Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorMuñoz Florez, Jaime Eduardo
dc.contributor.advisorGuerra Sierra, Beatriz Elena
dc.contributor.advisorMosquera Sánchez, Lyda Patricia
dc.contributor.authorArciniegas Grijalba, Paola Andrea
dc.date.accessioned2021-01-19T04:56:03Z
dc.date.available2021-01-19T04:56:03Z
dc.date.issued2021-01-18
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78811
dc.description.abstractSince the 19th century, coffee has been the main agricultural export product in Colombia, guaranteeing an important contribution to the country's economic development. The disease called "The leak", caused by the fungus O. flavida (anamorphic phase of M. citricolor), occurs very frequently in coffee plants, whose main damage is defoliation. In the present study the in vitro characterization of the morphological and molecular variation of 16 and seven isolates of O. flavida, respectively; from four coffee producing municipalities in Cauca. Likewise, the in vitro pathogenicity of seven isolates in healthy coffee leaves of the Castillo® El Tambo Variety was determined, and finally the antifungal effect of ZnO-NPs was evaluated, specifically on two O. flavida isolates that presented a high level of pathogenicity. The results showed that the isolates were grouped into 4 morphotypes, according to the geographical area and the similarity of their morphological and cultural characteristics; accordingly, significant differences were found for the mycelial growth rate index (IVCM) except between the El Tambo and Bolívar isolates and (P = 0.351), there was no significant difference for the percentage of gems among the isolates evaluated by municipality (P=0.355), the vegetative and reproductive structures presented typical characteristics of the fungus, in addition significant differences were observed for the diameter of the head for both La Sierra and Caloto (P = 0.026), isolates, there were no differences in the length of the total pedicel of the gem for those isolates (P = 0.835) and there were differences in the total length of the gem for El Tambo and Caloto (P = 0.001) isolates. The high percentage of identity and the general BLASTn results indicated that the isolates would correspond to O. flavida. Regarding the evaluation of pathogenicity, the morphotypes of El Tambo and La Sierra had the highest levels of pathogenicity. The NPs based on ZnO showed an antifungal activity on the isolates that presented the highest levels of pathogenicity, the most efficient treatment was with 12 mmol.L
dc.description.abstractDesde el siglo XIX el café ha sido el principal producto agrícola de exportación en Colombia, garantizando un importante aporte al desarrollo económico del país. La enfermedad denominada “La gotera”, causada por el hongo Omphalia flavida (fase anamorfa de Mycena citricolor), se presenta muy frecuentemente en las plantas de café, cuyo daño principal es la defoliación. En el presente estudio se realizó la caracterización in vitro de la variación morfológica y molecular de 16 y 7 aislamientos de O. flavida, respectivamente; provenientes de cuatro municipios productores de café en el Cauca. Así mismo, se determinó la patogenicidad in vitro de 7 aislamientos en hojas sanas de café de la variedad Castillo® El Tambo, para evaluar el efecto antifúngico de las ZnO- NPs, específicamente sobre 2 aislamientos de O. flavida que presentaron un alto nivel de patogenicidad. Los resultados mostraron que los aislamientos fueron agrupados en 4 morfotipos, de acuerdo al área geográfica y la similitud de sus características morfológicas y culturales; de acuerdo a ello se encontraron diferencias significativas para el índice de velocidad de crecimiento micelial (IVCM) excepto entre los aislamientos de El Tambo y Bolívar, no hubo diferencia significativa para el porcentaje de gemas entre los aislamientos evaluados por municipio, las estructuras vegetativas y reproductivas presentaron características propias reportadas en la literatura, se observaron diferencias significativas para el diámetro de la cabezuela de los aislamientos de La Sierra y Caloto, no hubo diferencias en la longitud del pedicelo y si hubo diferencias en la longitud total de la gema para los de El Tambo y Caloto. El alto porcentaje de identidad y los resultados generales del BLASTn indicaron que los aislamientos corresponden a O. flavida. En cuanto a la evaluación de la patogenicidad, los morfotipos de El Tambo y La Sierra presentaron los niveles más altos de patogenicidad. Las nanopartículas con base en ZnO mostraron una actividad antifúngica sobre los aislamientos que presentaron los niveles más altos de patogenicidad, el tratamiento más eficiente fue con 12 mmol. L -1.
dc.format.extent84
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas
dc.titleUso de nanopartículas de óxido de cinc como control de Omphalia flavida, agente causal de “la gotera”; enfermedad del cafeto (Coffea arábica L)
dc.typeDocumento de trabajo
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/workingPaper
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicas
dc.contributor.researchgroupGrupo de Investigación en Diversidad Biológica
dc.description.degreelevelMaestría
dc.publisher.departmentMaestría en Ciencias Biológicas
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.relation.referencesAbd-Elsalam, K. A., & Alghuthaymi, M. A. (2015). Nanobiofungicides: are they the next-generation of fungicides. J Nanotech Mater Sci, 2, 1–3. https://doi.org/10.15436/2377-1372.15.0
dc.relation.referencesAnderson, I. C., & Cairney, J. W. G. (2004). Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environmental Microbiology, 6(8), 769–779. https://doi.org/10.1111/j.1462-2920.2004.00675.x
dc.relation.referencesAngel Calle, C. A., Rivillas Osorio, C. A., Arciniegas Basante, N. del C., & López Vásquez, J. M. (2018). Bases para el manejo de la gotera u ojo de gallo del cafeto en Colombia. In Cenicafe, Boletín tecnico No 490. https://doi.org/10.13140/RG.2.2.11934.38728
dc.relation.referencesArciniegas-Grijalba, P. A., Patiño-Portela, M. C., Mosquera-Sánchez, L. P., Guerrero-Vargas, J. A., & Rodríguez-Páez, J. E. (2017). ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Applied Nanoscience, 7(5), 225–241. https://doi.org/10.1007/s13204-017-0561-3
dc.relation.referencesAslam, S., Tahir, A., Aslam, M. F., Alam, M. W., Shedayi, A. A., & Sadia, S. (2017). Recent advances in molecular techniques for the identification of phytopathogenic fungi – a mini review. Journal of Plant Interactions, 12(1), 493–504. https://doi.org/10.1080/17429145.2017.1397205
dc.relation.referencesAvin, F. A., Bhassu, S., Shin, T. Y., & Sabaratnam, V. (2012). Molecular classification and phylogenetic relationships of selected edible Basidiomycetes species. Molecular Biology Reports, 39(7), 7355–7364.
dc.relation.referencesBadotti, F., de Oliveira, F. S., Garcia, C. F., Vaz, A. B. M., Fonseca, P. L. C., Nahum, L. A., Oliveira, G., & Góes-Neto, A. (2017). Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (Fungi). BMC Microbiology, 17(1), 42.
dc.relation.referencesBago, B., Chamberland, H., Goulet, A., Vierheilig, H., Lafontaine, J.-G., & Piché, Y. (1996). Effect of Nikkomycin Z, a chitin-synthase inhibitor, on hyphal growth and cell wall structure of two arbuscular-mycorrhizal fungi. Protoplasma, 192(1–2), 80–92.
dc.relation.referencesBaldrian, P. (2010a). Effect of Heavy Metals on Saprotrophic Soil Fungi (pp. 263–279). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02436-8_12
dc.relation.referencesBegerow, D., Nilsson, H., Unterseher, M., & Maier, W. (2010). Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Applied Microbiology and Biotechnology, 87(1), 99–108. https://doi.org/10.1007/s00253-010-2585-4
dc.relation.referencesBellemain, E., Carlsen, T., Brochmann, C., Coissac, E., Taberlet, P., & Kauserud, H. (2010). ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiology, 10(1), 189. https://doi.org/10.1186/1471-2180-10-189
dc.relation.referencesBeyers, T. Vos, C. Aerts, R. Heyens, K. Vogels, L. Seels, B. Höfte, M. Cammue, B. P A De Coninck, B. (2014). Resistance against Botrytis cinerea in smooth leaf pruning wounds of tomato does not depend on major disease signalling pathways. Plant Pathology, 63(1), 165–173. https://doi.org/10.1111/ppa.12075
dc.relation.referencesBickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K., & Das, I. (2007). Cryptic species as a window on diversity and conservation. In Trends in Ecology and Evolution (Vol. 22, Issue 3, pp. 148–155). https://doi.org/10.1016/j.tree.2006.11.004
dc.relation.referencesBlackwell, M., Hibbett, D. S., Taylor, J. W., & Spatafora, J. W. (2006). Research Coordination Networks: a phylogeny for kingdom Fungi (Deep Hypha). Mycologia, 98(6), 829–837. https://doi.org/10.1080/15572536.2006.11832613
dc.relation.referencesBonilla, G. (1980). Estudio del ojo de gallo causado por el hongo Mycena citricolor. III Simposio Latinoamericano sobre caficultura,. III Simposio Latinoamericano Sobre Caficultura, 177–188.
dc.relation.referencesBowman, S. M., & Free, S. J. (2006). The structure and synthesis of the fungal cell wall. Bioessays, 28(8), 799–808.
dc.relation.referencesBrown, J. A., & Catley, B. J. (1992). Monitoring polysaccharide synthesis in Candida albicans. Carbohydrate Research, 227, 195–202.
dc.relation.referencesBuller, A. H. R. (1934). Omphalia flavida, a gemmiferous and luminous leaf-spot fungus. Researches on Fungi, 6, 397–443.
dc.relation.referencesCanet Brenes, G., Soto Víquez, C., Ocampo Tomason, P., Rivera Ramírez, J., Navarro Hurtado, A., Guatemala Morales, G., & Villanueva Rodríguez, S. (2016). La situación y tendencias de la producción de café en América Latina y el Caribe. In Iica. http://www.iica.int/sites/default/files/publications/files/2017/BVE17048805e.pdf.
dc.relation.referencesCarvajal, F. (1939). Ojo de gallo (Omphalia flavida). Revista Del Instituto de Defensa Del Café de Costa Rica., 7(52), 535–549.
dc.relation.referencesCassaignon, S., & Colbeau, C. D. (2013). Nanomaterials: a danger or a promise?: a chemical and biological perspective. Springer Verlag, London.
dc.relation.referencesCastaño A, J. J. (1951a). Principales causas predisponentes para la enfermedad de la gotera en nuestro cafetales. Revista Cafetera de Colombia (Colombia), 10(122), 3750–3756. http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=orton.xis&method=post&formato=2&cantidad=1&expresion=mfn=039877.
dc.relation.referencesCastaño A, J. J. (1951b). Principales causas predisponentes para la enfermedad de la gotera en nuestro cafetales. Revista Cafetera de Colombia (Colombia), 10(122), 3750–3756.
dc.relation.referencesCenicafé. (1958). Manual del cafetero colombiano (Editorial ARGRA Ltda (ed.); pp. 1–28).
dc.relation.referencesCenicafé. (2019). Revista del Centro Nacional de Investigaciones del café. In Cenicafé (Vol. 69, Issue 2).
dc.relation.referencesCentre for Agricultural Bioscience International (CABI). (2019). American leaf spot of coffee Mycena citricolor. https://www.plantwise.org/knowledgebank/datasheet/35243#DistributionSection.
dc.relation.referencesChase, M. W., & Fay, M. F. (2009). Barcoding of Plants and Fungi. Science, 325(5941), 682–683. https://doi.org/10.1126/science.1176906.
dc.relation.referencesClemmensen, K. E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H., Stenlid, J., Finlay, R. D., Wardle, D. A., & Lindahl, B. D. (2013). Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 339(6127), 1615–1618.
dc.relation.referencesConrad L. Schoch, Keith A. Seifert, Sabine Huhndorf, Vincent Robert, John L. Spouge, C. André Levesque, Wen Chen, and F. B. C. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109(16), 6241–6246. https://doi.org/10.1073/pnas.1117018109.
dc.relation.referencesCowan, R. S., Chase, M. W., Kress, W. J., & Savolainen, V. (2006). 300,000 Species to identify: Problems, progress, and prospects in DNA barcoding of land plants. Taxon, 55(3), 611–616. https://doi.org/10.2307/25065638
dc.relation.referencesDel Milagro Granados Montero, M. (2015). Estudio de la epidemiología y alternativas de manejo agroecológico del ojo de gallo (Mycena citricolor) en cafeto bajo sistemas agroforestales en Costa Rica [Universidad de Costa Rica]. http://agritrop.cirad.fr/580115/.
dc.relation.referencesDennis, R. W. G. (1950). An Earlier Name for Omphalia flavida Maubl. and Rangel. Kew Bulletin, 5(3), 434. https://doi.org/10.2307/4109441.
dc.relation.referencesDesjardin, D. E., Oliveira, A. G., & Stevani, C. V. (2008). Fungi bioluminescence revisited. Photochemical & Photobiological Sciences, 7(2), 170. https://doi.org/10.1039/b713328f.
dc.relation.referencesDoorley, G. W., & Payne, C. K. (2012). Nanoparticles act as protein carriers during cellular internalization. Chemical Communications, 48(24), 2961–2963.
dc.relation.referencesDuarte, B. (2012). Estudio y descripción de las Bacterias y Hongos. https://es.scribd.com/doc/109735805/Estudio-y-descripcion-de-las-Bacterias-y-Hongos#scribd estudio y descripción de las baterías y hongos.
dc.relation.referencesEdgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340.
dc.relation.referencesEmamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2010). Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Science and Emerging Technologies, 11(4), 742–748. https://doi.org/10.1016/j.ifset.2010.06.003.
dc.relation.referencesEPPO Global Database. (1970). Mycena citricolor, Distribution.
dc.relation.referencesFelsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783–791.
dc.relation.referencesFeofilova, E. P. (2010). The fungal cell wall: Modern concepts of its composition and biological function. Microbiology, 79(6), 711–720. https://doi.org/10.1134/S0026261710060019
dc.relation.referencesFiévet, F., & Brayner, R. (2013). Nanomaterials: A Danger or a Promise? (R. Brayner, F. Fiévet, & T. Coradin (eds.)). Springer London. https://doi.org/10.1007/978-1-4471-4213-3.
dc.relation.referencesFleischer, C. C., & Payne, C. K. (2014). Nanoparticle–Cell Interactions: Molecular Structure of the Protein Corona and Cellular Outcomes. Accounts of Chemical Research, 47(8), 2651–2659. https://doi.org/10.1021/ar500190q
dc.relation.referencesFloyd, R., Abebe, E., Papert, A., & Blaxter, M. (2002). Molecular barcodes for soil nematode identification. Molecular Ecology, 11(4), 839–850. https://doi.org/10.1046/j.1365-294X.2002.01485.x
dc.relation.referencesFNC. (2010a). Historíia del Café. Federación Nacional de Cafeteros de Colombia. http://www.cafedecolombia.com/particulares/es/sobre_el_cafe/el_cafe/el_cafe/
dc.relation.referencesFNC. (2010b). Nuestras regiones cafeteras. Federación Nacional de Cafeteros de Colombia. http://www.cafedecolombia.com/particulares/es/la_tierra_del_cafe/regiones_cafeteras/
dc.relation.referencesFNC. (2017a). Avancemos en la estrategia por la rentabilidad del caficultor.
dc.relation.referencesFNC. (2017b). INFORME DEL GERENTE GENERAL Avancemos en la estrategia por la rentabilidad del caficultor.
dc.relation.referencesFNC. (2017c). Reseña del libro : “ 90 Años , Vivir el Café y Sembrar el Futuro.” In EAFIT (Ed.), “ 90 Años , Vivir el Café y Sembrar el Futuro” (pp. 9–17).
dc.relation.referencesFNC. (2019a). Còmite de cafeteros del Cauca. https://cauca.federaciondecafeteros.org/fnc/nuestro_cafe/category/118
dc.relation.referencesFNC. (2019b). FNC. https://federaciondecafeteros.org/app/uploads/2019/12/Informe-del-Gerente-al-87-Congreso-Nacional-de-Cafeteros-2019.pdf
dc.relation.referencesGarcia Túchez, J. W. (2012). Caracterización biológica del hongo Mycena citricolor Berk & Curt, Con aislamientos obtenidos de cultivares de café (Coffea arabica L.) provenientes de las diferentes zonas cafetaleras de Giatemala, C.A. 1–69. http://www.repositorio.usac.edu.gt/6486/1/TESIS JORGE WALDEMAR GARCÍA TÚCHEZ.pdf
dc.relation.referencesGil-Vallejo, L. F., Castro Caicedo, B. L., & Cadena Gómez, G. (2003). Enfermedades del cafeto en Colombia. http://biblioteca.cenicafe.org/handle/10778/993
dc.relation.referencesGonzales, V. M. (2003). Cultivo in vitro de ojo de gallo. http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=CAFE.xis&method=post&formato=2&cantidad=1&expresion=mfn=011758
dc.relation.referencesGoodwin, S. B., Dunkle, L. D., & Zismann, V. L. (2001). Phylogenetic analysis of Cercospora and Mycosphaerella based on the internal transcribed spacer region of ribosomal DNA. Phytopathology, 91(7), 648–658.
dc.relation.referencesGow, N. A. R., Latge, J.-P., & Munro, C. A. (2017). The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiology Spectrum, 5(3). https://doi.org/10.1128/microbiolspec.FUNK-0035-2016
dc.relation.referencesGriffin, D. H. (1994). Fungal Physiology (Wiley-Liss (ed.); 2 ed). https://books.google.com/books?hl=es&lr=&id=lBYWQaKzrFkC&oi=fnd&pg=PR9&ots=cOmd5sPYmE&sig=qWnQCBf1ZSzugiNMyFmesNG9KQc
dc.relation.referencesGuozhong, C. (2004). Nanostructures and Nanomaterials: synthesis, properties and applications. World scientific
dc.relation.referencesHe, L., Liu, Y., Mustapha, A., & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166(3), 207–215 https://doi.org/10.1016/j.micres.2010.03.003
dc.relation.referencesHebert P, Cywinska A, Ball S, D. J. (2003). Barcode of Life: Identifying Species with DNA Barcoding Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270, 313–321
dc.relation.referencesHebert, P. D. N., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), 313–321 https://doi.org/10.1098/rspb.2002.2218
dc.relation.referencesHebert, P. D. N., Ratnasingham, S., & de Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(suppl_1). https://doi.org/10.1098/rsbl.2003.0025
dc.relation.referencesHebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., & Francis, C. M. (2004). Identification of Birds through DNA Barcodes. PLoS Biology, 2(10), e312. https://doi.org/10.1371/journal.pbio.0020312
dc.relation.referencesHirota, K., Sugimoto, M., Kato, M., Tsukagoshi, K., Tanigawa, T., & Sugimoto, H. (2010). Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceramics International, 36(2), 497–506 https://doi.org/10.1016/j.ceramint.2009.09.026
dc.relation.referencesHorton, T. R., & Bruns, T. D. (2001). The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Molecular Ecology, 10(8), 1855–1871. https://doi.org/10.1046/j.0962-1083.2001.01333.x
dc.relation.referencesJaimes, M. J. del C., Ríos, D. I. C., & Severiche, S. C. A. (2017). Nanotecnologia y sus aplicaciones en la industria de alimentos Nanotechnology and its applications in the food industry. Revista Alimentos Hoy, 25(41), 51–76. http://www.alimentoshoy.acta.org.co/index.php/hoy/article/viewFile/448/366%0Ahttp://alimentoshoy.acta.org.co/index.php/hoy/article/download/448/366%0D
dc.relation.referencesJames, T. Y., Kauff, F., Schoch, C. L., Matheny, P. B., Hofstetter, V., Cox, C. J., Celio, G., Gueidan, C., Fraker, E., Miadlikowska, J., Lumbsch, H. T., Rauhut, A., Reeb, V., Arnold, A. E., Amtoft, A., Stajich, J. E., Hosaka, K., Sung, G.-H., Johnson, D., … Vilgalys, R. (2006). Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature, 443(7113), 818–822. https://doi.org/10.1038/nature05110
dc.relation.referencesJayaram, D. T., Runa, S., Kemp, M. L., & Payne, C. K. (2017). Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells. Nanoscale, 9(22), 7595–7601. https://doi.org/10.1039/c6nr09500c
dc.relation.referencesJiménez, L. A., & Muñoz, J. C. (2017). Valoración financiera a la empresa cooperativa de caficultores del Cauca a travéz de flujo de caja descontado. 1–64.
dc.relation.referencesKairyte, K., Kadys, A., & Luksiene, Z. (2013). Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. Journal of Photochemistry and Photobiology B: Biology, 128(July), 78–84. https://doi.org/10.1016/j.jphotobiol.2013.07.017
dc.relation.referencesKapteyn, J. C., Van Den Ende, H., & Klis, F. M. (1999). The contribution of cell wall proteins to the organization of the yeast cell wall. Biochimica et Biophysica Acta (BBA) - General Subjects, 1426(2), 373–383. https://doi.org/10.1016/S0304-4165(98)00137-8
dc.relation.referencesKhot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., & Schuster, E. W. (2012). Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection, 35, 64–70. https://doi.org//10.1016/j.cropro.2012.01.007
dc.relation.referencesKim, S., Ahn, I., Rho, H., & Lee, Y. (2005). MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Molecular Microbiology, 57(5), 1224–1237.
dc.relation.referencesKimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120.
dc.relation.referencesKirk, PM; Cannon, JC; Stalpers, J. (2008). Ainsworth & Bisbys dictionary of the fungi (CAB (ed.)).
dc.relation.referencesKlabunde, K. J., & Richards, R. M. (2009). Nanoscale materials in chemistry. John Wiley & Sons.
dc.relation.referencesKlis, F. M., Groot, P. De, & Hellingwerf, K. (2001). Molecular organization of the cell wall of Candida albicans. Medical Mycology, 39(1), 1–8. https://doi.org/10.1080/mmy.39.1.1.8-0
dc.relation.referencesKoneman, E. . (2001). Diagnóstico microbiológico: texto y atlas en color (6th ed.). Médica Panameicana.
dc.relation.referencesKopp, M., Kollenda, S., & Epple, M. (2017). Nanoparticle–Protein Interactions: Therapeutic Approaches and Supramolecular Chemistry. Accounts of Chemical Research, 50(6), 1383–1390. https://doi.org/10.1021/acs.accounts.7b00051
dc.relation.referencesKress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A., & Janzen, D. H. (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8369–8374. https://doi.org/10.1073/pnas.0503123102
dc.relation.referencesKumar, R. ; Sharon, M. ; Choudhary, A. . (2010). Nanotechnology in Agricultural Diseases and Food Safety. Journal of Phytology, 2(4), 83–92.
dc.relation.referencesKumar, A., & Kumar, J. (2008). Defect and adsorbate induced infrared modes in sol–gel derived magnesium oxide nano-crystallites. Solid State Communications, 147(9–10), 405–408. https://doi.org/10.1016/j.ssc.2008.06.014
dc.relation.referencesKumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
dc.relation.referencesLarkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
dc.relation.referencesLibrado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451–1452. https://doi.org/10.1093/bioinformatics/btp187
dc.relation.referencesLili He, Yang Liu, Azlin Mustapha, M. L. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166(3), 207–215. https://doi.org/10.1016/j.micres.2010.03.003
dc.relation.referencesLinder, M. B. (2009). Hydrophobins: proteins that self assemble at interfaces. Current Opinion in Colloid & Interface Science, 14(5), 356–363. https://doi.org/10.1016/j.cocis.2009.04.001
dc.relation.referencesLira-Saldivar, R.H., Hernandez, M., Leon, E., Barajas, N., Villarreal, S. (2008). Antimicrobial properties of resinous plant extracts from Mexico with agrochemical and pharmaceutical potential. Planta Medica, 74, 1136–1140.
dc.relation.referencesLiu, J., Provan, J., Gao, L.-M., & Li, D.-Z. (2012). Sampling strategy and potential utility of indels for DNA barcoding of closely related plant species: a case study in Taxus. International Journal of Molecular Sciences, 13(7), 8740–8751.
dc.relation.referencesLópez Arguedas, A. (2001a). Caracterización molecular y morfológica de aislamientos del hongo Mycena citricolor colectados en diferentes zonas cafetaleras de Costa Rica [CATIE, Turrialba (Costa Rica)]. http://repositorio.bibliotecaorton.catie.ac.cr/handle/11554/3169
dc.relation.referencesLópez Arguedas, A. (2001b). Caracterización molecular y morfológica de aislamientos del hongo Mycena citricolor colectados en diferentes zonas cafetaleras de Costa Rica. CATIE, Turrialba (Costa Rica).
dc.relation.referencesLópez, C., & Rodríguez-Páez, J. E. (2017). Synthesis and characterization of ZnO nanoparticles: effect of solvent and antifungal capacity of NPs obtained in ethylene glycol. Applied Physics A, 123(12), 748. https://doi.org/10.1007/s00339-017-1339-x
dc.relation.referencesLundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., & Dawson, K. A. (2008). Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences, 105(38), 14265–14270.
dc.relation.referencesLuo, A., Zhang, A., Ho, S. Y., Xu, W., Zhang, Y., Shi, W., Cameron, S. L., & Zhu, C. (2011). Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals. BMC Genomics, 12(1), 84. https://doi.org/10.1186/1471-2164-12-84
dc.relation.referencesLynch, I., Cedervall, T., Lundqvist, M., Cabaleiro-Lago, C., Linse, S., & Dawson, K. A. (2007). The nanoparticle–protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Advances in Colloid and Interface Science, 134–135, 167–174. https://doi.org/10.1016/j.cis.2007.04.021
dc.relation.referencesMa, H., Kabengi, N. J., Bertsch, P. M., Unrine, J. M., Glenn, T. C., & Williams, P. L. (2011). Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size. Environmental Pollution, 159(6), 1473–1480. https://doi.org/10.1016/j.envpol.2011.03.013
dc.relation.referencesMarly., G. M., J. E. y Anacona, R., M., G. M., & J. E. y Anacona, R. (2012). El óxido de cinc (ZnO): Síntesis y usos tecnológicos. En: Capacidad fotodegradante de las nanopartículas de ZnO. (1st ed.).
dc.relation.referencesMaublanc, A., & Rangel, E. (1914). Le Stilbum flavidum Cooke, forme avorteé de l’Omphalia flavida. Bulletín de La Sociedad Mycológica, 30, 41–47.
dc.relation.referencesMészáros, B., Simon, I., & Dosztányi, Z. (2009a). Prediction of protein binding regions in disordered proteins. PLoS Computational Biology, 5(5), e1000376. https://doi.org/10.1371/journal.pcbi.1000376
dc.relation.referencesMeyer, C. P., & Paulay, G. (2005). DNA barcoding: Error rates based on comprehensive sampling. PLoS Biology, 3(12), 1–10. https://doi.org/10.1371/journal.pbio.0030422
dc.relation.referencesMoore, D. (2003). Fungal morphogenesis (1ed ed.). Cambridge University Press. https://books.google.com/books?hl=en&lr=&id=WUcYZNggBecC&oi=fnd&pg=PR13&ots=uKU4fXU8f2&sig=UATH3ay1NXeTd5fSogSnhMykBlI
dc.relation.referencesMu, Q., Jiang, G., Chen, L., Zhou, H., Fourches, D., Tropsha, A., & Yan, B. (2014). Chemical Basis of Interactions Between Engineered Nanoparticles and Biological Systems. Chemical Reviews, 114(15), 7740–7781. https://doi.org/10.1021/cr400295a
dc.relation.referencesNair, R. ; Varghese, S.H. ; Nair, B.G. ; Maekawa, T. Yoshida, Y. Kumar, D. . (2010). Nanoparticulate material delivery to plants. Plant Science., 179 (3), 154–163.
dc.relation.referencesNel, A. Xia, T. Madler, L. Li, N. (2006). Toxic Potential of Materials at the Nanolevel. Science, 311(5761), 622–627. https://doi.org/10.1126/science.1114397
dc.relation.referencesNel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E. M. V., Somasundaran, P., Klaessig, F., Castranova, V., & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano–bio interface. Nature Materials, 8(7), 543–557. https://doi.org/10.1038/nmat2442
dc.relation.referencesNilsson, R. H., Ryberg, M., Abarenkov, K., Sjakvist, E., & Kristiansson, E. (2009). The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiology Letters, 296(1), 97–101. https://doi.org/10.1111/j.1574-6968.2009.01618.x
dc.relation.referencesOliva Pinzón, C. . (2009). Caracterización morfológica, patogénica, y bioquímica de aislamiento de Colletotrichum spp. asociado al cultivo de café (Coffea arabica) en Guatemala. Universidad de San Carlos de Guatemala.
dc.relation.referencesPadial, J. y, & De la Riva, I. (2007). Integrative taxonomists should use and produce DNA barcodes. Zootaxa, 1586(1), 67–68. https://doi.org/10.11646/zootaxa.1586.1.7
dc.relation.referencesPevsner, J. (2015). Bioinformatics and functional genomics. John Wiley & Sons.
dc.relation.referencesPliakhnevich, M., & Ivaniuk, V. (2008). Aggressiveness and metalaxyl sensitivity of Phytophthora infestans strains in belarus. Zemdirbyste-Agriculture, 95(3), 379–387.
dc.relation.referencesPorras-Alfaro, A. (2000). Evaluación de la actividad in vitro del género Hypocrea contra dos hongos fitopatógenos de importancia agrícola (Fusarium sp y Mycena citricolor) [Instituto Tecnológico de Costa Rica. Escuela de Biología]. https://repositoriotec.tec.ac.cr/handle/2238/53
dc.relation.referencesPrasad, R. (2016). Advances and Applications Through Fungal Nanobiotechnology (R. Prasad (ed.)). Springer International Publishing. https://doi.org/10.1007/978-3-319-42990-8
dc.relation.referencesPrasad, R., Kumar, V., & Prasad, K. S. (2014). Nanotechnology in sustainable agriculture: present concerns and future aspects. African Journal of Biotechnology, 13(6), 705–713.
dc.relation.referencesRahman, M., Laurent, S., Tawil, N., Yahia, L., & Mahmoudi, L. (2013). Protein-Nanoparticles Interactions. The Bio-Nano Interface. The Bio-Nano Interface.
dc.relation.referencesRaja, H. A., Miller, A. N., Pearce, C. J., & Oberlies, N. H. (2017). Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. In Journal of Natural Products (Vol. 80, Issue 3, pp. 756–770). American Chemical Society. https://doi.org/10.1021/acs.jnatprod.6b01085
dc.relation.referencesRasband, W. (2011a). Fiji. In National Institutes of Health (1.52n). http://imagej.nih.gov/ij
dc.relation.referencesRay, P. C., Yu, H., & Fu, P. P. (2009). Toxicity and Environmental Risks of Nanomaterials: Challenges and Future Needs. Journal of Environmental Science and Health, Part C, 27(1), 1–35. https://doi.org/10.1080/10590500802708267
dc.relation.referencesRentaria Alcántara, M. (2007). Ecología molecular (L. E. Eguiarte, V. Souza, & X. Aguirre (eds.)). Secretaría de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología. https://books.google.es/books?hl=es&lr=&id=KT7YILvV6YMC&oi=fnd&pg=PP8&dq=Breve+revisión+de+los+marcadores+moleculares&ots=4xNhDscVHw&sig=NzSlf9nbzpPrWiKgpL39W3blF1E#v=onepage&q=Capitul 18&f=false
dc.relation.referencesRivillas Osorio, C. A., & Castro Toro, A. M. (2011). Ojo de gallo o gotera del cafeto Omphalia flavida. In Intergovernmental Panel on Climate Change (Ed.), Cenicafé, Boletín técnico No 37 (Issue 9). https://www.cambridge.org/core/product/identifier/CBO9781107415324A009/type/book_part
dc.relation.referencesRomashchenko, A. V, Kan, T.-W., Petrovski, D. V, Gerlinskaya, L. A., Moshkin, M. P., & Moshkin, Y. M. (2017). Nanoparticles Associate with Intrinsically Disordered RNA-Binding Proteins. ACS Nano, 11(2), 1328–1339. https://doi.org/10.1021/acsnano.6b05992
dc.relation.referencesSaitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.
dc.relation.referencesSalas, J. ., & Hancock, J. . (1972). Production of the Perfect Stage of Mycena citricolor (Berk. and Curt) Sacc. Hilgardia, 41(9), 213–234. http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=CAFE.xis&method=post&formato=2&cantidad=1&expresion=mfn=011756
dc.relation.referencesSardella, D., Gatt, R., & Valdramidis, V. P. (2017). Physiological effects and mode of action of ZnO nanoparticles against postharvest fungal contaminants. Food Research International, 101, 274–279. https://doi.org/10.1016/J.FOODRES.2017.08.019
dc.relation.referencesSchoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., & Consortium, F. B. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109(16), 6241–6246.
dc.relation.referencesSeas-Carvajal, C., & Avalos, G. (2013). Distribution of bioluminescent fungi across old-growth and secondary tropical rain forest in Costa Rica. Revista de Biología Tropical, 61(2), 531–537. https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442013000300004
dc.relation.referencesSeifert, K. A. (2009). Progress towards DNA barcoding of fungi. Molecular Ecology Resources, 9, 83–89. https://doi.org/10.1111/j.1755-0998.2009.02635.x
dc.relation.referencesSharma, D., Rajput, J., Kaith, B. S., Kaur, M., & Sharma, S. (2010). Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films, 519(3), 1224–1229. https://doi.org/10.1016/j.tsf.2010.08.073
dc.relation.referencesSharma, R. K., & Ghose, R. (2015). Synthesis of zinc oxide nanoparticles by homogeneous precipitation method and its application in antifungal activity against Candida albicans. Ceramics International, 41(1), 967–975. https://doi.org/10.1016/j.ceramint.2014.09.016
dc.relation.referencesSimpson, J. (1997). Amplified fragment length polymorphisms (AFLP’s). Botanical Sciences., 60, 119–122. http://www.botanicalsciences.com.mx/index.php/botanicalSciences/article/view/1524
dc.relation.referencesSlepecky, R. A., & Starmer, W. T. (2009). Phenotypic plasticity in fungi: a review with observations on Aureobasidium pullulans. Mycologia, 101(6), 823–832. https://doi.org/10.3852/08-197
dc.relation.referencesStankic, S., Sternig, A., Finocchi, F., Bernardi, J., & Diwald, O. (2010). Zinc oxide scaffolds on MgO nanocubes. Nanotechnology, 21(35), 355603. https://doi.org/10.1088/0957-4484/21/35/355603
dc.relation.referencesStepien, G., Moros, M., Perez-Hernandez, M., Monge, M., Gutiérrez, L., Fratila, R. M. M., Las Heras, M., Menao Guillen, S., Puente Lanzarote, J. J., & Solans, C. (2018). Effect of surface chemistry and associated protein corona on the long-term biodegradation of iron oxide nanoparticles in vivo. ACS Applied Materials & Interfaces.
dc.relation.referencesSudbery, P. (2002). Human Molecular Genetics (Pearson Education (ed.); (2nd ed.)).
dc.relation.referencesTedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., Ruiz, L. V., Vasco-Palacios, A. M., Thu, P. Q., & Suija, A. (2014). Global diversity and geography of soil fungi. Science, 346(6213), 1256688.
dc.relation.referencesTripathi, D. K., Ahmad, P., Sharma, S., Chauhan, D. K., & Dubey, N. K. (2017). Nanomaterials in Plants, Algae, and Microorganisms: Concepts and Controversies (Vol. 1). Elsevier Inc.
dc.relation.referencesValencia, A. I., Comercio, M. De, Fernando, J., Ortega, M., Alirio, J., Buitrago, B., Uribe, E. V., Reinaldo, D., Ramos, V., Gonzalo, P., Urariyu, C., Bohorquez, J. B., Collazos, O. O., Rafael, E., Pineda, A., Alberto, C., Cardona, C., Escobar, A. C., Javier, L., … Orrego, H. D. (2016). Informe Anual Cenicafe.
dc.relation.referencesVargas, E., González L, M., Umaña R, G., & Vargas V, A. L. (1990). Nuevas alternativas de combate químico del ojo de gallo (Mycena citricolor). Boletín de PROMECAFE (IICA)(No.47) p. 9-14.
dc.relation.referencesVerma, S. K., Jha, E., Panda, P. K., Das, J. K., Thirumurugan, A., Suar, M., & Parashar, S. K. S. (2018). Molecular aspects of core-shell intrinsic defect induced enhanced antibacterial activity of ZnO nanocrystals. Nanomedicine, 13(1), 43–68.
dc.relation.referencesVidal Correa, L. E. (2016). Análisis comparativo de la regulación en nanotecnología en estados Unidos y la Unión Europea. Boletín Mexicano de Derecho Comparado, 49(147), 277–301. https://doi.org/10.22201/IIJ.24484873E.2016.147.10647
dc.relation.referencesVillanueva L, Miranda N, Castro N, F. S. (2015). Inhibición de Hongos Fitopatógenos de Cultivos Comerciales por Extractos Vegetales de Plantas Popularmente Usadas en Guatemala. PhD Proposal, 1. https://doi.org/10.1017/CBO9781107415324.004
dc.relation.referencesWang, A.; Avelino, J. (1999). El ojo de gallo del cafeto. 243–260.
dc.relation.referencesWang, A. (1988). Variation in Mycena citricolor on coffee in Costa Rica [University of Alberta]. https://idl-bnc-idrc.dspacedirect.org/handle/10625/2689
dc.relation.referencesWhite, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylgenetics. PCR protocols : a guide to methods and applications (J. S. and T. W. M.. Innis, DH Gelfand (ed.); pp. 315–322).
dc.relation.referencesXu, X., Chen, D., Yi, Z., Jiang, M., Wang, L., Zhou, Z., Fan, X., Wang, Y., & Hui, D. (2013). Antimicrobial Mechanism Based on H 2 O 2 Generation at Oxygen Vacancies in ZnO Crystals. Langmuir, 29(18), 5573–5580. https://doi.org/10.1021/la400378t
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalMycena citricolor
dc.subject.proposalMycena citricolor
dc.subject.proposalMorfología
dc.subject.proposalMorphology
dc.subject.proposalPathogenicity
dc.subject.proposalPatogenicidad
dc.subject.proposalAntifúngica
dc.subject.proposalAntifungical
dc.type.coarhttp://purl.org/coar/resource_type/c_93fc
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/WP
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito