A modo de conclusión, la síntesis de CZTS por la técnica CBD es un proceso químicamente complejo, que involucra una gran cantidad de reacciones en equilibrio y sistemas metal-ligante que pueden variar de acuerdo con la concentración de los precursores, temperatura de recocido y sulfuración, así como del uso de agentes acomplejantes. Por lo tanto, las apreciaciones realizadas en la presente revisión son un punto de partida conceptual que abre paso a futuras investigaciones que permitan optimizar la técnica y los procesos de caracterización de la película de CZTS sintetizada por CBD en dispositivos fotovoltaicos.
dc.format.extent97
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.titleEvaluación de la síntesis de materiales fotovoltaicos tipo kesterita de alta eficiencia a partir de disoluciones precursoras
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de investigación: Materiales alternativos para generación de energía
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.contributor.researchgroupLABORATORIO DE INVESTIGACIÓN EN COMBUSTIBLES Y ENERGÍA
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Química
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesM. Asif and T. Muneer, “Energy supply, its demand and security issues for developed and emerging economies,” Renew. Sustain. Energy Rev., vol. 11, no. 7, pp. 1388–1413, 2007.
dc.relation.referencesA. Shahsavari and M. Akbari, “Potential of solar energy in developing countries for reducing energy-related emissions,” Renew. Sustain. Energy Rev., vol. 90, no. June 2017, pp. 275–291, 2018.
dc.relation.referencesS. A. Khalate, R. S. Kate, and R. J. Deokate, “A review on energy economics and the recent research and development in energy and the Cu2ZnSnS4(CZTS) solar cells: A focus towards efficiency,” Sol. Energy, vol. 169, no. January, pp. 616–633, 2018.
dc.relation.referencesF A O Forestry, “Forests and energy: key issues,” p. 56, 2008.
dc.relation.referencesR. Adib REN, M. Folkecenter, A. Development Bank, M. Eckhart Mohamed El-Ashry David Hales Kirsty Hamilton Peter Rae, and F. Bariloche, Renewables 2020 · Global Status Report. 2020.
dc.relation.referencesM. Kahia, M. S. Ben Aïssa, and L. Charfeddine, “Impact of renewable and non-renewable energy consumption on economic growth: New evidence from the MENA Net Oil Exporting Countries (NOECs),” Energy, vol. 116, pp. 102–115, 2016.
dc.relation.referencesP. Gonçalves, V. Sampaio, M. Orestes, and A. González, “Photovoltaic solar energy : Conceptual framework,” vol. 74, no. March, pp. 590–601, 2017.
dc.relation.referencesD. Rodríguez-urrego and L. Rodríguez-urrego, “Photovoltaic energy in Colombia : Current status , inventory , policies and future prospects,” Renew. Sustain. Energy Rev., vol. 92, no. April, pp. 160–170, 2018.
dc.relation.referencesE. Kabir, P. Kumar, S. Kumar, A. A. Adelodun, and K. Kim, “Solar energy : Potential and future prospects,” vol. 82, no. September 2016, pp. 894–900, 2018.
dc.relation.referencesA. Mohammad Bagher, “Types of Solar Cells and Application,” Am. J. Opt. Photonics, vol. 3, no. 5, p. 94, 2015.
dc.relation.referencesA. A. F. Husain, W. Z. W. Hasan, S. Shafie, M. N. Hamidon, and S. S. Pandey, “A review of transparent solar photovoltaic technologies,” Renew. Sustain. Energy Rev., vol. 94, no. January 2017, pp. 779–791, 2018.
dc.relation.referencesL. Fraas and L. Partain, Semiconductor Device Physics. 2010.
dc.relation.referencesD. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, “The path towards a high-performance solution-processed kesterite solar cell,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 6, pp. 1421–1436, 2011.
dc.relation.referencesF. Alta, “Best Research-Cell Efficiencies,” p. 2020, 2020.
dc.relation.referencesY. Alajlani, U. Kingdom, and S. Arabia, Inorganic Thin Film Materials for Solar Cell Applications, vol. 7. Elsevier Ltd., 2018.
dc.relation.referencesN. A. Ludin et al., “Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review,” Renew. Sustain. Energy Rev., vol. 96, no. July, pp. 11–28, 2018.
dc.relation.referencesM. P. Paranthaman, W. Wong-Ng, and R. N. Bhattacharya, Semiconductor materials for solar photovoltaic cells. 2015.
dc.relation.referencesX. Liu et al., “The current status and future prospects of kesterite solar cells: a brief review,” Prog. photovoltaics Res. Appl., vol. 24, pp. 879–898, 2016.
dc.relation.referencesS. Delbos, “Kësterite thin films for photovoltaics : a review,” EPJ Photovoltaics, vol. 3, p. 35004, 2012.
dc.relation.referencesC. Platzer-Björkman, “Kesterite compound semiconductors for thin film solar cells,” Curr. Opin. Green Sustain. Chem., vol. 4, pp. 84–90, 2017.
dc.relation.referencesS. Zhuk, A. Kushwaha, T. K. S. Wong, S. Masudy-Panah, A. Smirnov, and G. K. Dalapati, “Critical review on sputter-deposited Cu 2 ZnSnS 4 (CZTS) based thin film photovoltaic technology focusing on device architecture and absorber quality on the solar cells performance,” Sol. Energy Mater. Sol. Cells, vol. 171, no. May, pp. 239–252, 2017.
dc.relation.referencesY. E. Romanyuk et al., “Recent trends in direct solution coating of kesterite absorber layers in solar cells,” Sol. Energy Mater. Sol. Cells, vol. 119, pp. 181–189, 2013.
dc.relation.referencesJ. Li et al., “Formation of Cu2ZnSnS4thin film solar cell by CBD-annealing route: Comparison of Cu and CuS in stacked layers SnS/Cu(S)/ZnS,” Sol. Energy, vol. 129, pp. 1–9, 2016.
dc.relation.referencesJ. Li, G. Chen, C. Xue, X. Jin, W. Liu, and C. Zhu, “Cu2ZnSnS4-xSex solar cells fabricated with precursor stacked layer ZnS/Cu/SnS by a CBD method,” Sol. Energy Mater. Sol. Cells, vol. 137, pp. 131–137, 2015.
dc.relation.referencesA. Wangperawong, J. S. King, S. M. Herron, B. P. Tran, K. Pangan-Okimoto, and S. F. Bent, “Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers,” Thin Solid Films, vol. 519, no. 8, pp. 2488–2492, 2011.
dc.relation.referencesR. Martí Valls, T. Stoyanova Lyubenova, I. Calvet Roures, L. Oliveira, D. Fraga Chiva, and J. B. Carda Castelló, “Easy and low-cost aqueous precipitation method to obtain Cu2ZnSn(S, Se)4 thin layers,” Sol. Energy Mater. Sol. Cells, vol. 161, no. December 2016, pp. 432–438, 2017.
dc.relation.referencesT. R. Rana, N. M. Shinde, and J. Kim, “Novel chemical route for chemical bath deposition of Cu2ZnSnS4(CZTS) thin films with stacked precursor thin films,” Mater. Lett., vol. 162, pp. 40–43, 2016.
dc.relation.referencesK. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, “Cu2ZnSnS4thin film solar cells prepared by non-vacuum processing,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 5, pp. 583–587, 2009.
dc.relation.referencesA. Wangperawong, J. S. King, S. M. Herron, B. P. Tran, K. Pangan-Okimoto, and S. F. Bent, “Aqueous bath process for deposition of Cu2ZnSnS4photovoltaic absorbers,” Thin Solid Films, vol. 519, no. 8, pp. 2488–2492, 2011.
dc.relation.referencesS. Siebentritt, “Why are kesterite solar cells not 20% efficient?,” Thin Solid Films, vol. 535, no. 1, pp. 1–4, 2013.
dc.relation.referencesH. Ibach and H. Luth, Solid-state physics: an introduction to principles of material science, vol. 2, no. 1. 2003.
dc.relation.referencesL. Prat Viñas and J. Calderer Cardona, Dispositivos electrónicos y fotónicos: fundamentos. 2003.
dc.relation.referencesD. Wang, W. Zhao, Y. Zhang, and S. Liu, “[1] D. Wang, W. Zhao, Y. Zhang, and S. Liu, ‘Path towards high-efficient kesterite solar cells,’ Journal of Energy Chemistry. 2017.Path towards high-efficient kesterite solar cells,” Journal of Energy Chemistry. 2017.
dc.relation.referencesU. Mishra and J. Singh, SEMICONDUCTOR DEVICE PHYSICS AND DESIGN. 2008.
dc.relation.referencesS. . Kasap, Optoelectronics and Photonics: Principles and Practices, Pearson Ed. 2013.
dc.relation.referencesP. Tipler and G. Mosca, Física para la ciencia y la tecnología, Revertéfil. 2010.
dc.relation.referencesM. Girtan, Future Solar Energy Devices, Springer. 2018.
dc.relation.referencesY. Wei et al., “An investigation on the relationship between open circuit voltage and grain size for CZTSSe thin film solar cells fabricated by selenization of sputtered precursors,” J. Alloys Compd., vol. 773, pp. 689–697, 2019.
dc.relation.referencesL. Castner, Luis Silvestre, Modelling PV Systems Using PSpice, John Wiley., vol. 53, no. 9. 2002.
dc.relation.referencesM. Garcia Villas and L. Arribas, Energía solar fotovoltaica y cooperación al desarrollo, IEPALA. 2001.
dc.relation.referencesM. F. Barrera, Energía Solar: electricidad fotovoltaica., Liber Fact. 2010.
dc.relation.referencesI. Dincer and M. A. Rosen, Exergy. 2000.
dc.relation.referencesT. Dittrich, “Material Conceprt for solar cell.” .
dc.relation.referencesT. Kirchartz, Generalized detailed balance theory of solar cells. .
dc.relation.referencesR. Uwe and T. Kirchatz, The principle of detailed balance and the optoelectronic properties of solar cells., Photon Man. 2015.
dc.relation.referencesS. Bae, H. Zhao, Y. Hsieh, L. Zuo, and N. De Marco, “Printable Solar Cells from Advanced Solution-Processible Materials,” Chem, vol. 1, no. 2, pp. 197–219, 2016.
dc.relation.referencesS. Li, Semiconductor Physical Electronics, Springer. 2006.
dc.relation.referencesC. S. Solanki, Solar photovoltaics: fundamentals, technologies and applications, PHI Learni. 2015.
dc.relation.referencesM. Fukuda, Optical semiconductor devices, John Wiley. 1998.
dc.relation.referencesJ. Jean et al., “Radiative Efficiency Limit with Band Tailing Exceeds 30% for Quantum Dot Solar Cells,” ACS Energy Lett., vol. 2, no. 11, pp. 2616–2624, 2017.
dc.relation.referencesA. S. Ionkin, B. M. Fish, W. J. Marshall, and R. H. Senigo, “Use of inorganic fluxes to control morphology and purity of crystalline késterite and related quaternary chalcogenides,” Sol. Energy Mater. Sol. Cells, vol. 104, pp. 23–31, 2012.
dc.relation.referencesS. Adachi, Earth-Abundant Materials for Solar Cells, John Wiley. 2015.
dc.relation.referencesN. Sankir and M. Sankir, Printable solar cells, John Wiley. 2017.
dc.relation.referencesK. Ito, Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells. 2015.
dc.relation.referencesR. Tilley, Crystals and Crystal Structures, John Wiley. 2006.
dc.relation.referencesW. Borchardt-Ott, Crystallography: an introduction, Springer S. 2011.
dc.relation.referencesZ. Shi, D. Attygalle, and A. H. Jayatissa, “Kesterite-based next generation high performance thin film solar cell: current progress and future prospects,” J. Mater. Sci. Mater. Electron., vol. 28, no. 2, pp. 2290–2306, 2017.
dc.relation.referencesK. Pal, P. Singh, A. Bhaduri, and K. B. Thapa, “Current challenges and future prospects for a highly efficient (>20%) kesterite CZTS solar cell: A review,” Sol. Energy Mater. Sol. Cells, vol. 196, no. February, pp. 138–156, 2019.
dc.relation.referencesS. Siebentritt et al., “What is the bandgap of kesterite?Siebentritt, S., Rey, G., Finger, A., Regesch, D., Sendler, J., Weiss, T. P., & Bertram, T. (2016). What is the bandgap of kesterite? Solar Energy Materials and Solar Cells, 158, 126–129. https://doi.org/10.1016/j.solmat.2,” Sol. Energy Mater. Sol. Cells, vol. 158, pp. 126–129, 2016.
dc.relation.referencesD. Wang, W. Zhao, Y. Zhang, and S. Liu, “Path towards high-efficient kesterite solar cells,” J. Energy Chem., vol. 0, pp. 1–14, 2017.
dc.relation.referencesS. Siebentritt and S. Schorr, “Kesterites — a challenging material for solar cells,” no. February, pp. 512–519, 2012.
dc.relation.referencesY. U. Peter and M. Cardona, Fundamentals of semiconductors: physics and materials properties, Springer S. 2010.
dc.relation.referencesG. K. Gupta, R. Chaurasiya, and A. Dixit, “Theoretical studies on structural, electronic and optical properties of kesterite and stannite Cu2ZnGe(S/Se)4 solar cell absorbers,” Comput. Condens. Matter, vol. 19, p. e00334, 2019.
dc.relation.referencesS. Chen, A. Walsh, X. Gong, and S. Wei, “Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers,” pp. 1522–1539, 2013.
dc.relation.referencesC. Wang et al., “Design of I2-II-IV-VI4 semiconductors through element substitution: The thermodynamic stability limit and chemical trend,” Chem. Mater., vol. 26, no. 11, pp. 3411–3417, 2014.
dc.relation.referencesJ. J. Scragg, Copper Zinc Tin Sulfide Thin Films for Photovoltaics. Springer, 2011.
dc.relation.referencesM. P. Suryawanshi et al., “Aqueous-solution-processed Cu 2 ZnSn(S,Se) 4 thin-film solar cells via an improved successive ion-layer-adsorption reaction sequence,” ACS Omega, vol. 2, no. 12, pp. 9211–9220, 2017.
dc.relation.referencesR. Martí Valls, “Obtención de estructuras calcopirita (CIGS) y kesterita (CZTS) como absorbentes para dispositivos fotovoltaicos de capa fina mediante métodos de síntesis de bajo coste,” Universitat Jaume I, Castelló de la Plana, 2016.
dc.relation.referencesL. Grenet, M. A. A. Suzon, F. Emieux, and F. Roux, “Analysis of failure modes in Kesterite solar cells,” ACS Appl. Energy Mater., p. acsaem.8b00194, 2018.
dc.relation.referencesS. Siebentritt, S. Schorr, S. Giraldo, M. Placidi, and E. Saucedo, Kesterite: New Progress Toward Earth-Abundant Thin-Film Photovoltaic, no. February. Elsevier Inc., 2019.
dc.relation.referencesN. M. Shinde, C. D. Lokhande, J. H. Kim, and J. H. Moon, “Low cost and large area novel chemical synthesis of Cu 2ZnSnS 4 (CZTS) thin films,” J. Photochem. Photobiol. A Chem., vol. 235, pp. 14–20, 2012.
dc.relation.referencesC. Gao et al., “Cu2ZnSn(S,Se)4 solar cells based on chemical bath deposited precursors,” Thin Solid Films, vol. 562, pp. 621–624, 2014.
dc.relation.referencesS. A. Vanalakar et al., “A review on pulsed laser deposited CZTS thin films for solar cell applications,” J. Alloys Compd., vol. 619, pp. 109–121, 2015.
dc.relation.referencesX. Guo, J. Han, H. Zhang, X. Lv, J. Yan, and R. Sun, “Sol-gel synthesis of Cu2ZnSnS4thin films under mild conditions,” J. Alloys Compd., vol. 697, pp. 361–366, 2017.
dc.relation.referencesM. Ravindiran and C. Praveenkumar, “Status review and the future prospects of CZTS based solar cell – A novel approach on the device structure and material modeling for CZTS based photovoltaic device,” Renew. Sustain. Energy Rev., vol. 94, no. December 2017, pp. 317–329, 2018.
dc.relation.referencesT. Atwee, A. S. Gadallah, M. A. Salim, and A. M. Ghander, “Effect of film thickness on structural, morphological, and optical properties of Cu2ZnSnS4 thin films prepared by sol–gel spin coating,” Appl. Phys. A Mater. Sci. Process., vol. 125, no. 4, pp. 1–10, 2019.
dc.relation.referencesH. Kirou et al., “Towards phase pure Kesterite Cu2ZnSnS4 thin films via Cu-Zn-Sn electrodeposition under a variable applied potential,” J. Alloys Compd., vol. 783, pp. 524–532, 2019.
dc.relation.referencesG. Banerjee, S. Das, and S. Ghosh, “Optical Properties of Cu2ZnSnS4 (CZTS) Made by SILAR Method,” Mater. Today Proc., vol. 18, pp. 494–500, 2019.
dc.relation.referencesS. Mahajan, E. Stathatos, N. Huse, R. Birajdar, A. Kalarakis, and R. Sharma, “Low cost nanostructure kesterite CZTS thin films for solar cells application,” Mater. Lett., vol. 210, pp. 92–96, 2018.
dc.relation.referencesZ. Su et al., “Preparation of Cu 2 ZnSnS 4 thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method,” Appl. Surf. Sci., vol. 258, no. 19, pp. 7678–7682, 2012.
dc.relation.referencesS. S. Mali et al., “Novel synthesis of kesterite Cu 2ZnSnS 4 nanoflakes by successive ionic layer adsorption and reaction technique: Characterization and application,” Electrochim. Acta, vol. 66, pp. 216–221, 2012.
dc.relation.referencesT. Schneller, R. Waser, M. Kosec, and D. Payne, Chemical Solution Deposition of Functional Oxide Thin Films. Springer, 2013.
dc.relation.referencesG. Hodes, CHEMICAL SOLUTION DEPOSITION OF SEMICONDUCTOR FILMS, Marcel Dek. 2002.
dc.relation.referencesR. S. Mane and C. D. Lokhande, “Chemical deposition method for metal chalcogenide thin films,” Mater. Chem. Phys., vol. 65, no. 1, pp. 1–31, 2000.
dc.relation.referencesW. Andrés and V. Lozada, “DESARROLLO DE MATERIALES FOTOVOLTAICOS USADOS COMO VENTANA OPTICA EN CELDAS SOLARES,” 2011.
dc.relation.referencesWalter Borchardt-Ott, Crystallography An Introduction, Tercera. Springer, 2011.
dc.relation.referencesJ. . Mullin, “crystallization,” in Crystallization, Elsevier Ltd., 2001, p. 600.
dc.relation.referencesS. Gupta et al., “A low-cost, sulfurization free approach to control optical and electronic properties of Cu2ZnSnS4 via precursor variation,” Sol. Energy Mater. Sol. Cells, vol. 157, pp. 820–830, 2016.
dc.relation.referencesE. M. Mkawi, Y. Al-Hadeethi, E. Shalaan, and E. Bekyarova, “Fabricating chalcogenide Cu2ZnSnS4 (CZTS) nanoparticles via solvothermal synthesis: Effect of the sulfur source on the properties,” Ceram. Int., vol. 4, no. June, pp. 0–1, 2020.
dc.relation.referencesA. Fischereder et al., “Investigation of Cu2ZnSnS4 formation from metal salts and thioacetamide,” Chem. Mater., vol. 22, no. 11, pp. 3399–3406, 2010.
dc.relation.referencesJ. Henry, K. Mohanraj, and G. Sivakumar, “Effect of pH-induced on the photosensitivity of non-toxic Cu2 ZnSnS4 thin film by chemical bath deposition,” Int. J. Light Electron Opt., vol. 141, pp. 139–145, 2017.
dc.relation.referencesF. Aslan, A. Göktaş, and A. Tumbul, “Influence of pH on structural, optical and electrical properties of solution processed Cu2ZnSnS4 thin film absorbers,” Mater. Sci. Semicond. Process., vol. 43, pp. 139–143, 2016.
dc.relation.referencesT. F. Tadros, Basic Principles of Interface Science and Colloid Stability, Walter de. 2017.
dc.relation.referencesP. Somasundaran, Encyclopedia of Surface and Colloid Science, CRC press. 2006.
dc.relation.referencesK. L. Mittal, “Contact Angle, Wettability and Adhesion,” 2006, p. 600.
dc.relation.referencesO. Reyes, D. Maldonado, J. Escorcia-García, and P. J. Sebastian, “Effect of temperature and pH on direct chemical bath deposition of cuprous oxide thin films,” J. Mater. Sci. Mater. Electron., vol. 29, no. 18, pp. 15535–15545, 2018.
dc.relation.referencesR. Zein and I. Alghoraibi, “Influence of bath temperature and deposition time on topographical and optical properties of nanoparticles ZnS thin films synthesized by a chemical bath deposition method,” J. Nanomater., vol. 2019, 2019.
dc.relation.referencesS. Pandharkar et al., “Soft annealing effect on the properties of sputter grown Cu2ZnSnS4 (CZTS) thin films for solar cell applications,” Mater. Today Proc., vol. 4, no. xxxx, pp. 1–7, 2020.
dc.relation.referencesC. Gao, H. Shen, F. Jiang, and H. Guan, “Preparation of Cu 2 ZnSnS 4 film by sulfurizing solution deposited precursors,” Appl. Surf. Sci., vol. 261, pp. 189–192, 2012.
dc.relation.referencesE. Indubala, V. Sudha, S. Sarveshvaran, S. Harinipriya, and A. Y. Mamajiwala, “Unusual composition of CZTS: Elemental sulfurization and solution method,” Mater. Today Proc., vol. 8, pp. 393–401, 2019.
dc.relation.referencesC. Sripan, V. E. Madhavan, A. K. Viswanath, and R. Ganesan, “Sulfurization and annealing effects on thermally evaporated CZTS films,” Mater. Lett., vol. 189, no. November 2016, pp. 110–113, 2017.
dc.relation.referencesA. Emrani, P. Vasekar, and C. R. Westgate, “Effects of sulfurization temperature on CZTS thin film solar cell performances,” Sol. Energy, vol. 98, no. PC, pp. 335–340, 2013.
dc.relation.referencesM. P. Suryawanshi et al., “A chemical approach for synthesis of photoelectrochemically active Cu2ZnSnS4 (CZTS) thin films,” Sol. Energy, vol. 110, pp. 221–230, 2014.
dc.relation.referencesE. Indubala, S. Sarveshvaran, V. Sudha, A. Y. Mamajiwala, and S. Harinipriya, “Secondary phases and temperature effect on the synthesis and sulfurization of CZTS,” Sol. Energy, vol. 173, no. July, pp. 215–224, 2018.
dc.relation.referencesY. Altowairqi et al., “The effect of annealing conditions: Temperature, time, ramping rate and atmosphere on nanocrystal Cu2ZnSnS4 (CZTS) thin film solar cell properties,” Mater. Today Proc., vol. 18, pp. 473–486, 2019.
dc.relation.referencesI. Gupta and B. C. Mohanty, “Eliminating secondary phases: Understanding kesterite phase evolution of Cu2ZnSnS4 thin films grown from ethanol based solutions with high photosensitivity,” Sol. Energy, vol. 181, no. January, pp. 214–221, 2019.
dc.relation.referencesN. M. Shinde, D. P. Dubal, D. S. Dhawale, C. D. Lokhande, J. H. Kim, and J. H. Moon, “Room temperature novel chemical synthesis of Cu 2ZnSnS 4 (CZTS) absorbing layer for photovoltaic application,” Mater. Res. Bull., vol. 47, no. 2, pp. 302–307, 2012.
dc.relation.referencesS. Ma et al., “Synthesis of Cu2ZnSnS4 thin film through chemical successive ionic layer adsorption and reactions,” Appl. Surf. Sci., vol. 349, pp. 430–436, 2015.
dc.relation.referencesS. S. Mali, P. S. Shinde, C. A. Betty, P. N. Bhosale, Y. W. Oh, and P. S. Patil, “Synthesis and characterization of Cu 2ZnSnS 4 thin films by SILAR method,” J. Phys. Chem. Solids, vol. 73, no. 6, pp. 735–740, 2012.
dc.relation.referencesR. Garza-Hernández, S. Lugo-Loredo, and F. S. Aguirre-Tostado, “The role of copper during the growth of stoichiometric Cu2ZnSnS4 by successive ionic layer adsorption and reaction method,” Ceram. Int., vol. 46, no. 4, pp. 5185–5192, 2020.
dc.relation.referencesG. Zangari, Fundamentals of electrodeposition, no. 1836. Elsevier, 2018
dc.relation.referencesR. Manivannan and S. N. Victoria, “Preparation of chalcogenide thin films using electrodeposition method for solar cell applications – A review,” Sol. Energy, vol. 173, no. August, pp. 1144–1157, 2018.
dc.relation.referencesG. Panzeri et al., “Copper electrodeposition onto zinc for the synthesis of kesterite Cu2ZnSnS4 from a Mo/Zn/Cu/Sn precursor stack,” Electrochem. commun., vol. 109, no. October, p. 106580, 2019.
dc.relation.referencesM. Jeon, Y. Tanaka, T. Shimizu, and S. Shingubara, “Formation and characterization of single-step electrodeposited Cu 2ZnSnS 4 thin films: Effect of complexing agent volume,” Energy Procedia, vol. 10, pp. 255–260, 2011.
dc.relation.referencesS. Azmi et al., “Towards phase pure kesterite Cu2ZnSnS4 absorber layers growth via single step free sulfurization electrodeposition under a fix applied potential on Mo substrate,” J. Alloys Compd., vol. 842, p. 155821, 2020.
dc.relation.referencesH. Toura, Y. H. Khattak, F. Baig, B. M. Soucase, M. E. Touhami, and B. Hartiti, “Effect of complexing agent on the morphology and annealing temperature of CZTS kesterite thin films by electrochemical deposition,” Curr. Appl. Phys., vol. 19, no. 5, pp. 606–613, 2019.
dc.relation.referencesK. V. Gurav et al., “Electrosynthesis of CZTS films by sulfurization of CZT precursor: Effect of soft annealing treatment,” Appl. Surf. Sci., vol. 283, pp. 74–80, 2013.
dc.relation.referencesB. S. Pawar et al., “Effect of complexing agent on the properties of electrochemically deposited Cu 2 ZnSnS 4 (CZTS) thin films,” Appl. Surf. Sci., vol. 257, no. 5, pp. 1786–1791, 2010.
dc.relation.referencesY. H. Khattak, F. Baig, H. Toura, I. Harabi, S. Beg, and B. M. Soucase, “Single step electrochemical deposition for the fabrication of CZTS kesterite thin films for solar cells,” Appl. Surf. Sci., vol. 497, no. May, p. 143794, 2019.
dc.relation.referencesA. Tang, J. Liu, J. Ji, M. Dou, Z. Li, and F. Wang, “One-step electrodeposition for targeted off-stoichiometry Cu 2 ZnSnS 4 thin films,” Appl. Surf. Sci., vol. 383, pp. 253–260, 2016.
dc.relation.referencesT. Shiyani, D. Raval, M. Patel, I. Mukhopadhyay, and A. Ray, “Effect of initial bath condition and post-annealing on co-electrodeposition of Cu2ZnSnS4,” Mater. Chem. Phys., vol. 171, pp. 63–72, 2016.
dc.relation.referencesY. Wang, Y. Du, L. Meng, Y. Li, Z. Li, and Q. Tian, “Solution-processed method for high-performance Cu2ZnSn(S,Se)4 thin film solar cells and its characteristics,” Opt. Mater. (Amst)., vol. 98, no. October, p. 109485, 2019.
dc.relation.referencesI. Gupta, K. J. Tiwari, P. Malar, and B. C. Mohanty, “Evaluating the role of precursor concentration in facile conformal coating of sub-micrometer thick Cu2ZnSnS4 films using non-toxic ethanol based solutions,” Appl. Surf. Sci., vol. 494, no. January, pp. 795–804, 2019.
dc.relation.referencesC. Xue, J. Li, Y. Wang, G. Jiang, L. Weifeng, and C. Zhu, “Fabrication of Cu 2 ZnSn(S x Se 1 - X ) 4 solar cells by ethanol-ammonium solution process,” Appl. Surf. Sci., vol. 383, pp. 90–97, 2016.
dc.relation.referencesA. Manuscript, “Novel Non-Hydrazine Solution Processing of Earth-Abundant Cu2ZnSn(S,Se)4 Absorbers for Thin-Film Solar Cells,” J. Mater. Chem. A, no. 207890, p. 21, 2013.
dc.relation.referencesY. Sun, H. Zheng, X. Li, K. Zong, H. Wang, and J. Liu, “Reaction routes for the formation of a Cu2ZnSnS4 absorber material from homogenous ethanol-based solution,” RSC Adv., vol. 3, pp. 22095–22101, 2013.
dc.relation.referencesM. Jiang, F. Lan, X. Yan, and G. Li, “Cu2ZnSn(S1–xSex)4 thin film solar cells prepared by water-based solution process,” vol. 227, no. 3, pp. 223–227, 2014.
dc.relation.referencesV. T. Nguyen et al., “Influence of sulfate residue on Cu2ZnSnS4 thin films prepared by direct solution method,” Sol. Energy Mater. Sol. Cells, vol. 136, pp. 113–119, 2015.
dc.relation.referencesM. Cao et al., “One-step deposition of Cu2ZnSnS4 thin films for solar cells,” Sol. Energy Mater. Sol. Cells, vol. 117, pp. 81–86, 2013.
dc.relation.referencesS. W. Shin et al., “Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 12, pp. 3202–3206, 2011.
dc.relation.referencesA. Tang et al., “Electrodeposition mechanism of quaternary compounds Cu 2 ZnSnS 4 : Effect of the additives,” Appl. Surf. Sci., vol. 427, pp. 267–275, 2018.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalKesterite
dc.subject.proposalKesterita
dc.subject.proposalCTZS
dc.subject.proposalCTZS
dc.subject.proposalCBD
dc.subject.proposalCBD
dc.subject.proposalcelda fotovoltaica
dc.subject.proposalPhotovoltaic cell
dc.subject.proposalPhotovoltaic absorber
dc.subject.proposalAbsorbente fotovoltaico
dc.subject.proposalOptoelectronic properties
dc.subject.proposalPropiedades optoelectrónicas.
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito