Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorMora Huertas, Claudia Elizabeth
dc.contributor.advisorPonce Pedraza, Arturo
dc.contributor.authorGordillo Galeano, Aldemar
dc.date.accessioned2021-01-19T16:36:58Z
dc.date.available2021-01-19T16:36:58Z
dc.date.issued2020-01-16
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78818
dc.description.abstractLas nanopartículas sólidas lipídicas (SLN) y los transportadores lipídicos nanoestructurados (NLC) han atraído la atención durante más de dos décadas como una alternativa para la entrega de fármacos poco solubles en agua. Sin embargo, a pesar de su presumida relevancia frente a las nanoemulsiones (NE), todavía son escasas las investigaciones relacionadas con la organización estructural de estos sistemas. Este trabajo aborda el estudio de las características estructurales de las SLN, NLC y NE mediante el análisis comparativo de la estructura interna, las características de superficie y el comportamiento liberación. Los resultados muestran que las mezclas de trimiristina (MMM) y triglicérido cáprico/caprílico (TCC) conducen a la formación de una estructura bifásica en la que la MMM forma un cristal \beta rodeado de una fase líquida de MMM y TCC. Durante la cristalización, las moléculas modelo a incorporar (metil y propilparabeno) se concentran en la superficie en donde se distribuyen entre el tensioactivo (Poloxamer® 188) y la fase acuosa, en función de su coeficiente de distribución (logD). La interacción de los segmentos hidrófilos e hidrófobos del tensioactivo con las partículas depende de la proporción de TCC en la matriz lipídica. En las SLN hay un aumento de parches hidrófobos sobre las superficies sólidas mientras que en las NE ocurre interpenetración de los segmentos hidrófobos. El comportamiento de liberación es una consecuencia de la solubilidad de las moléculas en la fase lipídica y de la estructura de dicha fase. Por consiguiente, la liberación in vitro procede en el orden NE-MMM>SLN>NLC>NE-TCC.
dc.description.abstractSolid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have attracted attention during the last two decades as a delivery method of drugs that are poorly soluble in water. However, despite its presumed relevance against nanoemulsions (NE), there is still little research related to the structural organization of these systems. This work aims the study of the structural characteristics of SLN, NLC, and NE by a comparative analysis of the internal structure, surface characteristics, and drug release. The results show that the mixtures of trimyristin (MMM) and capric/caprylic triglyceride (CCT) lead to the formation of a biphasic structure in which the MMM forms a \beta-crystal surrounded by a liquid phase of MMM and CCT. During crystallization, the model molecules to be entrapped (methyl and propylparaben) are concentrated to the surface where there are distributed between the surfactant (Poloxamer® 188) and the aqueous phase based on their distribution coefficients (logD). The interaction of the hydrophilic and hydrophobic segments of the surfactant with the particles depends on the proportion of CCT in the lipid matrix. In SLN there is an increase in hydrophobic patches on the solid surfaces, while interpenetration of hydrophobic segments occurs in NE. The release behavior is a consequence of the solubility of the molecules in the lipid phase and the lipid phase structure. Accordingly, in vitro release proceeds in the order NE-MMM>SLN>NLC> NE-CCT.
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación-Colciencias; División de Investigación de la Sede Bogotá (DIB) de la Universidad Nacional de Colombia
dc.format.extent318
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.titleEfecto de las propiedades estructurales de la partícula sobre la liberación de moléculas encapsuladas en sistemas lipídicos coloidales
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectConvocatoria 617 para la Formación de Investigadores de Alto Nivel para la Ciencia, la Tecnología y la Innovación; proyectos 28405, 36019 y 40987
dc.description.additionalLínea de Investigación: Farmacotecnia
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias Farmacéuticas
dc.contributor.researchgroupDesarrollo y calidad de productos farmacéuticos y cosméticos
dc.description.degreelevelDoctorado
dc.publisher.departmentDepartamento de Farmacia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbdelbary, G., Fahmy, R.H., 2009. Diazepam-loaded solid lipid nanoparticles: Design and characterization. AAPS PharmSciTech 10, 211–219. doi:10.1208/s12249-009-9197-2
dc.relation.referencesAditya, N.P., Macedo, A.S., Doktorovova, S., Souto, E.B., Kim, S., Chang, P.-S., Ko, S., 2014. Development and evaluation of lipid nanocarriers for quercetin delivery: A comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE). LWT - Food Sci. Technol. 59, 115–121. doi:10.1016/j.lwt.2014.04.058
dc.relation.referencesAditya, N.P., Shim, M., Lee, I., Lee, Y., Im, M.H., Ko, S., 2013. Curcumin and genistein coloaded nanostructured lipid carriers: In vitro digestion and antiprostate cancer activity. J. Agric. Food Chem. 61, 1878–1883. doi:10.1021/jf305143k
dc.relation.referencesAhlin, P., Kristl, J., Pečar, S., Štrancar, J., Šentjurc, M., 2003. The effect of lipophilicity of spin-labeled compounds on their distribution in solid lipid nanoparticle dispersions studied by electron paramagnetic resonance. J. Pharm. Sci. 92, 58–66. doi:10.1002/jps.10277
dc.relation.referencesAhlin, P., Kristl, J., Šentjurc, M., Štrancar, J., Pečar, S., 2000. Influence of spin probe structure on its distribution in SLN dispersions. Int. J. Pharm. 196, 241–244. doi:10.1016/S0378-5173(99)00431-7
dc.relation.referencesAkanda, M.H., Rai, R., Slipper, I.J., Chowdhry, B.Z., Lamprou, D., Getti, G., Douroumis, D., 2015. Delivery of retinoic acid to LNCap human prostate cancer cells using solid lipid nanoparticles. Int. J. Pharm. 493, 161–171. doi:10.1016/j.ijpharm.2015.07.042
dc.relation.referencesAlexandridis, P., 1997. Poly(ethylene oxide)/poly(propylene oxide) block copolymer surfactants. Curr. Opin. Colloid Interface Sci. 2, 478–489. doi:10.1016/S1359-0294(97)80095-7
dc.relation.referencesAlexandridis, P., Alan Hatton, T., 1995. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: Thermodynamics, structure, dynamics, and modeling. Colloids Surfaces A Physicochem. Eng. Asp. 96, 1–46. doi:10.1016/0927-7757(94)03028-X
dc.relation.referencesAlexandridis, P., Holzwarth, J.F., Hatton, T.A., 1994. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27, 2414–2425. doi:10.1021/ma00087a009
dc.relation.referencesAlmeida, A.J., Runge, S., Müller, R.H., 1997. Peptide-loaded solid lipid nanoparticles (SLN): Influence of production parameters. Int. J. Pharm. 149, 255–265. doi:10.1016/S0378-5173(97)04885-0
dc.relation.referencesAlmeida, A.J., Souto, E.B., 2007. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev. 59, 478–490. doi:10.1016/j.addr.2007.04.007
dc.relation.referencesAnantachaisilp, S., Smith, S.M., Treetong, A., Pratontep, S., Puttipipatkhachorn, S., Ruktanonchai, U.R., 2010. Chemical and structural investigation of lipid nanoparticles: Drug-lipid interaction and molecular distribution. Nanotechnology 21, 125102. doi:10.1088/0957-4484/21/12/125102
dc.relation.referencesAndrade, L.M., de Fátima Reis, C., Maione-Silva, L., Anjos, J.L. V., Alonso, A., Serpa, R.C., Marreto, R.N., Lima, E.M., Taveira, S.F., 2014. Impact of lipid dynamic behavior on physical stability, in vitro release and skin permeation of genistein-loaded lipid nanoparticles. Eur. J. Pharm. Biopharm. 88, 40–47. doi:10.1016/j.ejpb.2014.04.015
dc.relation.referencesAronson, J.K. (Ed.), 2015. Meyler’s side effects of drugs. The international encyclopedia of adverse drug reactions and interactions, 15a ed. Elsevier Science, Oxford.
dc.relation.referencesASTM, 2018. E2865-12(2018), Standard guide for measurement of electrophoretic mobility and zeta potential of nanosized biological materials. doi:10.1520/E2865-12R18
dc.relation.referencesASTM, 2017. D445-17a, Standard guide for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity). doi:10.1520/D0445-17A
dc.relation.referencesASTM, 2015a. E2865-12, Standard guide for measurement of electrophoretic mobility and zeta potential of nanosized biological materials. doi:10.1520/E2865-12.2
dc.relation.referencesASTM, 2015b. E2490-09, Standard guide for measurement of particle size distribution of nanomaterials in suspension by photon correlation spectroscopy (PCS). doi:10.1520/E2490-09.2
dc.relation.referencesAttama, A.A., Reichl, S., Müller-Goymann, C.C., 2008. Diclofenac sodium delivery to the eye: In vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. Int. J. Pharm. 355, 307–313. doi:10.1016/j.ijpharm.2007.12.007
dc.relation.referencesBacle, A., Gautier, R., Jackson, C.L., Fuchs, P.F.J., Vanni, S., 2017. Interdigitation between Triglycerides and Lipids Modulates Surface Properties of Lipid Droplets. Biophys. J. 112, 1417–1430. doi:10.1016/j.bpj.2017.02.032
dc.relation.referencesBaek, J.-S., Cho, C.-W., 2015a. Controlled release and reversal of multidrug resistance by co-encapsulation of paclitaxel and verapamil in solid lipid nanoparticles. Int. J. Pharm. 478, 617–624. doi:10.1016/j.ijpharm.2014.12.018
dc.relation.referencesBaek, J.-S., Cho, C.W., 2015b. Comparison of solid lipid nanoparticles for encapsulating paclitaxel or docetaxel. J. Pharm. Investig. 45, 625–631. doi:10.1007/s40005-015-0182-3
dc.relation.referencesBaek, J.-S., Kim, B.-S., Puri, A., Kumar, K., Cho, C.-W., 2016. Stability of paclitaxel-loaded solid lipid nanoparticles in the presence of 2-hydoxypropyl-β-cyclodextrin. Arch. Pharm. Res. 39, 785–793. doi:10.1007/s12272-016-0753-5
dc.relation.referencesBaek, J.-S., Shin, S.-C., Cho, C.-W., 2012. Effect of lipid on physicochemical properties of solid lipid nanoparticle of paclitaxel. J. Pharm. Investig. 42, 279–283. doi:10.1007/s40005-012-0038-z
dc.relation.referencesBaker, J.A., Pearson, R.A., Berg, J.C., 1989. Influence of particle curvature on polymer adsorption layer thickness. Langmuir 5, 339–342. doi:10.1021/la00086a008
dc.relation.referencesBan, C., Lim, S., Chang, P.-S.S., Choi, Y.J., 2014. Enhancing the stability of lipid nanoparticle systems by sonication during the cooling step and controlling the liquid oil content. J. Agric. Food Chem. 62, 11557–11567. doi:10.1021/jf503489v
dc.relation.referencesBanerjee, S., Roy, S., Bhaumik, K.N., Pillai, J., 2019. Mechanisms of the effectiveness of lipid nanoparticle formulations loaded with anti-tubercular drugs combinations toward overcoming drug bioavailability in tuberculosis. J. Drug Target. 0, 1–15. doi:10.1080/1061186X.2019.1613409
dc.relation.referencesBattaglia, L., Gallarate, M., Cavalli, R., Trotta, M., 2010. Solid lipid nanoparticles produced through a coacervation method. J. Microencapsul. 27, 78–85. doi:10.3109/02652040903031279
dc.relation.referencesBeloqui, A., Solinís, M.Á., Rodríguez-Gascón, A., Almeida, A.J., Préat, V., 2016. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine Nanotechnology, Biol. Med. 12, 143–161. doi:10.1016/j.nano.2015.09.004
dc.relation.referencesBenita, S., Klang, S., 1998. Design and evaluation of submicron emulsions as colloidal drug carriers for intravenous administration emulsions, en: Benita, S. (Ed.), Submicron Emulsions in Drug Targeting and Delivery. CRC Press, London, p. 352. doi:10.1201/9780367810528
dc.relation.referencesBerchane, N.S., Jebrail, F.F., Carson, K.H., Rice-Ficht, A.C., Andrews, M.J., 2006. About mean diameter and size distributions of poly(lactide-co-glycolide) (PLG) microspheres. J. Microencapsul. 23, 539–552. doi:10.1080/02652040600776440
dc.relation.referencesBernkop-Schnürch, A., Jalil, A., 2018. Do drug release studies from SEDDS make any sense? J. Control. Release 271, 55–59. doi:10.1016/j.jconrel.2017.12.027
dc.relation.referencesBerton-Carabin, C.C., Coupland, J.N., Elias, R.J., 2013. Effect of the lipophilicity of model ingredients on their location and reactivity in emulsions and solid lipid nanoparticles. Colloids Surfaces A Physicochem. Eng. Asp. 431, 9–17. doi:10.1016/j.colsurfa.2013.04.016
dc.relation.referencesBhatt, S., Sharma, J., Singh, M., Saini, V., 2018. Solid lipid nanoparticles: A promising technology for delivery of poorly water-soluble drugs. Acta Pharm. Sci. 56, 27–49. doi:10.23893/1307-2080.APS.05616
dc.relation.referencesBhattacharjee, S., 2016. DLS and zeta potential – What they are and what they are not? J. Control. Release 235, 337–351. doi:10.1016/j.jconrel.2016.06.017
dc.relation.referencesBhattacharjee, S., 2016. DLS and zeta potential – What they are and what they are not? J. Control. Release 235, 337–351. doi:10.1016/j.jconrel.2016.06.017
dc.relation.referencesBlaschke, T., Kankate, L., Kramer, K.D., 2007. Structure and dynamics of drug-carrier systems as studied by parelectric spectroscopy. Adv. Drug Deliv. Rev. 59, 403–10. doi:10.1016/j.addr.2007.04.003
dc.relation.referencesBoettinger, W.J., Kattner, U.R., Moon, K.-W., Perepezko, J.H., 2007. DTA and heat-flux DSC measurements of alloy melting and freezing, en: Zhao, J.-C. (Ed.), Methods for Phase Diagram Determination. Elsevier, Oxford, pp. 151–221. doi:10.1016/B978-008044629-5/50005-7
dc.relation.referencesBoreham, A., Volz, P., Peters, D., Keck, C.M., Alexiev, U., 2017. Determination of nanostructures and drug distribution in lipid nanoparticles by single molecule microscopy. Eur. J. Pharm. Biopharm. 110, 31–38. doi:10.1016/j.ejpb.2016.10.020
dc.relation.referencesBouzidi, L., Boodhoo, M. V., Kutek, T., Filip, V., Narine, S.S., 2010. The binary phase behavior of 1,3-dilauroyl-2-stearoyl-sn-glycerol and 1,2-dilauroyl-3-stearoyl-sn-glycerol. Chem. Phys. Lipids 163, 607–629. doi:10.1016/j.chemphyslip.2010.05.002
dc.relation.referencesBoyd, B.J., 2003. Characterisation of drug release from cubosomes using the pressure ultrafiltration method. Int. J. Pharm. 260, 239–247. doi:10.1016/S0378-5173(03)00262-X
dc.relation.referencesBraem, C., Blaschke, T., Panek-Minkin, G., Herrmann, W., Schlupp, P., Paepenmüller, T., Müller-Goymann, C.C., Mehnert, W., Bittl, R., Schäfer-Korting, M., Kramer, K.D., 2007. Interaction of drug molecules with carrier systems as studied by parelectric spectroscopy and electron spin resonance. J. Control. Release 119, 128–135. doi:10.1016/j.jconrel.2007.01.017
dc.relation.referencesBresson, S., El Marssi, M., Khelifa, B., 2006. Conformational influences of the polymorphic forms on the CO and C-H stretching modes of five saturated monoacid triglycerides studied by Raman spectroscopy at various temperatures. Vib. Spectrosc. 40, 263–269. doi:10.1016/j.vibspec.2005.11.001
dc.relation.referencesBresson, S., El Marssi, M., Khelifa, B., 2005. Raman spectroscopy investigation of various saturated monoacid triglycerides. Chem. Phys. Lipids 134, 119–129. doi:10.1016/j.chemphyslip.2004.12.009
dc.relation.referencesBricarello, D.A., Pan, Y., Nitin, N., 2015. Interactions between the lipid core and the phospholipid interface in emulsions and solid lipid nanoparticles. Food Biophys. 10, 466–473. doi:10.1007/s11483-015-9413-4
dc.relation.referencesBunjes, H., 2011. Structural properties of solid lipid based colloidal drug delivery systems. Curr. Opin. Colloid Interface Sci. 16, 405–411. doi:10.1016/j.cocis.2011.06.007
dc.relation.referencesBunjes, H., 2010. Lipid nanoparticles for the delivery of poorly water-soluble drugs. J. Pharm. Pharmacol. 62, 1637–1645. doi:10.1111/j.2042-7158.2010.01024.x
dc.relation.referencesBunjes, H., 2004. Characterization of solid lipid nano-and microparticles, en: Nastruzzi, C. (Ed.), Lipospheres in drug targets and delivery. CRC Press, pp. 41–66. doi:10.1201/9780203505281.ch3
dc.relation.referencesBunjes, H., Drechsler, M., Koch, M.H.J., Westesen, K., 2001. Incorporation of the model drug ubidecarenone into solid lipid nanoparticles. Pharm. Res. 18, 287–93. doi:10.1023/A:1011042627714
dc.relation.referencesBunjes, H., Koch, M.H.J., 2005. Saturated phospholipids promote crystallization but slow down polymorphic transitions in triglyceride nanoparticles. J. Control. Release 107, 229–243. doi:10.1016/j.jconrel.2005.06.004
dc.relation.referencesBunjes, H., Koch, M.H.J., Westesen, K., 2003. Influence of emulsifiers on the crystallization of solid lipid nanoparticles. J. Pharm. Sci. 92, 1509–1520. doi:10.1002/jps.10413
dc.relation.referencesBunjes, H., Koch, M.H.J., Westesen, K., 2000. Effect of particle size on colloidal solid triglycerides. Langmuir 16, 5234–5241. doi:10.1021/la990856l
dc.relation.referencesBunjes, H., Steiniger, F., Richter, W., 2007. Visualizing the structure of triglyceride nanoparticles in different crystal modifications. Langmuir 23, 4005–4011. doi:10.1021/la062904p
dc.relation.referencesBunjes, H., Unruh, T., 2007. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv. Drug Deliv. Rev. 59, 379–402. doi:10.1016/j.addr.2007.04.013
dc.relation.referencesBunjes, H., Westesen, K., Koch, M.H.J., 1996. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int. J. Pharm. 129, 159–173. doi:10.1016/0378-5173(95)04286-5
dc.relation.referencesBurgess, D.J., Hussain, A.S., Ingallinera, T.S., Chen, M.L., 2002. Assuring quality and performance of sustained and controlled release parenterals: Workshop report. AAPS PharmSci 4. doi:10.1208/ps040205
dc.relation.referencesBüyükköroğlu, G., Şenel, B., Başaran, E., Yenilmez, E., Yazan, Y., 2016a. Preparation and in vitro evaluation of vaginal formulations including siRNA and paclitaxel-loaded SLNs for cervical cancer. Eur. J. Pharm. Biopharm. 109, 174–183. doi:10.1016/j.ejpb.2016.10.017
dc.relation.referencesBüyükköroğlu, G., Şenel, B., Gezgin, S., Dinh, T., 2016b. The simultaneous delivery of paclitaxel and Herceptin® using solid lipid nanoparticles: In vitro evaluation. J. Drug Deliv. Sci. Technol. 35, 98–105. doi:10.1016/j.jddst.2016.06.010
dc.relation.referencesCárdenas, Z.J., Jiménez, D.M., Delgado, D.R., Almanza, O.A., Jouyban, A., Martínez, F., Acree, W.E., 2017. Solubility and preferential solvation of some n-alkyl-parabens in methanol+water mixtures at 298.15K. J. Chem. Thermodyn. 108, 26–37. doi:10.1016/j.jct.2017.01.005
dc.relation.referencesCarrillo, C., Sánchez-Hernández, N., García-Montoya, E., Pérez-Lozano, P., Suñé-Negre, J.M., Ticó, J.R., Suñé, C., Miñarro, M., 2013. DNA delivery via cationic solid lipid nanoparticles (SLNs). Eur. J. Pharm. Sci. 49, 157–165. doi:10.1016/j.ejps.2013.02.011
dc.relation.referencesCarstensen, H., Müller, B.W., Müller, R.H., 1991. Adsorption of ethoxylated surfactants on nanoparticles. I. Characterization by hydrophobic interaction chromatography. Int. J. Pharm. 67, 29–37. doi:10.1016/0378-5173(91)90262-M
dc.relation.referencesCasadei, M.A., Cerreto, F., Cesa, S., Giannuzzo, M., Feeney, M., Marianecci, C., Paolicelli, P., 2006. Solid lipid nanoparticles incorporated in dextran hydrogels: A new drug delivery system for oral formulations. Int. J. Pharm. 325, 140–6. doi:10.1016/j.ijpharm.2006.06.012
dc.relation.referencesCattoz, B., Cosgrove, T., Crossman, M., Prescott, S.W., 2012. Surfactant-mediated desorption of polymer from the nanoparticle interface. Langmuir 28, 2485–2492. doi:10.1021/la204512d
dc.relation.referencesCavalli, R., Caputo, O., Eugenia, M., Trotta, M., Scarnecchia, C., Gasco, M.R., 1997. Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. Int. J. Pharm. 148, 47–54. doi:10.1016/S0378-5173(96)04822-3
dc.relation.referencesCavalli, R., Caputo, O., Gasco, M.R., 1993. Solid lipospheres of doxorubicin and idarubicin. Int. J. Pharm. 89, 0–3. doi:10.1016/0378-5173(93)90313-5
dc.relation.referencesCerreto, F., Paolicelli, P., Cesa, S., Amara, H.M.A., D’Auria, F.D., Simonetti, G., Casadei, M.A., 2013. Solid lipid nanoparticles as effective reservoir systems for long-term preservation of multidose formulations. AAPS PharmSciTech 14, 847–853. doi:10.1208/s12249-013-9972-y
dc.relation.referencesChaban, V. V., Khandelia, H., 2014. Lipid structure in triolein lipid droplets. J. Phys. Chem. B 118, 10335–10340. doi:10.1021/jp503223z
dc.relation.referencesChantaburanan, T., Teeranachaideekul, V., Chantasart, D., Jintapattanakit, A., Junyaprasert, V.B., 2017. Effect of binary solid lipid matrix of wax and triglyceride on lipid crystallinity, drug-lipid interaction and drug release of ibuprofen-loaded solid lipid nanoparticles (SLN) for dermal delivery. J. Colloid Interface Sci. 504, 247–256. doi:10.1016/j.jcis.2017.05.038
dc.relation.referencesChapman, D., 1962. The polymorphism of glycerides. Chem. Rev. 62, 433–456. doi:10.1021/cr60219a003
dc.relation.referencesCharcosset, C., El-Harati, A., Fessi, H., 2005. Preparation of solid lipid nanoparticles using a membrane contactor. J. Control. release 108, 112–20. doi:10.1016/j.jconrel.2005.07.023
dc.relation.referencesCharoenputtakun, P., Li, S.K., Ngawhirunpat, T., 2015. Iontophoretic delivery of lipophilic and hydrophilic drugs from lipid nanoparticles across human skin. Int. J. Pharm. 495, 318–328. doi:10.1016/j.ijpharm.2015.08.094
dc.relation.referencesChidambaram, N., Burgess, D.J., 1999. A novel in vitro release method for submicron-sized dispersed systems. AAPS PharmSci 1, 1–9. doi:10.1208/ps010311
dc.relation.referencesChirio, D., Gallarate, M., Peira, E., Battaglia, L., Muntoni, E., Riganti, C., Biasibetti, E., Capucchio, M.T., Valazza, A., Panciani, P., Lanotte, M., Annovazzi, L., Caldera, V., Mellai, M., Filice, G., Corona, S., Schiffer, D., 2014. Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment. Eur. J. Pharm. Biopharm. 88, 746–758. doi:10.1016/j.ejpb.2014.10.017
dc.relation.referencesChirio, D., Gallarate, M., Peira, E., Battaglia, L., Serpe, L., Trotta, M., 2011. Formulation of curcumin-loaded solid lipid nanoparticles produced by fatty acids coacervation technique. J. Microencapsul. 28, 537–548. doi:10.3109/02652048.2011.590615
dc.relation.referencesClares, B., Calpena, A.C., Parra, A., Abrego, G., Alvarado, H., Fangueiro, J.F., Souto, E.B., 2014. Nanoemulsions (NEs), liposomes (LPs) and solid lipid nanoparticles (SLNs) for retinyl palmitate: Effect on skin permeation. Int. J. Pharm. 473, 591–598. doi:10.1016/j.ijpharm.2014.08.001
dc.relation.referencesCzamara, K., Majzner, K., Pacia, M.Z., Kochan, K., Kaczor, A., Baranska, M., 2015. Raman spectroscopy of lipids: A review. J. Raman Spectrosc. 46, 4–20. doi:10.1002/jrs.4607
dc.relation.referencesDa Silva, E., Bresson, S., Rousseau, D., 2009. Characterization of the three major polymorphic forms and liquid state of tristearin by Raman spectroscopy. Chem. Phys. Lipids 157, 113–119. doi:10.1016/j.chemphyslip.2008.11.002
dc.relation.referencesDa Silva, E., Rousseau, D., 2010. Raman spectroscopy for the study of molecular order, thermodynamics, and solid-liquid transitions in triacylglycerols, en: Li-Chan, E.C.Y. (Ed.), Handbook of Vibrational Spectroscopy. John Wiley & Sons, Ltd, Chichester, UK, pp. 1–17. doi:10.1002/0470027320.s8947
dc.relation.referencesDa Silva, E., Rousseau, D., 2008. Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy. Phys. Chem. Chem. Phys. 10, 4606–4613. doi:10.1039/b717412h
dc.relation.referencesDahan, A., Hoffman, A., 2007. The effect of different lipid based formulations on the oral absorption of lipophilic drugs: The ability of in vitro lipolysis and consecutive ex vivo intestinal permeability data to predict in vivo bioavailability in rats. Eur. J. Pharm. Biopharm. 67, 96–105. doi:10.1016/j.ejpb.2007.01.017
dc.relation.referencesDan, N., 2016. Compound release from nanostructured lipid carriers (NLCs). J. Food Eng. 171, 37–43. doi:10.1016/j.jfoodeng.2015.10.005
dc.relation.referencesDan, N., 2014. Nanostructured lipid carriers: Effect of solid phase fraction and distribution on the release of encapsulated materials. Langmuir 30, 13809–13814. doi:10.1021/la5030197
dc.relation.referencesDas, S., Ng, W.K., Tan, R.B.H., 2012. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): Development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur. J. Pharm. Sci. 47, 139–151. doi:10.1016/j.ejps.2012.05.010
dc.relation.referencesDavis, S., Haldipur, J., Zhao, Y., Dan, N., Pan, Y., Nitin, N., Tikekar, R. V., 2015. Effect of distribution of solid and liquid lipid domains on transport of free radicals in nanostructured lipid carriers. LWT - Food Sci. Technol. 64, 14–17. doi:10.1016/j.lwt.2015.05.013
dc.relation.referencesDe Souza, A.L.R., Andreani, T., Nunes, F.M., Cassimiro, D.L., De Almeida, A.E., Ribeiro, C.A., Sarmento, V.H.V., Gremião, M.P.D., Silva, A.M., Souto, E.B., 2012. Loading of praziquantel in the crystal lattice of solid lipid nanoparticles: Studies by DSC and SAXS. J. Therm. Anal. Calorim. 108, 353–360. doi:10.1007/s10973-011-1871-4
dc.relation.referencesDelgado, A. V, González-Caballero, F., Hunter, R.J., Koopal, L.K., Lyklema, J., 2005. Measurement and interpretation of electrokinetic phenomena (IUPAC technical report). Pure Appl. Chem. 77, 1753–1805. doi:10.1351/pac200577101753
dc.relation.referencesDeshpande, A., Mohamed, M., Daftardar, S.B., Patel, M., Boddu, S.H.S., Nesamony, J., 2017. Chapter 12 – Solid Lipid Nanoparticles in Drug Delivery: Opportunities and Challenges, en: Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices. pp. 291–330. doi:10.1016/B978-0-323-42978-8.00012-7
dc.relation.referencesDevani, M.J., Ashford, M., Craig, D.Q.M., 2005. The development and characterisation of triglyceride-based ‘spontaneous’ multiple emulsions. Int. J. Pharm. 300, 76–88. doi:10.1016/j.ijpharm.2005.05.011
dc.relation.referencesDoktorovova, S., Shegokar, R., Martins-Lopes, P., Silva, A.M., Lopes, C.M., Müller, R.H., Souto, E.B., 2012. Modified Rose Bengal assay for surface hydrophobicity evaluation of cationic solid lipid nanoparticles (cSLN). Eur. J. Pharm. Sci. 45, 606–612. doi:10.1016/j.ejps.2011.12.016
dc.relation.referencesDomalski, E.S., Hearing, E.D., 1996. Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III. J. Phys. Chem. Ref. Data 25, 1–525. doi:10.1063/1.555985
dc.relation.referencesDomb, A.J., 1995. Long acting injectable oxytetracycline-liposphere formulations. Int. J. Pharm. 124, 271–278. doi:10.1016/0378-5173(95)00098-4
dc.relation.referencesDong, Y. Da, Boyd, B.J., 2011. Applications of X-ray scattering in pharmaceutical science. Int. J. Pharm. 417, 101–111. doi:10.1016/j.ijpharm.2011.01.022
dc.relation.referencesDong, X., Mattingly, C.A., Tseng, M., Cho, M., Adams, V.R., Mumper, R.J., 2009. Development of new lipid-based paclitaxel nanoparticles using sequential simplex optimization. Eur. J. Pharm. Biopharm. 72, 9–17. doi:10.1016/j.ejpb.2008.11.012
dc.relation.referencesDong, Y., Ng, W.K., Shen, S., Kim, S., Tan, R.B.H., 2012. Solid lipid nanoparticles: Continuous and potential large-scale nanoprecipitation production in static mixers. Colloids Surfaces B Biointerfaces 94, 68–72. doi:10.1016/j.colsurfb.2012.01.018
dc.relation.referencesDouaire, M., di Bari, V., Norton, J.E., Sullo, A., Lillford, P., Norton, I.T., 2014. Fat crystallisation at oil–water interfaces. Adv. Colloid Interface Sci. 203, 1–10. doi:10.1016/j.cis.2013.10.022
dc.relation.referencesDyett, B., Zychowski, L., Bao, L., Meikle, T.G., Peng, S., Yu, H., Li, M., Strachan, J., Kirby, N., Logan, A., Conn, C.E., Zhang, X., 2018. Crystallization of femtoliter surface droplet arrays revealed by synchrotron small-angle X-ray scattering. Langmuir 34, 9470–9476. doi:10.1021/acs.langmuir.8b01252
dc.relation.referencesEckert, K.A., Dasgupta, S., Selge, B., Ay, P., 2016. Solid liquid phase diagrams of binary fatty acid mixtures - palmitic/stearic with oleic/linoleic/linolenic acid mixture. Thermochim. Acta 630, 50–63. doi:10.1016/j.tca.2016.02.008
dc.relation.referencesFadda, P., Monduzzi, M., Caboi, F., Piras, S., Lazzari, P., 2013. Solid lipid nanoparticle preparation by a warm microemulsion based process: Influence of microemulsion microstructure. Int. J. Pharm. 446, 166–175. doi:10.1016/j.ijpharm.2013.02.027
dc.relation.referencesFang, G., Tang, B., Chao, Y., Xu, H.H., Gou, J., Zhang, Y., Xu, H.H., Tang, X., 2015. Cysteine-functionalized nanostructured lipid carriers for oral delivery of docetaxel: A permeability and pharmacokinetic study. Mol. Pharm. 12, 2384–2395. doi:10.1021/acs.molpharmaceut.5b00081
dc.relation.referencesFang, J.Y., Fang, C.L., Liu, C.H., Su, Y.H., 2008. Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur. J. Pharm. Biopharm. 70, 633–640. doi:10.1016/j.ejpb.2008.05.008
dc.relation.referencesFarboud, E.S., Nasrollahi, S.A., Tabbakhi, Z., 2011. Novel formulation and evaluation of a Q10-loaded solid lipid nanoparticle cream: in vitro and in vivo studies. Int. J. Nanomedicine 6, 611–617. doi:10.2147/IJN.S16815
dc.relation.referencesFathi, M., Varshosaz, J., Mohebbi, M., Shahidi, F., 2013. Hesperetin-loaded solid lipid nanoparticles and nanostructure lipid carriers for food fortification: Preparation, characterization, and modeling. Food Bioprocess Technol. 6, 1464–1475. doi:10.1007/s11947-012-0845-2
dc.relation.referencesFazly Bazzaz, B.S., Khameneh, B., Zarei, H., Golmohammadzadeh, S., 2016. Antibacterial efficacy of rifampin loaded solid lipid nanoparticles against Staphylococcus epidermidis biofilm. Microb. Pathog. 93, 137–44. doi:10.1016/j.micpath.2015.11.031
dc.relation.referencesFeng, Y., Grant, D.J.W., 2006. Influence of crystal structure on the compaction properties of n-alkyl 4-hydroxybenzoate esters (parabens). Pharm. Res. 23, 1608–1616. doi:10.1007/s11095-006-0275-9
dc.relation.referencesFinke, J.H., Richter, C., Gothsch, T., Kwade, A., Büttgenbach, S., Müller-Goymann, C.C., 2014. Coumarin 6 as a fluorescent model drug: How to identify properties of lipid colloidal drug delivery systems via fluorescence spectroscopy? Eur. J. Lipid Sci. Technol. 116, 1234–1246. doi:10.1002/ejlt.201300413
dc.relation.referencesFischer, K., Schmidt, M., 2016. Pitfalls and novel applications of particle sizing by dynamic light scattering. Biomaterials 98, 79–91. doi:10.1016/j.biomaterials.2016.05.003
dc.relation.referencesFontenele, D.M.A., Bandan, R.A.P.B., Guenter, K.T., Gioielli, L.A., Grimaldi, R., Cardoso, L.P., Guaraldo, G.L.A., 2015. Advances in lipids crystallization technology, en: Advanced Topics in Crystallization. InTech, pp. 105–132. doi:10.5772/59767
dc.relation.referencesForster, S., Buckton, G., Beezer, A.E., 1991. The importance of chain length on the wettability and solubility of organic homologs. Int. J. Pharm. 72, 29–34. doi:10.1016/0378-5173(91)90377-Z
dc.relation.referencesFoubert, I., Vanhoutte, B., Dewettinck, K., 2004. Temperature and concentration dependent effect of partial glycerides on milk fat crystallization. Eur. J. Lipid Sci. Technol. 106, 531–539. doi:10.1002/ejlt.200400979
dc.relation.referencesFreitas, C., Müller, R.H., 1999. Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. Eur. J. Pharm. Biopharm. 47, 125–132. doi:10.1016/S0939-6411(98)00074-5
dc.relation.referencesFreitas, C., Müller, R.H., 1998. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN®) dispersions. Int. J. Pharm. 168, 221–229. doi:10.1016/S0378-5173(98)00092-1
dc.relation.referencesFriedrich, I., Müller-Goymann, C.., 2003. Characterization of solidified reverse micellar solutions (SRMS) and production development of SRMS-based nanosuspensions. Eur. J. Pharm. Biopharm. 56, 111–119. doi:10.1016/S0939-6411(03)00043-2
dc.relation.referencesGandolfo, F.G., Bot, A., Flöter, E., 2003. Phase diagram of mixtures of stearic acid and stearyl alcohol. Thermochim. Acta 404, 9–17. doi:10.1016/S0040-6031(03)00086-8
dc.relation.referencesGandolfo, F.G., Bot, A., Flöter, E., 2003. Phase diagram of mixtures of stearic acid and stearyl alcohol. Thermochim. Acta 404, 9–17. doi:10.1016/S0040-6031(03)00086-8
dc.relation.referencesGao, S., McClements, D.J., 2016. Formation and stability of solid lipid nanoparticles fabricated using phase inversion temperature method. Colloids Surfaces A Physicochem. Eng. Asp. 499, 79–87. doi:10.1016/j.colsurfa.2016.03.065
dc.relation.referencesGarcia-Fuentes, M., Alonso, M.J., Torres, D., 2005. Design and characterization of a new drug nanocarrier made from solid-liquid lipid mixtures. J. Colloid Interface Sci. 285, 590–598. doi:10.1016/j.jcis.2004.10.012
dc.relation.referencesGarcia-Fuentes, M., Torres, D., Martín-Pastor, M., Alonso, M.J., 2004. Application of NMR spectroscopy to the characterization of PEG-stabilized lipid nanoparticles. Langmuir 20, 8839–8845. doi:10.1021/la049505j
dc.relation.referencesGarg, A., Singh, S., 2011. Enhancement in antifungal activity of eugenol in immunosuppressed rats through lipid nanocarriers. Colloids Surfaces B Biointerfaces 87, 280–288. doi:10.1016/j.colsurfb.2011.05.030
dc.relation.referencesGasco, M.R., 2007. Lipid nanoparticles: Perspectives and challenges. Adv. Drug Deliv. Rev. 59, 377–378. doi:10.1016/j.addr.2007.05.004
dc.relation.referencesGasco, M.R., 1993. Method for producing solid lipid microspheres having a narrow size distribution. U.S. Patent No. 5,250,236.
dc.relation.referencesGastaldi, L., Battaglia, L., Peira, E., Chirio, D., Muntoni, E., Solazzi, I., Gallarate, M., Dosio, F., 2014. Solid lipid nanoparticles as vehicles of drugs to the brain: Current state of the art. Eur. J. Pharm. Biopharm. 87, 433–444. doi:10.1016/j.ejpb.2014.05.004
dc.relation.referencesGaumet, M., Vargas, A., Gurny, R., Delie, F., 2008. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 69, 1–9. doi:10.1016/j.ejpb.2007.08.001
dc.relation.referencesGaumet, M., Vargas, A., Gurny, R., Delie, F., 2008. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 69, 1–9. doi:10.1016/j.ejpb.2007.08.001
dc.relation.referencesGaumet, M., Vargas, A., Gurny, R., Delie, F., 2008. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 69, 1–9. doi:10.1016/j.ejpb.2007.08.001
dc.relation.referencesGiordano, F., Bettini, R., Donini, C., Gazzaniga, A., Caira, M.R., Zhang, G.G.Z., Grant, D.J.W., 1999. Physical properties of parabens and their mixtures: Solubility in water, thermal behavior, and crystal structures. J. Pharm. Sci. 88, 1210–1216. doi:10.1021/js9900452
dc.relation.referencesGöke, K., Bunjes, H., 2018. Carrier characteristics influence the kinetics of passive drug loading into lipid nanoemulsions. Eur. J. Pharm. Biopharm. 126, 132–139. doi:10.1016/j.ejpb.2017.08.004
dc.relation.referencesGöke, K., Roese, E., Arnold, A., Kuntsche, J., Bunjes, H., 2016. Control over particle size distribution by autoclaving poloxamer-stabilized trimyristin nanodispersions. Mol. Pharm. 13, 3187–3195. doi:10.1021/acs.molpharmaceut.6b00395
dc.relation.referencesGöke, K., Roese, E., Bunjes, H., 2018. Heat treatment of poloxamer-stabilized triglyceride nanodispersions: Effects and underlying mechanism. Mol. Pharm. 15, 3111–3120. doi:10.1021/acs.molpharmaceut.8b00202
dc.relation.referencesGordillo-Galeano, A., Mora-Huertas, C.E., 2018. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm. 133, 285–308. doi:S0939641118310610
dc.relation.referencesGranero, G.E., Ramachandran, C., Amidon, G.L., 2005. Dissolution and solubility behavior of fenofibrate in sodium lauryl sulfate solutions. Drug Dev. Ind. Pharm. 31, 917–922. doi:10.1080/03639040500272108
dc.relation.referencesGregoriadis, G., Senior, J., Poste, G., 1986. Targeting of drugs with synthetic systems. Springer US, Boston, MA. doi:10.1007/978-1-4684-5185-6
dc.relation.referencesGüney, G., Kutlu, H.M., Genç, L., 2014. Preparation and characterization of ascorbic acid loaded solid lipid nanoparticles and investigation of their apoptotic effects. Colloids Surfaces B Biointerfaces 121, 270–280. doi:10.1016/j.colsurfb.2014.05.008
dc.relation.referencesGuo, T., Zhang, Y., Zhao, J., Zhu, C., Feng, N., 2015. Nanostructured lipid carriers for percutaneous administration of alkaloids isolated from Aconitum sinomontanum. J. Nanobiotechnology 13, 1–14. doi:10.1186/s12951-015-0107-3
dc.relation.referencesGüres, S., Siepmann, F., Siepmann, J., Kleinebudde, P., 2012. Drug release from extruded solid lipid matrices: Theoretical predictions and independent experiments. Eur. J. Pharm. Biopharm. 80, 122–129. doi:10.1016/j.ejpb.2011.10.002
dc.relation.referencesHaag, S.F., Chen, M., Peters, D., Keck, C.M., Taskoparan, B., Fahr, A., Teutloff, C., Bittl, R., Lademann, J., Schäfer-Korting, M., Meinke, M.C., 2011. Nanostructured lipid carriers as nitroxide depot system measured by electron paramagnetic resonance spectroscopy. Int. J. Pharm. 421, 364–369. doi:10.1016/j.ijpharm.2011.10.009
dc.relation.referencesHagemann, J.W., Rothfus, J.A., 1983. Polymorphism and transformation energetics of saturated monoacid triglycerides from differential scanning calorimetry and theoretical modeling. J. Am. Oil Chem. Soc. 60, 1123–1131. doi:10.1007/BF02671340
dc.relation.referencesHeiati, H., Phillips, N.C., Tawashi, R., 1996. Evidence for phospholipid bilayer formation in solid lipid nanoparticles formulated with phospholipid and triglyceride. Pharm. Res. 13, 1406–1410. doi:10.1023/A:1016090420759
dc.relation.referencesHeiati, H., Tawashi, R., Phillips, N.C., 1998. Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization. J. Microencapsul. 15, 173–184. doi:10.3109/02652049809006847
dc.relation.referencesHelena de Abreu-Martins, H., Artiga-Artigas, M., Hilsdorf Piccoli, R., Martín-Belloso, O., Salvia-Trujillo, L., 2020. The lipid type affects the in vitro digestibility and β-carotene bioaccessibility of liquid or solid lipid nanoparticles. Food Chem. 311, 126024. doi:10.1016/j.foodchem.2019.126024
dc.relation.referencesHelgason, T., Awad, T.S., Kristbergsson, K., Decker, E.A., McClements, D.J., Weiss, J., 2009a. Impact of surfactant properties on oxidative stability of β-carotene encapsulated within solid lipid nanoparticles. J. Agric. Food Chem. 57, 8033–8040. doi:10.1021/jf901682m
dc.relation.referencesHelgason, T., Awad, T.S., Kristbergsson, K., McClements, D.J., Weiss, J., 2009b. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). J. Colloid Interface Sci. 334, 75–81. doi:10.1016/j.jcis.2009.03.012
dc.relation.referencesHenneré, G., Prognon, P., Brion, F., Rosilio, V., Nicolis, I., 2009. Molecular dynamics simulation of a mixed lipid emulsion model: Influence of the triglycerides on interfacial phospholipid organization. J. Mol. Struct. THEOCHEM 901, 174–185. doi:10.1016/j.theochem.2009.01.020
dc.relation.referencesHenriksen, I., Sande, S.A., Smistad, G., Ågren, T., Karlsen, J., 1995. In vitro evaluation of drug release kinetics from liposomes by fractional dialysis. Int. J. Pharm. 119, 231–238. doi:10.1016/0378-5173(94)00403-R
dc.relation.referencesHernqvist, L., 1984. On the structure of triglycerides in the liquid state and fat crystallization. Fette, Seifen, Anstrichm. 86, 297–300. doi:10.1002/lipi.19840860802
dc.relation.referencesHeurtault, B., Saulnier, P., Pech, B., Proust, J.E., Benoît, J.P., 2003. Physico-chemical stability of colloidal lipid particles. Biomaterials 24, 4283–4300. doi:10.1016/S0142-9612(03)00331-4
dc.relation.referencesHiemenz, P.C., Rajagopalan, R., 1997. Principles of Colloid and Surface Chemistry, Third Edit. ed. CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742.
dc.relation.referencesHoward, M.D., Lu, X., Rinehart, J.J., Jay, M., Dziubla, T.D., 2011. Physicochemical characterization of nanotemplate engineered solid lipid nanoparticles. Langmuir 27, 1964–1971. doi:10.1021/la104262k
dc.relation.referencesHsu, W.D., Violi, A., 2009. Order-disorder phase transformation of triacylglycerols: Effect of the structure of the aliphatic chains. J. Phys. Chem. B 113, 887–893. doi:10.1021/jp806440d
dc.relation.referencesHu, F.-Q.Q., Jiang, S.-P.P., Du, Y.-Z.Z., Yuan, H., Ye, Y.-Q.Q., Zeng, S., 2006. Preparation and characteristics of monostearin nanostructured lipid carriers. Int. J. Pharm. 314, 83–9. doi:10.1016/j.ijpharm.2006.01.040
dc.relation.referencesHu, F.Q., Hong, Y., Yuan, H., 2004. Preparation and characterization of solid lipid nanoparticles containing peptide. Int. J. Pharm. 273, 29–35. doi:10.1016/j.ijpharm.2003.12.016
dc.relation.referencesHu, F.Q., Jiang, S.P., Du, Y.Z., Yuan, H., Ye, Y.Q., Zeng, S., 2005. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surfaces B Biointerfaces 45, 167–73. doi:10.1016/j.colsurfb.2005.08.005
dc.relation.referencesICH, 2005. ICH Topic Q2 (R1) Validation of Analytical Procedures : Text and Methodology. Int. Conf. Harmon. 1994, 17.
dc.relation.referencesIlling, A., Unruh, T., 2004. Investigation on the flow behavior of dispersions of solid triglyceride nanoparticles. Int. J. Pharm. 284, 123–131. doi:10.1016/j.ijpharm.2004.07.017
dc.relation.referencesInoue, T., Hisatsugu, Y., Yamamoto, R., Suzuki, M., 2004. Solid-liquid phase behavior of binary fatty acid mixtures: 1. Oleic acid/stearic acid and oleic acid/behenic acid mixtures. Chem. Phys. Lipids 127, 143–152. doi:10.1016/j.chemphyslip.2003.09.014
dc.relation.referencesIslam, S.D.M., Ito, O., 1999. Solvent effects on rates of photochemical reactions of rose bengal triplet state studied by nanosecond laser photolysis. J. Photochem. Photobiol. A Chem. 123, 53–59. doi:10.1016/S1010-6030(99)00042-8
dc.relation.referencesIslan, G.A., Tornello, P.C., Abraham, G.A., Duran, N., Castro, G.R., 2016. Smart lipid nanoparticles containing levofloxacin and DNase for lung delivery. Design and characterization. Colloids Surfaces B Biointerfaces 143, 168–176. doi:10.1016/j.colsurfb.2016.03.040
dc.relation.referencesISO, 2012. Colloidal systems — Methods for zeta potential determination Part 2: Optical methods (ISO 13099-2:2012).
dc.relation.referencesISO, 1996. Particle size analysis - Photon correlation spectroscopy (ISO 13321:1996).
dc.relation.referencesIwahashi, M., Kasahara, Y., 2011. Dynamic molecular movements and aggregation structures of lipids in a liquid state. Curr. Opin. Colloid Interface Sci. 16, 359–366. doi:10.1016/j.cocis.2011.06.005
dc.relation.referencesIzquierdo, P., Esquena, J., Tadros, T.F., Dederen, C., Garcia, M.J., Azemar, N., Solans, C., 2002. Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir 18, 26–30. doi:10.1021/la010808c
dc.relation.referencesJain, A., Singhai, P., Gurnany, E., Updhayay, S., Mody, N., 2013. Transferrin-tailored solid lipid nanoparticles as vectors for site-specific delivery of temozolomide to brain. J. Nanoparticle Res. 15. doi:10.1007/s11051-013-1518-4
dc.relation.referencesJain, A.K., Jain, Ashay, Garg, N.K., Agarwal, A., Jain, Atul, Jain, S.A., Tyagi, R.K., Jain, R.K., Agrawal, H., Agrawal, G.P., 2014. Adapalene loaded solid lipid nanoparticles gel: An effective approach for acne treatment. Colloids Surfaces B Biointerfaces 121, 222–229. doi:10.1016/j.colsurfb.2014.05.041
dc.relation.referencesJenning, V., Mäder, K., Gohla, S.H., 2000a. Solid lipid nanoparticles (SLNTM) based on binary mixtures of liquid and solid lipids: a 1H-NMR study. Int. J. Pharm. 205, 15–21. doi:10.1016/S0378-5173(00)00462-2
dc.relation.referencesJenning, V., Thünemann, A.F., Gohla, S.H., Th?nemann, A.F., Gohla, S.H., 2000b. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int. J. Pharm. 199, 167–177. doi:10.1016/S0378-5173(00)00378-1
dc.relation.referencesJores, K., Haberland, A., Wartewig, S., Mäder, K., Mehnert, W., 2005. Solid lipid nanoparticles (SLN) and oil-loaded SLN studied by spectrofluorometry and raman spectroscopy. Pharm. Res. 22, 1887–1897. doi:10.1007/s11095-005-7148-5
dc.relation.referencesJores, K., Mehnert, W., Drechsler, M., Bunjes, H., Johann, C., Mäder, K., 2004. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J. Control. Release 95, 217–227. doi:10.1016/j.jconrel.2003.11.012
dc.relation.referencesJores, K., Mehnert, W., Mäder, K., 2003. Physicochemical investigations on solid lipid nanoparticles and on oil-loaded solid lipid nanoparticles: A nuclear magnetic resonance and electron spin resonance study. Pharm. Res. 20, 1274–1283. doi:10.1023/A:1025065418309
dc.relation.referencesJose, J., Burgess, K., 2006. Benzophenoxazine-based fluorescent dyes for labeling biomolecules. Tetrahedron 62, 11021–11037. doi:10.1016/j.tet.2006.08.056
dc.relation.referencesJose, S., Anju, S.S., Cinu, T.A., Aleykutty, N.A., Thomas, S., Souto, E.B., 2014. In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. Int. J. Pharm. 474, 6–13. doi:10.1016/j.ijpharm.2014.08.003
dc.relation.referencesJoshi, M.D., Müller, R.H., 2009. Lipid nanoparticles for parenteral delivery of actives. Eur. J. Pharm. Biopharm. 71, 161–172. doi:10.1016/j.ejpb.2008.09.003
dc.relation.referencesKabanov, A. V, Batrakova, E. V, Alakhov, V.Y., 2002. Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control. Release 82, 189–212. doi:10.1016/S0168-3659(02)00009-3
dc.relation.referencesKalaycioglu, G.D., Aydogan, N., 2016. Preparation and investigation of solid lipid nanoparticles for drug delivery. Colloids Surfaces A Physicochem. Eng. Asp. 510, 77–86. doi:10.1016/j.colsurfa.2016.06.034
dc.relation.referencesKeck, C.M., Baisaeng, N., Durand, P., Prost, M., Meinke, M.C., Müller, R.H., 2014a. Oil-enriched, ultra-small nanostructured lipid carriers (usNLC): A novel delivery system based on flip-flop structure. Int. J. Pharm. 477, 227–235. doi:10.1016/j.ijpharm.2014.10.029
dc.relation.referencesKeck, C.M., Kovačević, A.B., Müller, R.H., Savić, S., Vuleta, G., Milić, J., 2014b. Formulation of solid lipid nanoparticles (SLN): The value of different alkyl polyglucoside surfactants. Int. J. Pharm. 474, 33–41. doi:10.1016/j.ijpharm.2014.08.008
dc.relation.referencesKern, S.F., 1953. X-Ray Testing and Research on Pharmaceuticals. Anal. Chem. 25, 731–734. doi:10.1021/ac60077a013
dc.relation.referencesKhalil, R.M., Abd-Elbary, A., Kassem, M.A., Ghorab, M.M., Basha, M., 2013. Nanostructured lipid carriers (NLCs) versus solid lipid nanoparticles (SLNs) for topical delivery of meloxicam. Pharm. Dev. Technol.
dc.relation.referencesKheradmandnia, S., Vasheghani-Farahani, E., Nosrati, M., Atyabi, F., 2010. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. Nanomedicine 6, 753–9. doi:10.1016/j.nano.2010.06.003
dc.relation.referencesKhurana, S., Bedi, P.M.S., Jain, N.K., 2013. Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam. Chem. Phys. Lipids 175–176, 65–72. doi:10.1016/j.chemphyslip.2013.07.010
dc.relation.referencesKim, J.H., Kim, Y., Bae, K.H., Park, T.G., Lee, J.H., Park, K., 2015. Tumor-targeted delivery of paclitaxel using low density lipoprotein-mimetic solid lipid nanoparticles. Mol. Pharm. 12, 1230–1241. doi:10.1021/mp500737y
dc.relation.referencesKim, J.K., Park, J.S., Kim, C.K., 2010. Development of a binary lipid nanoparticles formulation of itraconazole for parenteral administration and controlled release. Int. J. Pharm. 383, 209–215. doi:10.1016/j.ijpharm.2009.09.008
dc.relation.referencesKlang, V., Matsko, N.B., Valenta, C., Hofer, F., 2012. Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment. Micron 43, 85–103. doi:10.1016/j.micron.2011.07.014
dc.relation.referencesKloek, W., Walstra, P., Van Vliet, T., 2000. Nucleation kinetics of emulsified triglyceride mixtures. JAOCS, J. Am. Oil Chem. Soc. 77, 643–652. doi:10.1007/s11746-000-0104-7
dc.relation.referencesKovačević, A.B., Müller, R.H., Savić, S.D., Vuleta, G.M., Keck, C.M., 2014. Solid lipid nanoparticles (SLN) stabilized with polyhydroxy surfactants: Preparation, characterization and physical stability investigation. Colloids Surfaces A Physicochem. Eng. Asp. 444, 15–25. doi:10.1016/j.colsurfa.2013.12.023
dc.relation.referencesKovačević, A.B., Savić, S.D., Vuleta, G.M., Müller, R.H., Keck, C.M., 2011. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): Effects on size, physical stability and particle matrix structure. Int. J. Pharm. 406, 163–72. doi:10.1016/j.ijpharm.2010.12.036
dc.relation.referencesKumar, N., Goindi, S., Saini, B., Bansal, G., 2014. Thermal characterization and compatibility studies of itraconazole and excipients for development of solid lipid nanoparticles. J. Therm. Anal. Calorim. 115, 2375–2383. doi:10.1007/s10973-013-3237-6
dc.relation.referencesKumar, R., Yasir, M., Saraf, S.A., Gaur, P.K., Kumar, Y., Singh, A.P., 2013. Glyceryl monostearate based nanoparticles of mefenamic acid: Fabrication and in vitro characterization. Drug Invent. Today 5, 246–250. doi:10.1016/j.dit.2013.06.011
dc.relation.referencesKumar, S., Randhawa, J.K., 2013. High melting lipid based approach for drug delivery: Solid lipid nanoparticles. Mater. Sci. Eng. C 33, 1842–1852. doi:10.1016/j.msec.2013.01.037
dc.relation.referencesKuntsche, J., Horst, J.C., Bunjes, H., 2011. Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int. J. Pharm. 417, 120–137. doi:10.1016/j.ijpharm.2011.02.001
dc.relation.referencesKuo, Y.-C., Chung, C.Y., 2011. Solid lipid nanoparticles comprising internal Compritol 888 ATO, tripalmitin and cacao butter for encapsulating and releasing stavudine, delavirdine and saquinavir. Colloids Surfaces B Biointerfaces 88, 682–90. doi:10.1016/j.colsurfb.2011.07.060
dc.relation.referencesKupetz, E., Bunjes, H., 2014. Lipid nanoparticles: Drug localization is substance-specific and achievable load depends on the size and physical state of the particles. J. Control. Release 189, 54–64. doi:10.1016/j.jconrel.2014.06.007
dc.relation.referencesLacerda, S.P., Cerize, N.N.P., Ré, M.I., 2011. Preparation and characterization of carnauba wax nanostructured lipid carriers containing benzophenone-3. Int. J. Cosmet. Sci. 33, 312–321. doi:10.1111/j.1468-2494.2010.00626.x
dc.relation.referencesLarsen, S.W., Østergaard, J., Yaghmur, A., Jensen, H., Larsen, C., 2013. Use of in vitro release models in the design of sustained and localized drug delivery systems for subcutaneous and intra-articular administration. J. Drug Deliv. Sci. Technol. 23, 315–324. doi:10.1016/S1773-2247(13)50048-7
dc.relation.referencesLawler, P., Dimick, P., 2008. Crystallization and polymorphism of fats, en: Akoh, C.C., Min, D.B. (Eds.), Food Lipids. Chemistry, Nutrition, and Biotechnology. CRC Press, pp. 275–300. doi:10.1201/9781420046649.ch9
dc.relation.referencesLee, A.G., 1977. Lipid phase transitions and phase diagrams II. Mixtures involving lipids. Biochim. Biophys. Acta - Rev. Biomembr. 472, 285–344. doi:10.1016/0304-4157(77)90001-6
dc.relation.referencesLee, M.-K., Lim, S.-J., Kim, C.-K., 2007. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials 28, 2137–2146. doi:10.1016/j.biomaterials.2007.01.014
dc.relation.referencesLee, S., Kwon, J.A., Park, K.H., Jin, C.M., Joo, J.B., Choi, I., 2018. Controlled drug release with surface-capped mesoporous silica nanoparticles and its label-free in situ Raman monitoring. Eur. J. Pharm. Biopharm. 131, 232–239. doi:10.1016/j.ejpb.2018.08.012
dc.relation.referencesLeonardi, A., Bucolo, C., Romano, G.L., Platania, C.B.M., Drago, F., Puglisi, G., Pignatello, R., 2014. Influence of different surfactants on the technological properties and in vivo ocular tolerability of lipid nanoparticles. Int. J. Pharm. 470, 133–140. doi:10.1016/j.ijpharm.2014.04.061
dc.relation.referencesLeong, T.S.H., Wooster, T.J., Kentish, S.E., Ashokkumar, M., 2009. Minimising oil droplet size using ultrasonic emulsification. Ultrason. Sonochem. 16, 721–727. doi:10.1016/j.ultsonch.2009.02.008
dc.relation.referencesLevy, M.Y., Benita, S., 1990. Drug release from submicronized o/w emulsion: a new in vitro kinetic evaluation model. Int. J. Pharm. 66, 29–37. doi:10.1016/0378-5173(90)90381-D
dc.relation.referencesLi, Q., Cai, T., Huang, Y., Xia, X., Cole, S., Cai, Y., 2017. A review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nanomaterials 7, 122. doi:10.3390/nano7060122
dc.relation.referencesLi, R., Eun, J.S., Lee, M.-K., 2011. Pharmacokinetics and biodistribution of paclitaxel loaded in pegylated solid lipid nanoparticles after intravenous administration. Arch. Pharm. Res. 34, 331–337. doi:10.1007/s12272-011-0220-2
dc.relation.referencesLi, R., Eun, J.S., Lee, M.-K., 2011. Pharmacokinetics and biodistribution of paclitaxel loaded in pegylated solid lipid nanoparticles after intravenous administration. Arch. Pharm. Res. 34, 331–337. doi:10.1007/s12272-011-0220-2
dc.relation.referencesLim, S.J., Kim, C., 2002. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. Int. J. Pharm. 243, 135–146. doi:10.1016/S0378-5173(02)00269-7
dc.relation.referencesLin-Vien, D., Colthup, N.B., Fateley, W.G., Grasselli, J.G., 1991a. Compounds containing the carbonyl group, en: Colthup, N.B. (Ed.), The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Academic Press, New York, pp. 117–154. doi:10.1016/b978-0-08-057116-4.50015-8
dc.relation.referencesLin-Vien, D., Colthup, N.B., Fateley, W.G., Grasselli, J.G., 1991b. Aromatic and heteroaromatic rings, en: Colthup, N.B. (Ed.), The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Academic Press, New York, pp. 277–306. doi:10.1016/b978-0-08-057116-4.50023-7
dc.relation.referencesLin-Vien, D., Colthup, N.B., Fateley, W.G., Grasselli, J.G., 1991c. Alcohols and phenols, en: Colthup, N.B. (Ed.), The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Academic Press, New York, pp. 45–60. doi:10.1016/B978-0-08-057116-4.50010-9
dc.relation.referencesLin, W., Coombes, A.G., Garnett, M.C., Davies, M.C., Schacht, E., Davis, S.S., Illum, L., 1994. Preparation of sterically stabilized human serum albumin nanospheres using a novel Dextranox-MPEG crosslinking agent. Pharm. Res. 11, 1588–92. doi:10.1023/A:1018957704209
dc.relation.referencesLin, X., Li, X., Zheng, L., Yu, L., Zhang, Q., Liu, W., 2007. Preparation and characterization of monocaprate nanostructured lipid carriers. Colloids Surfaces A Physicochem. Eng. Asp. 311, 106–111. doi:10.1016/j.colsurfa.2007.06.003
dc.relation.referencesLiu, D., Jiang, S., Shen, H., Qin, S., Liu, J., Zhang, Q., Li, R., Xu, Q., 2011. Diclofenac sodium-loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method. J. Nanoparticle Res. 13, 2375–2386. doi:10.1007/s11051-010-9998-y
dc.relation.referencesLiu, J., Gong, T., Fu, H., Wang, C., Wang, X., Chen, Q., Zhang, Q., He, Q., Zhang, Z., 2008. Solid lipid nanoparticles for pulmonary delivery of insulin. Int. J. Pharm. 356, 333–344. doi:10.1016/j.ijpharm.2008.01.008
dc.relation.referencesLiu, Q., Zhang, S., Shen, S., Yun, J., Yao, K., 2011. Density and viscosity of ternary systems (Poloxamer 188 + Ethanol/Acetone + Water) at temperatures from 288.15 K to 308.15 K. Chinese J. Chem. Eng. 19, 478–483. doi:10.1016/S1004-9541(11)60009-8
dc.relation.referencesLiu, Y., Wang, L., Zhao, Y., He, M., Zhang, X., Niu, M., Feng, N., 2014. Nanostructured lipid carriers versus microemulsions for delivery of the poorly water-soluble drug luteolin. Int. J. Pharm. 476, 169–177. doi:10.1016/j.ijpharm.2014.09.052
dc.relation.referencesLobovkina, T., Jacobson, G.B., Gonzalez-Gonzalez, E., Hickerson, R.P., Leake, D., Kaspar, R.L., Contag, C.H., Zare, R.N., 2011. In vivo sustained release of siRNA from solid lipid nanoparticles. ACS Nano 5, 9977–9983. doi:10.1021/nn203745n
dc.relation.referencesLombardi Borgia, S., Regehly, M., Sivaramakrishnan, R., Mehnert, W., Korting, H.C., Danker, K., Röder, B., Kramer, K.D., Schäfer-Korting, M., 2005. Lipid nanoparticles for skin penetration enhancement - Correlation to drug localization within the particle matrix as determined by fluorescence and parelectric spectroscopy. J. Control. Release 110, 151–163. doi:10.1016/j.jconrel.2005.09.045
dc.relation.referencesLong, C., Zhang, L., Qian, Y., 2006. Mesoscale simulation of drug molecules distribution in the matrix of solid lipid microparticles (SLM). Chem. Eng. J. 119, 99–106. doi:10.1016/j.cej.2006.03.031
dc.relation.referencesLu, F., Wu, S.-H., Hung, Y., Mou, C.-Y., 2009. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5, 1408–1413. doi:10.1002/smll.200900005
dc.relation.referencesLukowski, G., Kasbohm, J., Pflegel, P., Illing, A., Wulff, H., 2000. Crystallographic investigation of cetylpalmitate solid lipid nanoparticles. Int. J. Pharm. 196, 201–205. doi:10.1016/S0378-5173(99)00421-4
dc.relation.referencesLuo, Y., Teng, Z., Li, Y., Wang, Q., 2015. Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr. Polym. 122, 221–229. doi:10.1016/j.carbpol.2014.12.084
dc.relation.referencesLutton, E.S., 1945. The polymorphism of tristearin and some of its homologs. J. Am. Chem. Soc. 67, 524–527. doi:10.1021/ja01220a008
dc.relation.referencesLv, Y., He, H., Qi, J., Lu, Y., Zhao, W., Dong, X., Wu, W., 2018. Visual validation of the measurement of entrapment efficiency of drug nanocarriers. Int. J. Pharm. 547, 395–403. doi:10.1016/j.ijpharm.2018.06.025
dc.relation.referencesMagenheim, B., Levy, M.Y., Benita, S., 1993. A new in vitro technique for the evaluation of drug release profile from colloidal carriers - ultrafiltration technique at low pressure. Int. J. Pharm. 94, 115–123. doi:10.1016/0378-5173(93)90015-8
dc.relation.referencesMarangoni, A.G., Acevedo, N., Maleky, F., Co, E., Peyronel, F., Mazzanti, G., Quinn, B., Pink, D., 2012. Structure and functionality of edible fats. Soft Matter 8, 1275–1300. doi:10.1039/C1SM06234D
dc.relation.referencesMaretti, E., Rustichelli, C., Romagnoli, M., Balducci, A.G., Buttini, F., Sacchetti, F., Leo, E., Iannuccelli, V., 2016. Solid Lipid Nanoparticle assemblies (SLNas) for an anti-TB inhalation treatment—A Design of Experiments approach to investigate the influence of pre-freezing conditions on the powder respirability. Int. J. Pharm. 511, 669–679. doi:10.1016/j.ijpharm.2016.07.062
dc.relation.referencesMarinova, K.G., Alargova, R.G., Denkov, N.D., Velev, O.D., Petsev, D.N., Ivanov, I.B., Borwankar, R.P., 1996. Charging of oil−water interfaces due to spontaneous adsorption of hydroxyl ions. Langmuir 12, 2045–2051. doi:10.1021/la950928i
dc.relation.referencesMartinez, V., Henary, M., 2016. Nile Red and Nile Blue: Applications and syntheses of structural analogues. Chem. - A Eur. J. 22, 13764–13782. doi:10.1002/chem.201601570
dc.relation.referencesMartins, S., Tho, I., Souto, E.B., Ferreira, D., Brandl, M., 2012. Multivariate design for the evaluation of lipid and surfactant composition effect for optimisation of lipid nanoparticles. Eur. J. Pharm. Sci. 45, 613–623. doi:10.1016/j.ejps.2011.12.015
dc.relation.referencesMazuryk, J., Deptuła, T., Polchi, A., Gapiński, J., Giovagnoli, S., Magini, A., Emiliani, C., Kohlbrecher, J., Patkowski, A., 2016. Rapamycin-loaded solid lipid nanoparticles: Morphology and impact of the drug loading on the phase transition between lipid polymorphs. Colloids Surfaces A Physicochem. Eng. Asp. 502, 54–65. doi:10.1016/j.colsurfa.2016.05.017
dc.relation.referencesMehnert, W., Mäder, K., 2012. Solid lipid nanoparticles. Producción, characterization and applications. Adv. Drug Deliv. Rev. 64, 83–101. doi:10.1016/j.addr.2012.09.021
dc.relation.referencesMetin, S., Hartel, R.W., 2005. Crystallization of fats and oils, en: Shahidi, F. (Ed.), Bailey’s Industrial Oil and Fat Products. John Wiley & Sons, Inc., Hoboken, New Jersey, pp. 45–76. doi:10.1002/047167849X.bio021
dc.relation.referencesMiao, J., Du, Y., Yuan, H., Zhang, X., Li, Q., Rao, Y., Zhao, M., Hu, F., 2015. Improved cytotoxicity of paclitaxel loaded in nanosized lipid carriers by intracellular delivery. J. Nanoparticle Res. 17, 10. doi:10.1007/s11051-014-2852-x
dc.relation.referencesMiao, J., Du, Y.Z., Yuan, H., Zhang, X., Hu, F.Q., 2013. Drug resistance reversal activity of anticancer drug loaded solid lipid nanoparticles in multi-drug resistant cancer cells. Colloids Surfaces B Biointerfaces 110, 74–80. doi:10.1016/j.colsurfb.2013.03.037
dc.relation.referencesMiglietta, A., Cavalli, R., Bocca, C., Gabriel, L., Rosa Gasco, M., 2000. Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel. Int. J. Pharm. 210, 61–67. doi:10.1016/S0378-5173(00)00562-7
dc.relation.referencesMilsmann, J., Oehlke, K., Greiner, R., Steffen-Heins, A., 2017. Fate of edible solid lipid nanoparticles (SLN) in surfactant stabilized o/w emulsions. Part 2: Release and partitioning behavior of lipophilic probes from SLN into different phases of o/w emulsions. Colloids Surfaces A Physicochem. Eng. Asp. 1–0. doi:10.1016/j.colsurfa.2017.05.050
dc.relation.referencesMoinard-Chécot, D., Chevalier, Y., Briançon, S., Beney, L., Fessi, H., 2008. Mechanism of nanocapsules formation by the emulsion-diffusion process. J. Colloid Interface Sci. 317, 458–68. doi:10.1016/j.jcis.2007.09.081
dc.relation.referencesMojahedian, M.M., Daneshamouz, S., Samani, S.M., Zargaran, A., 2013. A novel method to produce solid lipid nanoparticles using n-butanol as an additional co-surfactant according to the o/w microemulsion quenching technique. Chem. Phys. Lipids 174, 32–38. doi:10.1016/j.chemphyslip.2013.05.001
dc.relation.referencesMontenegro, L., Lai, F., Offerta, A., Sarpietro, M.G., Micicchè, L., Maccioni, A.M., Valenti, D., Fadda, A.M., 2015. From nanoemulsions to nanostructured lipid carriers: A relevant development in dermal delivery of drugs and cosmetics. J. Drug Deliv. Sci. Technol. 32, 100–112. doi:10.1016/j.jddst.2015.10.003
dc.relation.referencesMontenegro, L., Sarpietro, M.G., Ottimo, S., Puglisi, G., Castelli, F., 2011. Differential scanning calorimetry studies on sunscreen loaded solid lipid nanoparticles prepared by the phase inversion temperature method. Int. J. Pharm. 415, 301–306. doi:10.1016/j.ijpharm.2011.05.076
dc.relation.referencesMora-Huertas, C.E., Fessi, H., Elaissari, A., 2011. Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification-diffusion methods critical comparison. Adv. Colloid Interface Sci. 163, 90–122. doi:10.1016/j.cis.2011.02.005
dc.relation.referencesMosallaei, N., Jaafari, M.R., Hanafi-Bojd, M.Y., Golmohammadzadeh, S., Malaekeh-Nikouei, B., 2013. Docetaxel-loaded solid lipid nanoparticles: Preparation, characterization, in vitro, and in vivo evaluations. J. Pharm. Sci. 102, 1994–2004. doi:10.1002/jps.23522
dc.relation.referencesMukherjee, S., Ray, S., Thakur, R.S., 2009. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci. 71, 349–358. doi:10.4103/0250-474X.57282
dc.relation.referencesMüller, R.H., Maassen, S., Schwarz, C., Mehnert, W., 1997. Solid lipid nanoparticles (SLN) as potential carrier for human use: Interaction with human granulocytes. J. Control. Release 47, 261–269. doi:10.1016/S0168-3659(97)01653-2
dc.relation.referencesMüller, R.H., Mäder, K., Gohla, S.H., 2000. Solid lipid nanoparticles (SLN) for controlled drug delivery a review of the state of the art. Eur. J. Pharm. Biopharm. 50, 161–177. doi:10.1016/S0939-6411(00)00087-4
dc.relation.referencesMüller, R.H., Mäder, K., Lippacher, A., Jenning, V., 1999. Fest-flüssig (halbfeste) lipidpartikel (nano-compartiment-carrier-NCC) und verfahren zur herstellung hochkonzentrierter lipidpartkel. Germany Patent DE19945203A1.
dc.relation.referencesMüller, R.H., Petersen, R.D., Hommoss, A., Pardeike, J., 2007. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv. Drug Deliv. Rev. 59, 522–530. doi:10.1016/j.addr.2007.04.012
dc.relation.referencesMüller, R.H., Runge, S.A., Ravelli, V., Thünemann, A.F., Mehnert, W., Souto, E.B., 2008. Cyclosporine-loaded solid lipid nanoparticles (SLN®): Drug–lipid physicochemical interactions and characterization of drug incorporation. Eur. J. Pharm. Biopharm. 68, 535–544. doi:10.1016/j.ejpb.2007.07.006
dc.relation.referencesNafee, N., Husari, A., Maurer, C.K., Lu, C., de Rossi, C., Steinbach, A., Hartmann, R.W., Lehr, C.-M., Schneider, M., 2014. Antibiotic-free nanotherapeutics: Ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J. Control. Release 192, 131–140. doi:10.1016/j.jconrel.2014.06.055
dc.relation.referencesNahak, P., Karmakar, G., Chettri, P., Roy, B., Guha, P., Besra, S.E., Soren, A., Bykov, A.G., Akentiev, A. V, Noskov, B.A., Panda, A.K., 2016. Influence of lipid core material on physicochemical characteristics of an ursolic acid-loaded nanostructured lipid carrier: An attempt to enhance anticancer activity. Langmuir 32, 9816–9825. doi:10.1021/acs.langmuir.6b02402
dc.relation.referencesNapper, D.., 1977. Steric stabilization. J. Colloid Interface Sci. 58, 390–407. doi:10.1016/0021-9797(77)90150-3
dc.relation.referencesNegi, J.S., Chattopadhyay, P., Sharma, A.K., Ram, V., 2014. Development and evaluation of glyceryl behenate based solid lipid nanoparticles (SLNs) using hot self-nanoemulsification (SNE) technique. Arch. Pharm. Res. 37, 361–370. doi:10.1007/s12272-013-0154-y
dc.relation.referencesNelson, A., Cosgrove, T., 2004. Dynamic light scattering studies of poly(ethylene oxide) adsorbed on laponite: Layer conformation and its effect on particle stability. Langmuir 20, 10382–10388. doi:10.1021/la049323p
dc.relation.referencesNelson, D.D., Pan, Y., Tikekar, R. V, Dan, N., Nitin, N., 2017. Compound stability in nanoparticles: The effect of solid phase fraction on diffusion of degradation agents into nanostructured lipid carriers. Langmuir 33, 14115–14122. doi:10.1021/acs.langmuir.7b03407
dc.relation.referencesNg, W.L., 1989. Nucleation behaviour of tripalmitin from a triolein solution. J. Am. Oil Chem. Soc. 66, 1103–1106. doi:10.1007/BF02670093
dc.relation.referencesNik, A.M., Langmaid, S., Wright, A.J., 2012. Nonionic surfactant and interfacial structure impact crystallinity and stability of β-carotene loaded lipid nanodispersions. J. Agric. Food Chem. 60, 4126–4135. doi:10.1021/jf204810m
dc.relation.referencesNoack, A., Hause, G., Mäder, K., 2012. Physicochemical characterization of curcuminoid-loaded solid lipid nanoparticles. Int. J. Pharm. 423, 440–51. doi:10.1016/j.ijpharm.2011.12.011
dc.relation.referencesObeidat, W.M., Schwabe, K., Müller, R.H., Keck, C.M., 2010. Preservation of nanostructured lipid carriers (NLC). Eur. J. Pharm. Biopharm. 76, 56–67. doi:10.1016/j.ejpb.2010.05.001
dc.relation.referencesOh, K.T., Bronich, T.K., Kabanov, A. V., 2004. Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic® block copolymers. J. Control. Release 94, 411–422. doi:10.1016/j.jconrel.2003.10.018
dc.relation.referencesOhshima, H., 2002. Electrophoretic mobility of a charged spherical colloidal particle covered with an uncharged polymer layer. Electrophoresis 23, 1995. doi:10.1002/1522-2683(200207)23:13<1995::AID-ELPS1995>3.0.CO;2-M
dc.relation.referencesOkuda, S., McClements, D.J., Decker, E.A., 2005. Impact of lipid physical state on the oxidation of methyl linolenate in oil-in-water emulsions. J. Agric. Food Chem. 53, 9624–9628. doi:10.1021/jf0518960
dc.relation.referencesOlbrich, C., Kayser, O., Müller, R.H., 2002a. Lipase degradation of Dynasan 114 and 116 solid lipid nanoparticles (SLN) - Effect of surfactants, storage time and crystallinity. Int. J. Pharm. 237, 119–128. doi:10.1016/S0378-5173(02)00035-2
dc.relation.referencesOlbrich, C., Kayser, O., Müller, R.H., 2002b. Enzymatic degradation of Dynasan 114 SLN - Effect of surfactants and particle size. J. Nanoparticle Res. 4, 121–129. doi:10.1023/A:1020159331420
dc.relation.referencesOlbrich, C., Müller, R.H., 1999. Enzymatic degradation of SLN—effect of surfactant and surfactant mixtures. Int. J. Pharm. 180, 31–39. doi:10.1016/S0378-5173(98)00404-9
dc.relation.referencesOlerile, L.D., Liu, Y., Zhang, B., Wang, T., Mu, S., Zhang, J., Selotlegeng, L., Zhang, N., 2017. Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic. Colloids Surfaces B Biointerfaces 150, 121–130. doi:10.1016/j.colsurfb.2016.11.032
dc.relation.referencesOliveira, M.S., Mussi, S. V, Gomes, D.A., Yoshida, M.I., Frezard, F., Carregal, V.M., Ferreira, L.A.M., 2016. α-Tocopherol succinate improves encapsulation and anticancer activity of doxorubicin loaded in solid lipid nanoparticles. Colloids Surfaces B Biointerfaces 140, 246–53. doi:10.1016/j.colsurfb.2015.12.019
dc.relation.referencesPalanuwech, J., Coupland, J.N., 2003. Effect of surfactant type on the stability of oil-in-water emulsions to dispersed phase crystallization. Colloids Surfaces A Physicochem. Eng. Asp. 223, 251–262. doi:10.1016/S0927-7757(03)00169-9
dc.relation.referencesPaliwal, R., Paliwal, S.R., Agrawal, G.P., Vyas, S.P., 2011. Biomimetic solid lipid nanoparticles for oral bioavailability enhancement of low molecular weight heparin and its lipid conjugates: In vitro and in vivo evaluation. Mol. Pharm. 1314–1321. doi:10.1021/mp200109m
dc.relation.referencesPan, Y., Tikekar, R. V., Nitin, N., 2016. Distribution of a model bioactive within solid lipid nanoparticles and nanostructured lipid carriers influences its loading efficiency and oxidative stability. Int. J. Pharm. 511, 322–330. doi:10.1016/j.ijpharm.2016.07.019
dc.relation.referencesPandita, D., Ahuja, A., Lather, V., Benjamin, B., Dutta, T., Velpandian, T., Khar, R.K., 2011. Development of lipid-based nanoparticles for enhancing the oral bioavailability of paclitaxel. AAPS PharmSciTech 12, 712–22. doi:10.1208/s12249-011-9636-8
dc.relation.referencesPandita, D., Kumar, S., Poonia, N., Lather, V., 2014. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res. Int. 62, 1165–1174. doi:10.1016/j.foodres.2014.05.059
dc.relation.referencesPardeike, J., Hommoss, A., Müller, R.H., 2009. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 366, 170–184. doi:10.1016/j.ijpharm.2008.10.003
dc.relation.referencesPardeike, J., Weber, S., Haber, T., Wagner, J., Zarfl, H.P., Plank, H., Zimmer, A., 2011. Development of an Itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. Int. J. Pharm. 419, 329–338. doi:10.1016/j.ijpharm.2011.07.040
dc.relation.referencesPatel, N.K., Kostenbauder, H.B., 1958. Interaction of preservatives with macromolecules I. J. Am. Pharm. Assoc. (Scientific ed.) 47, 289–293. doi:10.1002/jps.3030470420
dc.relation.referencesPatist, A., Bhagwat, S.S., Penfield, K.W., Aikens, P., Shah, D.O., 2000. On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants. J. Surfactants Deterg. 3, 53–58. doi:10.1007/s11743-000-0113-4
dc.relation.referencesPattarino, F., Bettini, R., Foglio Bonda, A., Della Bella, A., Giovannelli, L., 2015. Polymorphism and kinetic behavior of binary mixtures of triglycerides. Int. J. Pharm. 473, 87–94. doi:10.1016/j.ijpharm.2014.06.042
dc.relation.referencesPecora, R., 2000. Dynamic light scattering measurement of nanometer particles in liquids. J. Nanoparticle Res. 2, 123–131. doi:10.1023/A:1010067107182
dc.relation.referencesPhipps, L.W., 1964. Heterogeneous and homogeneous nucleation in supercooled triglycerides and n-paraffins. Trans. Faraday Soc. 60, 1873. doi:10.1039/tf9646001873
dc.relation.referencesPilcer, G., Amighi, K., 2010. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm. 392, 1–19. doi:10.1016/j.ijpharm.2010.03.017
dc.relation.referencesPink, D.L., Loruthai, O., Ziolek, R.M., Wasutrasawat, P., Terry, A.E., Lawrence, M.J., Lorenz, C.D., 2019. On the structure of solid lipid nanoparticles. Small 15. doi:10.1002/smll.201903156
dc.relation.referencesPovey, M.J.W., 2014. Crystal nucleation in food colloids. Food Hydrocoll. 42, 118–129. doi:10.1016/j.foodhyd.2014.01.016
dc.relation.referencesPředota, M., Machesky, M.L., Wesolowski, D.J., 2016. Molecular origins of the zeta potential. Langmuir 32, 10189–10198. doi:10.1021/acs.langmuir.6b02493
dc.relation.referencesPriel, Z., Silberberg, A., 1978. The thickness of adsorbed polymer layers at a liquid–solid interface as a function of bulk concentration. J. Polym. Sci. Polym. Phys. Ed. 16, 1917–1925. doi:10.1002/pol.1978.180161102
dc.relation.referencesQian, C., Decker, E.A., Xiao, H., McClements, D.J., 2013. Impact of lipid nanoparticle physical state on particle aggregation and β-carotene degradation: Potential limitations of solid lipid nanoparticles. Food Res. Int. 52, 342–349. doi:10.1016/j.foodres.2013.03.035
dc.relation.referencesQuintanar-Guerrero, D., Tamayo-Esquivel, D., Ganem-Quintanar, A., Allémann, E., Doelker, E., 2005. Adaptation and optimization of the emulsification-diffusion technique to prepare lipidic nanospheres. Eur. J. Pharm. Sci. 26, 211–218. doi:10.1016/j.ejps.2005.06.001
dc.relation.referencesRadaic, A., Barbosa, L.R.S., Jaime, C., Kapila, Y.L., Pessine, F.B.T., de Jesus, M.B., 2016. How lipid cores affect lipid nanoparticles as drug and gene delivery systems, en: Advances in Biomembranes and Lipid Self-Assembly. pp. 1–42. doi:10.1016/bs.abl.2016.04.001
dc.relation.referencesRahman, Z., Zidan, A.S., Khan, M.A., 2010. Non-destructive methods of characterization of risperidone solid lipid nanoparticles. Eur. J. Pharm. Biopharm. 76, 127–37. doi:10.1016/j.ejpb.2010.05.003
dc.relation.referencesRao, M.P., Manjunath, K., Bhagawati, S.T., Thippeswamy, B.S., 2014. Bixin loaded solid lipid nanoparticles for enhanced hepatoprotection. Preparation, characterisation and in vivo evaluation. Int. J. Pharm. 473, 485–92. doi:10.1016/j.ijpharm.2014.07.027
dc.relation.referencesRasmussen, N., 1993. Facts, artifacts, and mesosomes: Practicing epistemology with the electron microscope. Stud. Hist. Philos. Sci. Part A 24, 227–265. doi:10.1016/0039-3681(93)90047-N
dc.relation.referencesRibeiro, A.P.B., Masuchi, M.H., Miyasaki, E.K., Domingues, M.A.F., Stroppa, V.L.Z., de Oliveira, G.M., Kieckbusch, T.G., Paula, A., Ribeiro, B., Masuchi, M.H., Miyasaki, E.K., 2015. Crystallization modifiers in lipid systems. J. Food Sci. Technol. 52, 3925–3946. doi:10.1007/s13197-014-1587-0
dc.relation.referencesRosenblatt, K.M., Bunjes, H., 2009. Poly(vinyl alcohol) as emulsifier stabilizes solid triglyceride drug carrier nanoparticles in the α-modification. Mol. Pharm. 6, 105–120. doi:10.1021/mp8000759
dc.relation.referencesRosenblatt, K.M., Douroumis, D., Bunjes, H., 2007. Drug release from differently structured monoolein/poloxamer nanodispersions studied with differential pulse polarography and ultrafiltration at low pressure. J. Pharm. Sci. 96, 1564–1575. doi:10.1002/jps.20808
dc.relation.referencesRoss, S., Long, R.F., 1969. Electrophoresis as method of investigating electric double layer. Ind. Eng. Chem. 61, 58–71. doi:10.1021/ie50718a007
dc.relation.referencesRowe, R.C., Sheskey, P.J., Quinn, M.E. (Eds.), 2009. Handbook of Pharmaceutical Excipients, Sixth. ed. Pharmaceutical Press, American Pharmacists Association, London.
dc.relation.referencesSadeghpour, A., Parada, M.L., Vieira, J., Povey, M., Rappolt, M., 2018. Global Small-Angle X-ray Scattering data analysis of triacylglycerols in the molten state (Part I). J. Phys. Chem. B 122, 10320–10329. doi:10.1021/acs.jpcb.8b06704
dc.relation.referencesSaeidpour, S., Lohan, S.B., Solik, A., Paul, V., Bodmeier, R., Zoubari, G., Bittl, R., Meinke, M.C., Teutloff, C., 2017. Drug distribution in nanostructured lipid particles. Eur. J. Pharm. Biopharm. 110, 19–23. doi:10.1016/j.ejpb.2016.10.008
dc.relation.referencesSalatin, S., Maleki Dizaj, S., Yari Khosroushahi, A., 2015. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol. Int. 39, 881–890. doi:10.1002/cbin.10459
dc.relation.referencesSalminen, H., Gömmel, C., Leuenberger, B.H., Weiss, J., 2016. Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: Towards bioactive-based design of delivery systems. Food Chem. 190, 928–937. doi:10.1016/j.foodchem.2015.06.054
dc.relation.referencesSalminen, H., Helgason, T., Aulbach, S., Kristinsson, B., Kristbergsson, K., Weiss, J., 2014. Influence of co-surfactants on crystallization and stability of solid lipid nanoparticles. J. Colloid Interface Sci. 426, 256–263. doi:10.1016/j.jcis.2014.04.009
dc.relation.referencesSanna, V., Caria, G., Mariani, A., 2010. Effect of lipid nanoparticles containing fatty alcohols having different chain length on the ex vivo skin permeability of econazole nitrate. Powder Technol. 201, 32–36. doi:10.1016/j.powtec.2010.02.035
dc.relation.referencesSarpietro, M.G., Accolla, M.L., Puglisi, G., Castelli, F., Montenegro, L., 2014. Idebenone loaded solid lipid nanoparticles: Calorimetric studies on surfactant and drug loading effects. Int. J. Pharm. 471, 69–74. doi:10.1016/j.ijpharm.2014.05.019
dc.relation.referencesSato, K., 2001. Crystallization behaviour of fats and lipids — a review. Chem. Eng. Sci. 56, 2255–2265. doi:10.1016/S0009-2509(00)00458-9
dc.relation.referencesSato, K., Ueno, S., 2005. Polymorphism in fats and oils, en: Shahidi, F. (Ed.), Bailey’s Industrial Oil and Fat Products. John Wiley & Sons, Inc., Hoboken, New Jersey, pp. 77–120. doi:10.1002/047167849X.bio020
dc.relation.referencesSaupe, A., Gordon, K.C., Rades, T., 2006. Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy. Int. J. Pharm. 314, 56–62. doi:10.1016/j.ijpharm.2006.01.022
dc.relation.referencesSaupe, A., Wissing, S.A., Lenk, A., Schmidt, C., Müller, R.H., 2005. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) - Structural investigations on two different carrier systems. Biomed. Mater. Eng. 15, 393–402.
dc.relation.referencesScatchard, G., 1949. The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 51, 660–672. doi:10.1111/j.1749-6632.1949.tb27297.x
dc.relation.referencesSchmiele, M., Busch, S., Morhenn, H., Schindler, T., Schmutzler, T., Schweins, R., Lindner, P., Boesecke, P., Westermann, M., Steiniger, F., Funari, S.S., Unruh, T., 2016. Structural characterization of lecithin-stabilized tetracosane lipid nanoparticles. Part I: emulsions. J. Phys. Chem. B 120, 5505–5512. doi:10.1021/acs.jpcb.6b02519
dc.relation.referencesSchmolka, I.R., 1977. A review of block polymer surfactants. J. Am. Oil Chem. Soc. 54, 110–116. doi:10.1007/BF02894385
dc.relation.referencesSchoenitz, M., Joseph, S., Nitz, A., Bunjes, H., Scholl, S., 2013. Controlled polymorphic transformation of continuously crystallized solid lipid nanoparticles in a microstructured device: A feasibility study. Eur. J. Pharm. Biopharm. 86, 324–331. doi:10.1016/j.ejpb.2013.08.009
dc.relation.referencesSchöler, N., Olbrich, C., Tabatt, K., Müller, R.H., Hahn, H., Liesenfeld, O., 2001. Surfactant, but not the size of solid lipid nanoparticles (SLN) influences viability and cytokine production of macrophages. Int. J. Pharm. 221, 57–67. doi:10.1016/S0378-5173(01)00660-3
dc.relation.referencesSchubert, M.A., 2003. Solvent injection as a new approach for manufacturing lipid nanoparticles – evaluation of the method and process parameters. Eur. J. Pharm. Biopharm. 55, 125–131. doi:10.1016/S0939-6411(02)00130-3
dc.relation.referencesSchubert, M.A., Schicke, B.C., Müller-Goymann, C.C., 2005. Thermal analysis of the crystallization and melting behavior of lipid matrices and lipid nanoparticles containing high amounts of lecithin. Int. J. Pharm. 298, 242–254. doi:10.1016/j.ijpharm.2005.04.014
dc.relation.referencesSchwarz, C., Mehnert, W., 1997. Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN). Int. J. Pharm. 157, 171–179. doi:10.1016/S0378-5173(97)00222-6
dc.relation.referencesSeetapan, N., Bejrapha, P., Srinuanchai, W., Ruktanonchai, U.R., 2010. Rheological and morphological characterizations on physical stability of gamma-oryzanol-loaded solid lipid nanoparticles (SLNs). Micron 41, 51–58. doi:10.1016/j.micron.2009.08.003
dc.relation.referencesSeverino, P., Pinho, S.C., Souto, E.B., Santana, M.H.A., 2011a. Polymorphism, crystallinity and hydrophilic-lipophilic balance of stearic acid and stearic acid-capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids Surfaces B Biointerfaces 86, 125–130. doi:10.1016/j.colsurfb.2011.03.029
dc.relation.referencesSeverino, P., Pinho, S.C., Souto, E.B., Santana, M.H.A., 2011b. Crystallinity of Dynasan®114 and Dynasan®118 matrices for the production of stable Miglyol®-loaded nanoparticles. J. Therm. Anal. Calorim. 108, 101–108. doi:10.1007/s10973-011-1613-7
dc.relation.referencesShah, B., Khunt, D., Bhatt, H., Misra, M., Padh, H., 2015. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters. Eur. J. Pharm. Sci. 78, 54–66. doi:10.1016/j.ejps.2015.07.002
dc.relation.referencesShah, M., Pathak, K., 2010. Development and statistical optimization of solid lipid nanoparticles of simvastatin by using 2(3) full-factorial design. AAPS PharmSciTech 11, 489–496. doi:10.1208/s12249-010-9414-z
dc.relation.referencesShah, R.M., Bryant, G., Taylor, M., Eldridge, D.S., Palombo, E.A., Harding, I.H., 2016. Structure of solid lipid nanoparticles produced by a microwave-assisted microemulsion technique. RSC Adv. 6, 36803–36810. doi:10.1039/C6RA02020H
dc.relation.referencesShah, R.M., Malherbe, F., Eldridge, D., Palombo, E.A., Harding, I.H., 2014. Physicochemical characterization of solid lipid nanoparticles (SLNs) prepared by a novel microemulsion technique. J. Colloid Interface Sci. 428, 286–294. doi:10.1016/j.jcis.2014.04.057
dc.relation.referencesSharma, S.D., Kitano, H., Sagara, K., 2004. Phase change materials for low temperature solar thermal applications. Res. Reports Fac. Eng. Mie Univ. 29, 31–64. doi:10.2174/1876387101004010042
dc.relation.referencesShegokar, R., Singh, K.K., Müller, R.H., 2011. Production & stability of stavudine solid lipid nanoparticles - From lab to industrial scale. Int. J. Pharm. 416, 461–470. doi:10.1016/j.ijpharm.2010.08.014
dc.relation.referencesShen, J., Sun, M., Ping, Q., Ying, Z., Liu, W., 2010. Incorporation of liquid lipid in lipid nanoparticles for ocular drug delivery enhancement. Nanotechnology 21, 025101. doi:10.1088/0957-4484/21/2/025101
dc.relation.referencesShen, S., Wu, Y., Liu, Y., Wu, D., 2017. High drug-loading nanomedicines: Progress, current status, and prospects. Int. J. Nanomedicine 12, 4085–4109. doi:10.2147/IJN.S132780
dc.relation.referencesShi, F., Zhao, J.-H., Liu, Y., Wang, Z., Zhang, Y.-T., Feng, N.-P., 2012. Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil. Int. J. Nanomedicine 62, 2033. doi:10.2147/IJN.S30085
dc.relation.referencesShidhaye, S.S., Vaidya, R., Sutar, S., Patwardhan, A., Kadam, V.J., 2008. Solid lipid nanoparticles and nanostructured lipid carriers – Innovative generations of solid lipid carriers. Curr. Drug Deliv. 5, 324–331.
dc.relation.referencesSiddiqui, A., Alayoubi, A., Nazzal, S., 2014. The effect of emulsifying wax on the physical properties of CTAB-based solid lipid nanoparticles (SLN). Pharm. Dev. Technol. 19, 125–8. doi:10.3109/10837450.2012.751401
dc.relation.referencesSiddiqui, A., Gupta, V., Liu, Y.Y., Nazzal, S., 2012. Doxorubicin and MBO-asGCS oligonucleotide loaded lipid nanoparticles overcome multidrug resistance in adriamycin resistant ovarian cancer cells (NCI/ADR-RES). Int. J. Pharm. 431, 222–9. doi:10.1016/j.ijpharm.2012.04.050
dc.relation.referencesSiekmann, B., Westesen, K., 1994. Thermoanalysis of the recrystallization process of melt-homogenized glyceride nanoparticles. Colloids Surfaces B Biointerfaces 3, 159–175. doi:10.1016/0927-7765(94)80063-4
dc.relation.referencesSilva, A.C., González-Mira, E., García, M.L., Egea, M.A., Fonseca, J., Silva, R., Santos, D., Souto, E.B., Ferreira, D., 2011. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound. Colloids Surfaces B Biointerfaces 86, 158–165. doi:10.1016/j.colsurfb.2011.03.035
dc.relation.referencesSimoneau, C., McCarthy, M.J., Reid, D.S., German, J.B., 1993. Influence of triglyceride composition on crystallization kinetics of model emulsions. J. Food Eng. 19, 365–387. doi:10.1016/0260-8774(93)90026-G
dc.relation.referencesSivaramakrishnan, R., Kankate, L., Niehus, H., Kramer, K.D., 2005. Parelectric spectroscopy of drug-carrier-systems—distribution of carrier masses or activation energies. Biophys. Chem. 114, 221–228. doi:10.1016/j.bpc.2004.12.007
dc.relation.referencesSivaramakrishnan, R., Nakamura, C., Mehnert, W., Korting, H.C., Kramer, K.D., Schäfer-Korting, M., 2004. Glucocorticoid entrapment into lipid carriers — characterisation by parelectric spectroscopy and influence on dermal uptake. J. Control. Release 97, 493–502. doi:10.1016/j.jconrel.2004.04.001
dc.relation.referencesSjöström, B., Kaplun, A., Talmon, Y., Cabane, B., 1995. Structures of nanoparticles prepared from oil-in-water emulsions. Pharm. Res. 12, 39–48. doi:10.1023/A:1016278302046
dc.relation.referencesSmith, M.C., Crist, R.M., Clogston, J.D., McNeil, S.E., 2017. Zeta potential: A case study of cationic, anionic, and neutral liposomes. Anal. Bioanal. Chem. 409, 5779–5787. doi:10.1007/s00216-017-0527-z
dc.relation.referencesSoares, S., Fonte, P., Costa, A., Andrade, J., Seabra, V., Ferreira, D., Reis, S., Sarmento, B., 2013. Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. Int. J. Pharm. 456, 370–381. doi:10.1016/j.ijpharm.2013.08.076
dc.relation.referencesSolans, C., Izquierdo, P., Nolla, J., Azemar, N., Garcia-Celma, M., 2005. Nano-emulsions. Curr. Opin. Colloid Interface Sci. 10, 102–110. doi:10.1016/j.cocis.2005.06.004
dc.relation.referencesSolans, C., Solé, I., 2012. Nano-emulsions: Formation by low-energy methods. Curr. Opin. Colloid Interface Sci. 17, 246–254. doi:10.1016/j.cocis.2012.07.003
dc.relation.referencesSoni, M.G., Carabin, I.G., Burdock, G.A., 2005. Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food Chem. Toxicol. 43, 985–1015. doi:10.1016/j.fct.2005.01.020
dc.relation.referencesSonoda, T., Takata, Y., Ueno, S., Sato, K., 2006. Effects of emulsifiers on crystallization behavior of lipid crystals in nanometer-size oil-in-water emulsion droplets. Cryst. Growth Des. 6, 306–312. doi:10.1021/cg050045h
dc.relation.referencesSouto, E.B., Anselmi, C., Centini, M., Müller, R.H., 2005. Preparation and characterization of n-dodecyl-ferulate-loaded solid lipid nanoparticles (SLN®). Int. J. Pharm. 295, 261–8. doi:10.1016/j.ijpharm.2005.02.005
dc.relation.referencesSouto, E.B., Wissing, S.A., Barbosa, C.M., Müller, R.H., 2004. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int. J. Pharm. 278, 71–77. doi:10.1016/j.ijpharm.2004.02.032
dc.relation.referencesStenkamp, V.S., Berg, J.C., 1997. The role of long tails in steric stabilization and hydrodynamic layer thickness. Langmuir 13, 3827–3832. doi:10.1021/la970173a
dc.relation.referencesSubramanian, N., Murthy, R.S.R., 2004. Use of electrolyte induced flocculation technique for an in vitro steric stability study of steric stabilized liposome formulations. Pharmazie 59, 74–6. doi:10.1242/jeb.089763
dc.relation.referencesSum, A.K., Biddy, M.J., de Pablo, J.J., Tupy, M.J., 2003. Predictive molecular model for the thermodynamic and transport properties of triacylglycerols. J. Phys. Chem. B 107, 14443–14451. doi:10.1021/jp035906g
dc.relation.referencesSweetman, S.C. (Ed.), 2009. Martindale. The Complete Drug Reference, 36a ed. Pharmaceutical Press, American Pharmacists Association, London.
dc.relation.referencesSznitowska, M., Gajewska, M., Janicki, S., Radwanska, A., Lukowski, G., 2001. Bioavailability of diazepam from aqueous-organic solution, submicron emulsion and solid lipid nanoparticles after rectal administration in rabbits. Eur. J. Pharm. Biopharm. 52, 159–163. doi:10.1016/S0939-6411(01)00157-6
dc.relation.referencesTadros, T., 2009. Polymeric surfactants in disperse systems. Adv. Colloid Interface Sci. 147–148, 281–299. doi:10.1016/j.cis.2008.10.005
dc.relation.referencesTakeuchi, M., Ueno, S., Sato, K., 2003. Synchrotron radiation SAXS/WAXS study of polymorph-dependent phase behavior of binary mixtures of saturated monoacid triacylglycerols. Cryst. Growth Des. 3, 369–374. doi:10.1021/cg025594r
dc.relation.referencesTamjidi, F., Shahedi, M., Varshosaz, J., Nasirpour, A., 2013. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov. Food Sci. Emerg. Technol. 19, 29–43. doi:10.1016/j.ifset.2013.03.002
dc.relation.referencesTan, S.W., Billa, N., 2014. Lipid effects on expulsion rate of amphotericin B from solid lipid nanoparticles. AAPS PharmSciTech 15, 287–95. doi:10.1208/s12249-013-0056-9
dc.relation.referencesTan, S.W., Billa, N., Roberts, C.R., Burley, J.C., 2010. Surfactant effects on the physical characteristics of Amphotericin B-containing nanostructured lipid carriers. Colloids Surfaces A Physicochem. Eng. Asp. 372, 73–79. doi:10.1016/j.colsurfa.2010.09.030
dc.relation.referencesTanaka, M., Saito, H., Arimoto, I., Nakano, M., Handa, T., 2003. Evidence for interpenetration of core triglycerides into surface phospholipid monolayers in lipid emulsions. Langmuir 19, 5192–5196. doi:10.1021/la026897q
dc.relation.referencesTeeranachaideekul, V., Boonme, P., Souto, E.B., Müller, R.H., Junyaprasert, V.B., 2008. Influence of oil content on physicochemical properties and skin distribution of Nile red-loaded NLC. J. Control. Release 128, 134–141. doi:10.1016/j.jconrel.2008.02.011
dc.relation.referencesTikekar, R. V., Nitin, N., 2012. Distribution of encapsulated materials in colloidal particles and its impact on oxidative stability of encapsulated materials. Langmuir 28, 9233–9243. doi:10.1021/la301435k
dc.relation.referencesTiwari, R., Pathak, K., 2011. Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: Comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int. J. Pharm. 415, 232–243. doi:10.1016/j.ijpharm.2011.05.044
dc.relation.referencesTorrecilla, J., del Pozo-Rodríguez, A., Apaolaza, P.S., Solinís, M.Á., Rodríguez-Gascón, A., 2015. Solid lipid nanoparticles as non-viral vector for the treatment of chronic hepatitis C by RNA interference. Int. J. Pharm. 479, 181–188. doi:10.1016/j.ijpharm.2014.12.047
dc.relation.referencesTosta, F.V., Andrade, L.M., Mendes, L.P., Anjos, J.L. V., Alonso, A., Marreto, R.N., Lima, E.M., Taveira, S.F., 2014. Paclitaxel-loaded lipid nanoparticles for topical application: The influence of oil content on lipid dynamic behavior, stability, and drug skin penetration. J. Nanoparticle Res. 16, 1–12. doi:10.1007/s11051-014-2782-7
dc.relation.referencesTran, T., Rousseau, D., 2016. Influence of shear on fat crystallization. Food Res. Int. 81, 157–162. doi:10.1016/j.foodres.2015.12.022
dc.relation.referencesTrotta, M., Debernardi, F., Caputo, O., 2003. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. Int. J. Pharm. 257, 153–160. doi:10.1016/S0378-5173(03)00135-2
dc.relation.referencesTrujillo, C.C., Wright, A.J., 2010. Properties and stability of solid lipid particle dispersions based on canola stearin and poloxamer 188. J. Am. Oil Chem. Soc. 87, 715–730. doi:10.1007/s11746-010-1553-6
dc.relation.referencesTrzaskus, K.W., Zdeb, A., de Vos, W.M., Kemperman, A., Nijmeijer, K., 2016. Fouling behavior during microfiltration of silica nanoparticles and polymeric stabilizers. J. Memb. Sci. 505, 205–215. doi:10.1016/j.memsci.2016.01.032
dc.relation.referencesTscharnuter, W., 2000. Photon correlation spectroscopy in particle sizing, en: Encyclopedia of analytical chemistry. John Wiley & Sons, Ltd, Chichester, UK. doi:10.1002/9780470027318.a1512
dc.relation.referencesUnruh, Tobias, Bunjes, H., Westesen, K., Koch, M.H.J., 2002. Observation of Size-Dependent Melting in Lipid Nanoparticles. J. Phys. Chem. B 103, 10373–10377. doi:10.1021/jp9912612
dc.relation.referencesUnruh, T., Westesen, K., Bösecke, P., Lindner, P., Koch, M.H.J., 2002. Self-assembly of triglyceride nanocrystals in suspension. Langmuir 18, 1796–1800. doi:10.1021/la0110601
dc.relation.referencesUrbán-Morlán, Z., Ganem-Rondero, A., Melgoza-Contreras, L.M., Escobar-Chávez, J.J., Nava-Arzaluz, M.G., Quintanar-Guerrero, D., 2010. Preparation and characterization of solid lipid nanoparticles containing cyclosporine by the emulsification-diffusion method. Int. J. Nanomedicine 5, 611–620. doi:10.2147/IJN.S12125
dc.relation.referencesUskoković, V., 2012. Dynamic light scattering based microelectrophoresis: Main prospects and limitations. J. Dispers. Sci. Technol. 33, 1762–1786. doi:10.1080/01932691.2011.625523
dc.relation.referencesVaghasiya, H., Kumar, A., Sawant, K., 2013. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur. J. Pharm. Sci. 49, 311–322. doi:10.1016/j.ejps.2013.03.013
dc.relation.referencesValdes-Aguilera, O., Neckers, D.C., 1989. Aggregation phenomena in xanthene dyes. Acc. Chem. Res. 22, 171–177. doi:10.1021/ar00161a002
dc.relation.referencesValdes-Aguilera, O., Neckers, D.C., 1988. Rose bengal ethyl ester aggregation in aqueous solution. J. Phys. Chem. 92, 4286–4289. doi:10.1021/j100326a010
dc.relation.referencesvan Oss, C.J., 2008a. Stability versus flocculation of aqueous particle suspensions, en: Hubbard, A. (Ed.), Interface Science and Technology. Academic Press, London, pp. 113–130. doi:10.1016/S1573-4285(08)00208-1
dc.relation.referencesvan Oss, C.J., 2008b. The interfacial tension/free energy of interaction between water and two different condensed-phase entities, i, immersed in water, w, en: Hubberd, A. (Ed.), Interface Science and Technology. Academic Press, London, pp. 73–84. doi:10.1016/S1573-4285(08)00206-8
dc.relation.referencesvan Oss, C.J., 2008c. Influence of the pH and the ionic strength of water on contact angles measured with drops of aqueous solutions on electrically charged, amphoteric and uncharged surfaces, en: Hubberd, A. (Ed.), Interface Science and Technology. Academic Press, London, pp. 161–166. doi:10.1016/S1573-4285(08)00212-3
dc.relation.referencesvan Oss, C.J., 2008d. General and historical introduction, en: Hubberd, A. (Ed.), Interface Science and Technology. Academic Press, London, pp. 1–9. doi:10.1016/S1573-4285(08)00201-9
dc.relation.referencesVandita, K., Shashi, B., Santosh, K.G., Pal, K.I., 2012. Enhanced apoptotic effect of curcumin loaded solid lipid nanoparticles. Mol. Pharm. 9, 3411–3421. doi:10.1021/mp300209k
dc.relation.referencesVarache, M., Ciancone, M., Couffin, A.-C., 2020. Optimization of a solid-phase extraction procedure for the analysis of drug-loaded lipid nanoparticles and its application to the determination of leakage and release profiles. J. Pharm. Sci. doi:10.1016/j.xphs.2020.05.003
dc.relation.referencesVarshosaz, J., Eskandari, S., Tabbakhian, M., 2012. Freeze-drying of nanostructure lipid carriers by different carbohydrate polymers used as cryoprotectants. Carbohydr. Polym. 88, 1157–1163. doi:10.1016/j.carbpol.2012.01.051
dc.relation.referencesVarshosaz, J., Minayian, M., Moazen, E., 2010. Enhancement of oral bioavailability of pentoxifylline by solid lipid nanoparticles. J. Liposome Res. 20, 115–123. doi:10.3109/08982100903161456
dc.relation.referencesVenkateswarlu, V., Manjunath, K., 2004. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J. Control. Release 95, 627–638. doi:10.1016/j.jconrel.2004.01.005
dc.relation.referencesVerwey, E.J.., Overbeek, J.T.., 1955. Theory of the stability of lyophobic colloids. J. Colloid Sci. 10, 224–225. doi:10.1016/0095-8522(55)90030-1
dc.relation.referencesVideira, M., Almeida, A.J., Fabra, À., 2012. Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine Nanotechnology, Biol. Med. 8, 1208–1215. doi:10.1016/j.nano.2011.12.007
dc.relation.referencesVideira, M.A., Arranja, A.G., Gouveia, L.F., 2013. Experimental design towards an optimal lipid nanosystem : A new opportunity for paclitaxel-based therapeutics. Eur. J. Pharm. Sci. 49, 302–310. doi:10.1016/j.ejps.2013.03.005
dc.relation.referencesVieira, A.C.C., Chaves, L.L., Pinheiro, S., Pinto, S., Pinheiro, M., Lima, S.C., Ferreira, D., Sarmento, B., Reis, S., 2018. Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. Int. J. Pharm. 536, 478–485. doi:10.1016/j.ijpharm.2017.11.071
dc.relation.referencesVighi, E., Ruozi, B., Montanari, M., Battini, R., Leo, E., 2007. Re-dispersible cationic solid lipid nanoparticles (SLNs) freeze-dried without cryoprotectors: Characterization and ability to bind the pEGFP-plasmid. Eur. J. Pharm. Biopharm. 67, 320–328. doi:10.1016/j.ejpb.2007.02.006
dc.relation.referencesVijayan, N., Babu, R.R., Gunasekaran, M., Gopalakrishnan, R., Ramasamy, P., 2003. Growth, optical, thermal and mechanical studies of methyl 4-hydroxybenzoate single crystals. J. Cryst. Growth 256, 174–182. doi:10.1016/S0022-0248(03)01343-5
dc.relation.referencesVitorino, C., Carvalho, F.A., Almeida, A.J., Sousa, J.J., Pais, A.A., 2011. The size of solid lipid nanoparticles: An interpretation from experimental design. Colloids Surfaces B Biointerfaces 84, 117–130. doi:10.1016/j.colsurfb.2010.12.024
dc.relation.referencesVivek, K., Reddy, H., Murthy, R.S.R., 2007. Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. AAPS PharmSciTech 8, E83. doi:10.1208/pt0804083
dc.relation.referencesWang, J.J., Liu, K.S., Sung, K.C., Tsai, C.Y., Fang, J.Y., 2009. Lipid nanoparticles with different oil/fatty ester ratios as carriers of buprenorphine and its prodrugs for injection. Eur. J. Pharm. Sci. 38, 138–146. doi:10.1016/j.ejps.2009.06.008
dc.relation.referencesWang, S., Sun, M., Ping, Q., 2008. Enhancing effect of Labrafac Lipophile WL 1349 on oral bioavailability of hydroxysafflor yellow A in rats. Int. J. Pharm. 358, 198–204. doi:10.1016/j.ijpharm.2008.03.006
dc.relation.referencesWang, Y., Zhang, H., Hao, J., Li, B., Li, M., Xiuwen, W., 2015. Lung cancer combination therapy: Co-delivery of paclitaxel and doxorubicin by nanostructured lipid carriers for synergistic effect. Drug Deliv. 7544, 1–6. doi:10.3109/10717544.2015.1055619
dc.relation.referencesWashington, C., 1990. Drug release from microdisperse systems: a critical review. Int. J. Pharm. 58, 1–12. doi:10.1016/0378-5173(90)90280-H
dc.relation.referencesWasutrasawat, P., Al-Obaidi, H., Gaisford, S., Lawrence, M.J., Warisnoicharoen, W., 2013. Drug solubilisation in lipid nanoparticles containing high melting point triglycerides. Eur. J. Pharm. Biopharm. 85, 365–371. doi:10.1016/j.ejpb.2013.04.020
dc.relation.referencesWeber, S., Zimmer, A., Pardeike, J., 2014. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: A review of the state of the art. Eur. J. Pharm. Biopharm. 86, 7–22. doi:10.1016/j.ejpb.2013.08.013
dc.relation.referencesWelch, D., Lettinga, M.P., Ripoll, M., Dogic, Z., Vliegenthart, G.A., 2015. Trains, tails and loops of partially adsorbed semi-flexible filaments. Soft Matter 11, 7507–7514. doi:10.1039/C5SM01457C
dc.relation.referencesWestesen, K., Bunjes, H., 1995. Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix? Int. J. Pharm. 115, 129–131. doi:10.1016/0378-5173(94)00347-8
dc.relation.referencesWestesen, K., Bunjes, H., Koch, M.H.J., 1997. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Control. Release 48, 223–236. doi:10.1016/S0168-3659(97)00046-1
dc.relation.referencesWestesen, K., Siekmann, B., 1997. Investigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles. Int. J. Pharm. 151, 35–45.
dc.relation.referencesWestesen, K., Siekmann, B., Koch, M.H.J., 1993. Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. Int. J. Pharm. 93, 189–199. doi:10.1016/0378-5173(93)90177-H
dc.relation.referencesWeyenberg, W., Filev, P., Van den Plas, D., Vandervoort, J., De Smet, K., Sollie, P., Ludwig, A., 2007. Cytotoxicity of submicron emulsions and solid lipid nanoparticles for dermal application. Int. J. Pharm. 337, 291–298. doi:10.1016/j.ijpharm.2006.12.045
dc.relation.referencesWissing, S.A., Müller, R.H., Manthei, L., Mayer, C., 2004. Structural characterization of Q10-loaded solid lipid nanoparticles by NMR spectroscopy. Pharm. Res. 21, 400–405.
dc.relation.referencesXiao, Y., Wiesner, M.R., 2012. Characterization of surface hydrophobicity of engineered nanoparticles. J. Hazard. Mater. 215–216, 146–151. doi:10.1016/j.jhazmat.2012.02.043
dc.relation.referencesXu, W., Lee, M.-K., 2015. Development and evaluation of lipid nanoparticles for paclitaxel delivery: a comparison between solid lipid nanoparticles and nanostructured lipid carriers. J. Pharm. Investig. 45, 675–680. doi:10.1007/s40005-015-0224-x
dc.relation.referencesXu, Z., Chen, L., Gu, W., Gao, Y., Lin, L., Zhang, Z., Xi, Y., Li, Y., 2009. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials 30, 226–232. doi:10.1016/j.biomaterials.2008.09.014
dc.relation.referencesXue, H.Y., Wong, H.L., 2011. Tailoring nanostructured solid-lipid carriers for time-controlled intracellular siRNA kinetics to sustain RNAi-mediated chemosensitization. Biomaterials 32, 2662–72. doi:10.1016/j.biomaterials.2010.12.029
dc.relation.referencesYang, L., Alexandridis, P., 2000. Physicochemical aspects of drug delivery and release from polymer-based colloids. Curr. Opin. Colloid Interface Sci. 5, 132–143. doi:10.1016/S1359-0294(00)00046-7
dc.relation.referencesYang, X., Li, Y., Li, M., Zhang, L., Feng, L., Zhang, N., 2013. Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett. 334, 338–345. doi:10.1016/j.canlet.2012.07.002
dc.relation.referencesYang, Y., Corona, A., Schubert, B., Reeder, R., Henson, M.A., 2014. The effect of oil type on the aggregation stability of nanostructured lipid carriers. J. Colloid Interface Sci. 418, 261–272. doi:10.1016/j.jcis.2013.12.024
dc.relation.referencesYasir, M., Sara, U.V.S., 2013. Preparation and optimization of haloperidol loaded solid lipid nanoparticles by Box–Behnken design. J. Pharm. Res. 7, 551–558. doi:10.1016/j.jopr.2013.05.022
dc.relation.referencesYasir, M., Vir, U., Sara, S., Sara, U.V.S., 2014. Solid lipid nanoparticles for nose to brain delivery of haloperidol : In vitro drug release and pharmacokinetics evaluation. Acta Pharm. Sin. B 4, 454–463. doi:10.1016/j.apsb.2014.10.005
dc.relation.referencesYi, J., Lam, T.I., Yokoyama, W., Cheng, L.W., Zhong, F., 2014. Cellular uptake of β-carotene from protein stabilized solid lipid nanoparticles prepared by homogenization-evaporation method. J. Agric. Food Chem. 62, 1096–1104. doi:10.1021/jf404073c
dc.relation.referencesYu, Y.H., Kim, E., Park, D.E., Shim, G., Lee, S., Kim, Y.B., Kim, C.-W., Oh, Y.-K., 2012. Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. Eur. J. Pharm. Biopharm. 80, 268–73. doi:10.1016/j.ejpb.2011.11.002
dc.relation.referencesYuan, H., Chen, J., Du, Y.Z., Hu, F.Q., Zeng, S., Zhao, H.L., 2007. Studies on oral absorption of stearic acid SLN by a novel fluorometric method. Colloids Surfaces B Biointerfaces 58, 157–64. doi:10.1016/j.colsurfb.2007.03.002
dc.relation.referencesYuan, H., Miao, J., Du, Y.-Z., You, J., Hu, F.-Q., Zeng, S., 2008. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Int. J. Pharm. 348, 137–145. doi:10.1016/j.ijpharm.2007.07.012
dc.relation.referencesYucel, U., Elias, R.J., Coupland, J.N., 2013. Effect of liquid oil on the distribution and reactivity of a hydrophobic solute in solid lipid nanoparticles. JAOCS, J. Am. Oil Chem. Soc. 90, 819–824. doi:10.1007/s11746-013-2228-x
dc.relation.referencesZambrano-Zaragoza, M.L., Mercado-Silva, E., Ramirez-Zamorano, P., Cornejo-Villegas, M.A., Gutiérrez-Cortez, E., Quintanar-Guerrero, D., 2013. Use of solid lipid nanoparticles (SLNs) in edible coatings to increase guava (Psidium guajava L.) shelf-life. Food Res. Int. 51, 946–953. doi:10.1016/j.foodres.2013.02.012
dc.relation.referencesZhang, J., Nie, S., Wang, S., 2013. Nanoencapsulation enhances epigallocatechin-3-gallate stability and its antiatherogenic bioactivities in macrophages. J. Agric. Food Chem. 61, 9200–9209. doi:10.1021/jf4023004
dc.relation.referencesZhang, J., Smith, E., 2011. Percutaneous permeation of betamethasone 17-valerate incorporated in lipid nanoparticles. J. Pharm. Sci. 100, 896–903. doi:10.1002/jps.22329
dc.relation.referencesZhang, L., Hayes, D.G., Chen, G., Zhong, Q., 2013. Transparent dispersions of milk-fat-based nanostructured lipid carriers for delivery of β-carotene. J. Agric. Food Chem. 61, 9435–9443. doi:10.1021/jf403512c
dc.relation.referencesZhang, Z., Feng, S.S., 2006. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 27, 4025–4033. doi:10.1016/j.biomaterials.2006.03.006
dc.relation.referencesZhao, J.-C., 2007. The role of phase transformation kinetics in phase diagram determination and assessment, en: Zhao, J.-C. (Ed.), Methods for Phase Diagram Determination. Elsevier, Oxford, pp. 22–50. doi:10.1016/B978-008044629-5/50002-1
dc.relation.referencesZhao, S., Yang, X., Garamus, V.M., Handge, U.A., Bérengère, L., Zhao, L., Salamon, G., Willumeit, R., Zou, A., Fan, S., 2014. Mixture of Nonionic/Ionic Surfactants for the Formulation of Nanostructured Lipid Carriers: Effects on Physical Properties. Langmuir 30, 6920–6928. doi:10.1021/la501141m
dc.relation.referencesZheng, M., Falkeborg, M., Zheng, Y., Yang, T., Xu, X., 2013. Formulation and characterization of nanostructured lipid carriers containing a mixed lipids core. Colloids Surfaces A Physicochem. Eng. Asp. 430, 76–84. doi:10.1016/j.colsurfa.2013.03.070
dc.relation.referencesZhong, Q., Zhang, L., 2019. Nanoparticles fabricated from bulk solid lipids: Preparation, properties, and potential food applications. Adv. Colloid Interface Sci. 273, 102033. doi:10.1016/j.cis.2019.102033
dc.relation.referencesZoubari, G., Staufenbiel, S., Volz, P., Alexiev, U., Bodmeier, R., 2017. Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery. Eur. J. Pharm. Biopharm. 110, 39–46. doi:10.1016/j.ejpb.2016.10.021
dc.relation.referenceszur Mühlen, A., Schwarz, C., Mehnert, W., 1998. Solid lipid nanoparticles (SLN) for controlled drug delivery-drug release and release mechanism. Eur. J. Pharm. Biopharm. 45, 149–155. doi:10.1016/S0939-6411(97)00150-1
dc.relation.referenceszur Mühlen, A., zur Mühlen, E., Niehus, H., Mehnert, W., 1996. Atomic force microscopy studies of solid lipid nanoparticles. Pharm. Res. 13, 1411–6. doi:10.1023/A:1016042504830
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPortadores lipídicos coloidales
dc.subject.proposalColloid lipid carriers
dc.subject.proposalNanoemulsiones
dc.subject.proposalNanoemulsions
dc.subject.proposalStructural organization
dc.subject.proposalOrganización estructural
dc.subject.proposalcomportamiento de liberación
dc.subject.proposalDrug release behavior
dc.subject.proposalDrug incorporation
dc.subject.proposalLocalización del fármaco
dc.subject.proposalLipid nanoparticles
dc.subject.proposalNanopartículas lipídicas
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito