Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorMeza Meza, Juan Manuel
dc.contributor.advisorJalalvand, Meisam
dc.contributor.authorIdarraga Alarcon, Guillermo Andres
dc.date.accessioned2021-01-20T15:49:37Z
dc.date.available2021-01-20T15:49:37Z
dc.date.issued2020-12-14
dc.identifier.citationG. Idarraga Alarcon. Gradual failure of high-performance hybrid composites: tensile and bending behaviour. Universidad Nacional de Colombia - Sede Medellin, tesis de doctorado, 2020
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78846
dc.description.abstractLos compuestos reforzados con fibra se utilizan cada vez más para estructuras primarias, ya que proporcionan un ahorro de peso significativo al tiempo que mantienen el mayor desempeño estructural, mejorando la eficiencia en combustible y reduciendo los costos de mantenimiento. Desafortunadamente, la alta rigidez y resistencia de los materiales compuestos se obtiene a expensas de su limitada tenacidad. El fallo de los compuestos suele ser repentino y catastrófico. Para garantizar operaciones seguras, se aplican factores de seguridad mucho mayores para los compuestos que para los materiales dúctiles como los metales. Esta condición produce estructuras sobrediseñadas, reduciendo los beneficios de peso. Estas graves limitaciones no solo impiden que los ingenieros y operadores aprovechen las ventajas de rendimiento de los compuestos, sino que los hacen inadecuados para muchas aplicaciones en las que las condiciones de carga no son completamente predecibles y no se pueden tolerar fallas catastróficas. Lograr una falla gradual en los materiales compuestos puede ayudar a las estructuras a mantener la funcionalidad incluso cuando están sobrecargadas, aumentando el alcance de las aplicaciones de los compuestos en estructuras críticas en industrias como la aeroespacial y la automotriz. El objetivo de esta tesis es explorar el fallo gradual de los compuestos híbridos bajo tensión y flexión, combinando análisis experimental y numérico. Este trabajo presenta nuevas arquitecturas compuestas que utilizan preimpregnados de carbono-epoxi de capas delgadas y preimpregnados de vidrio-epoxi tipo S de espesor de capa estándar. Todos los laminados se consolidan en autoclave y se prueban en una máquina de prueba servo-hidráulica universal controlada por computadora. Para los ensayos de tracción, se proponen laminados multidireccionales, analizando el efecto híbrido cuando se modifica la secuencia de apilamiento. El efecto híbrido se define en esta tesis como la mejora en la deformación en caso de rotura de las fibras de carbono en un compuesto híbrido en comparación con un compuesto de carbono puro. Por otro lado, para los ensayos de flexión, se propone una nueva metodología y dos novedosos laminados asimétricos unidireccionales para lograr un fallo gradual al promover el inicio del fallo en tracción y evitar un fallo catastrófico en compresión. Con este trabajo se logra una falla gradual para configuraciones híbridas tanto en tensión como en flexión. La falla se caracteriza por la degradación progresiva de las capas delgadas de carbono por múltiples grietas (fragmentación) y delaminación local. Para las pruebas de tracción, las capas de vidrio de espesor estándar fallan repentinamente después de una mayor reducción de la resistencia de las capas de carbono por fragmentación. Se investigó la variación en el efecto híbrido en la etapa más temprana del daño, analizando una sola grieta en una de las capas de carbono 0 °. La distribución de deformaciones no uniforme a través del espesor producido por la fisura se ve afectada por la secuencia de apilamiento, aumentando o disminuyendo la concentración de deformaciones en las capas no dañadas y cambiando el efecto híbrido. Se propusieron correlaciones entre el efecto híbrido y la rigidez de la capa adyacente. Por otro lado, para los ensayos de flexión se evitan fallas catastróficas y se logran altos valores de desplazamiento por flexión. El fallo gradual capa por capa de las capas superficiales en el lado de tracción produce una apariencia similar a un cepillo. Las observaciones microscópicas de las pruebas interrumpidas verificaron la fragmentación seguida de delaminación local en el lado de tracción de la viga. Grietas a un ángulo entre ± 45 ° y ± 60 ° con respecto a la dirección de la fibra se identificaron como mecanismo de falla único en compresión. El análisis numérico fue crucial para comprender la secuencia de fallas y el mecanismo de daño en las configuraciones híbridas.
dc.description.abstractFibre-reinforced composites are increasingly used for primary structures, as they provide significant weight savings while maintaining the highest material and structural performance, improving fuel efficiency and lowering maintenance costs. Unfortunately, the high stiffness and strength of composite materials come at the expense of their limited toughness. The failure of composites is usually sudden and catastrophic. To ensure safe operations, much greater safety factors are applied for composites than for ductile materials like metals. This condition produces overdesigned structures, reducing the weight benefits. These serious limitations not only prevent engineers and operators from exploiting the performance advantages of composites, but render them unsuitable for many applications in which loading conditions are not fully predictable, and catastrophic failure cannot be tolerated. Achieving gradual failure in composites can help structures to maintain functionality even when they are overloaded, increasing the scope of composites applications in critical structures in industries such as aerospace and automotive. The aim of this thesis is to explore the gradual failure of thin ply hybrid composites under tension and bending, combining experimental and numerical analysis. This work introduces new composite architectures using thin ply carbon-epoxy prepregs and standard ply thickness S-Glass-epoxy prepregs in an interplay configuration. All laminates are consolidated using autoclave and tested in a computer-controlled universal servo-hydraulic test machine. For tensile tests, less explored multidirectional layups are proposed, analysing the hybrid effect when stacking sequence is modified. The hybrid effect is defined in this thesis as the enhancement in the strain at failure of the carbon fibres in a hybrid composite compared with a pure carbon composite. On the other hand, for bending tests, a new methodology and two novel unidirectional asymmetric layups are proposed to achieve gradual failure by promoting failure initiation in tension and avoid catastrophic failure in compression. Favourable gradual failure has been achieved for hybrid configurations in both tension and bending. The failure is characterised by progressive degradation of the thin carbon/epoxy layers by multiples cracks (fragmentation) and dispersion delamination. For tensile tests, standard thickness S-glass/epoxy layers fail suddenly after further strength reduction of carbon plies by fragmentation. Variation in the hybrid effect was investigated in the earliest stage of damage, analysing a single crack in one of the 0° carbon plies. The non-uniform strain distribution through the thickness produced by the crack is affected by the stacking sequence, increasing or decreasing the strain concentration on the undamaged layers and changing the hybrid effect. Correlations between the hybrid effect and stiffness of the adjacent layer were proposed. On the other hand for bending tests, catastrophic failure is avoided and high values of flexural displacement were achieved. The gradual layer-by-layer failure of the surface layers on the tensile side produces a brush-like appearance. Microscopy observations from interrupted tests verified fragmentation followed by local delamination on the tensile side of the beam. Stable shear cracks at an angle between ±45° and ±60° to the fibre direction were also identified as a unique failure mechanism in compression. Numerical analysis was crucial to understanding the failure sequence and damage mechanism in the hybrid configurations.
dc.description.sponsorshipMinciencias; Royal Academy of Engineering; Newton Links; Engineering and Physical Sciences Research Council (EPSRC); Sapiencia
dc.format.extent109
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleGradual failure of high-performance hybrid composites: tensile and bending behaviour
dc.title.alternativeFalla gradual de compuestos híbridos de alto desempeño: comportamiento bajo tensión y flexión
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectPrograma de Doctorados Nacionales, Minciencias, Convocatoria 647
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.description.degreelevelDoctorado
dc.publisher.departmentDepartamento de Materiales y Minerales
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.references] M. Jansen. The evolution of thermoplastic composites: The road to highest lightweight potential in mass production. Reinforced Plastics Volume 64, Number 1 January/February 2020.
dc.relation.references[2] Market research report, Global forecast to 2024. Available: www.marketsandmarkets.com
dc.relation.references[3] E. Witten, V. Mathes, M.Sauer, M. Kühnel. Composites market report published by AVKIndustrievereinigung Kunststoffe eV in 2018. Available: www.avk-tv.de
dc.relation.references[4] Airbus Group. A350 XWB: Sensational - Shape - Modern. 2006. [Online]. Available: http://www.a350xwb.com.
dc.relation.references[5] L. Mishnaevsky, K. Branner, H.N. Petersen, J. Beauson, M. McGugan, B.F. Sørensen. Materials for wind turbine blades: An overview. Materials (Basel)., vol. 10, no. 11, pp. 1–24, 2017.
dc.relation.references[6] G. Czél, MR. Wisnom. Demonstration of pseudo-ductility in high performance glassepoxy composites by hybridisation with thin-ply carbon prepreg. Compos Part A Appl Sci Manuf 2013; 52:23–30.
dc.relation.references[7] Y. Swolfs, L. Gorbatikh, I. Verpoest. Fibre hybridisation in polymer composites: A review. Composites: Part A 67 (2014) 181–200.
dc.relation.references[8] Y. Swolfs, I. Verpoest, L. Gorbatikh. Recent advances in fibre-hybrid composites: materials selection, opportunities and applications. International Materials Reviews, 64:4, 181-215, 2019.
dc.relation.references[9] M. Jalalvand, G. Czél, M.R. Wisnom. Parametric study of failure mechanisms and optimal configurations of pseudo-ductile thin-ply UD hybrid composites. Compos Part A Appl Sci Manuf 2015; 74:123–31.
dc.relation.references[10] G. Czél, M. Jalalvand, M. R. Wisnom, “Design and characterisation of advanced pseudo-ductile unidirectional thin-ply carbon/epoxy-glass/epoxy hybrid composites,” Compos. Struct., vol. 143, pp. 362–370, 2016
dc.relation.references[11] E.J. Barbero. Introduction to composite materials design. Taylor & Francis, CRC Press, Boca Raton, FL, third edition 2017
dc.relation.references[12] D.W. Dwight, Glass Fiber Reinforcements, in: A. Kelly, C.B.T.-C.C.M. Zweben (Eds.), Compr. Compos. Mater., Pergamon, Oxford, 2000: pp. 231–261.
dc.relation.references[13] B.A. Newcomb, Processing, structure, and properties of carbon fibers, Compos. Part A Appl. Sci. Manuf. 91 (2016) 262–282.
dc.relation.references[14] K. Naito, Y. Tanaka, J.M. Yang, et al. Tensile properties of ultrahigh strength PANbased, ultrahigh modulus pitch-based and high ductility pitch-based carbon fibers. Carbon N Y. 2008;46(2):189–195.
dc.relation.references[15] B.A. Newcomb. Processing, structure, and properties of carbon fibers. Compos Part A Appl Sci Manuf. 2016;91:262–282.
dc.relation.references[16] H. Miyagawa, T. Mase, C. Sato, et al. Comparison of experimental and theoretical transverse elastic modulus of carbon fibers. Carbon N Y. 2006;44 (10):2002–2008.
dc.relation.references[17] K.D. Jones, A.T. Dibenedetto. Fiber fracture in hybrid composite systems. Compos Sci Technol. 1994;51 (1):53–62. 103 | P a g e
dc.relation.references[18] M.L. Korwin-Edson, D.A. Hofmann, P.B. McGinnis. Strength of high performance glass reinforcement fiber. Int J Appl Glass Sci. 2012;3(2):107–121.
dc.relation.references[19] Y. Swolfs, I. Verpoest, L. Gorbatikh. A review of input data and modelling assumptions in longitudinal strength models for unidirectional fibre-reinforced composites. Compos Struct. 2016;150:153–172.
dc.relation.references[20] N. Svensson, R. Shishoo, M. Gilchrist, “Manufacturing of Thermoplastic Composites from Commingled Yarns-A Review,” J. Thermoplast. Compos. Mater., vol. 11, no. 1, pp. 22- 56, 1998.
dc.relation.references[21] A.R. Offringa. Thermoplastic composites – rapid processing applications. Compos Part A Appl Sci Manuf. 1996;27(4):329–336.
dc.relation.references[22] G. Fernlund and A. Poursartip, Autoclave processing for composites. Woodhead Publishing Limited, 2012.
dc.relation.references[23] A. McIlhagger, E. Archer, R. McIlhagger. Manufacturing processes for composite materials and components for aerospace applications. Woodhead Publishing Limited, 2020.
dc.relation.references[24] B. W. Rosen, “Tensile failure of fibrous composites,” AIAA J., vol. 2, no. 11, pp. 1985– 1991, 1964.
dc.relation.references[25] M.R. Nedele, M.R. Wisnom. Stress-concentration factors around a broken fiber in a unidirectional carbon-fiber-reinforced epoxy. Composites 1994;25(7): 549–57.
dc.relation.references[26] Y. Swolfs, L. Gorbatikh, V. Romanov, S. Orlova, S.V. Lomov, I. Verpoest. Stress concentrations in an impregnated fibre bundle with random fibre packing. Compos Sci Technol 2013;74:113–20.
dc.relation.references[27] Y. Swolfs, R.M. McMeeking, I. Verpoest, L. Gorbatikh. Matrix cracks around fibre breaks and their effect on stress redistribution and failure development in unidirectional composites. Composites Science and Technology 108 (2015) 16–22
dc.relation.references[28] T. Okabe, M. Nishikawa, N. Takeda. Numerical modeling of progressive damage in fiber reinforced plastic cross-ply laminates. Composites Science and Technology 68 (2008) 2282–2289.
dc.relation.references[29] P. Wright, X. Fu, I. Sinclair, S.M. Spearing. Ultra high resolution computed tomography of damage in notched carbon fiber epoxy composites. Journal of Composite Materials 2008 42: 1993
dc.relation.references[30] L. R. Dharani, J. Wei, F. S. Ji and J. H. Zhao. Saturation of Transverse Cracking with Delamination in Polymer Cross-Ply Composite Laminates. International Journal of Damage Mechanics 2003 12:89
dc.relation.references[31] L. Szu-Hui, L. Shuguang. Energy release rates for transverse cracking and delaminations induced by transverse cracks in laminated composites. Composites: Part A 36 (2005) 1467–1476.
dc.relation.references[32] A. Melnikov, Y. Swolfs, S.V. Lomov, L. Gorbatikh. Do transverse cracks affect the insitu strength and fibre breaks accumulation in longitudinal plies of cross-ply laminates?. ECCM18 - 18th European Conference on Composite Materials. Athens, Greece, 24-28 th June 2018.
dc.relation.references[33] M. Ueda, W. Saito, R. Imahori, D. Kanazawa, and T. K. Jeong, “Longitudinal direct compression test of a single carbon fiber in a scanning electron microscope,” Compos. Part A Appl. Sci. Manuf., vol. 67, pp. 96–101, 2014. 104 | P a g e
dc.relation.references[34] G. C. Shih and L. J. Ebert, “Flexural failure mechanisms and global stress plane for unidirectional composites subjected to four-point bending tests,” Composites, vol. 17, no. 4, pp. 309–320, 1986.
dc.relation.references[35] C.T. Sun, J.L. Tsai. Comparison of microbuckling model and linl band model in predicting compressive strengths of composites. Proceeding of ICCM13, Beijing, China, June 2001.
dc.relation.references[36] S.W. Tsai. Thin ply composites. JEC Compos Mag 2005;42:31–3.
dc.relation.references[37] North Thin Ply Technology. 2016. www.thinplytechnology.com.
dc.relation.references[38] NorthThin PlyTechnology (ProductReview). Reinforced Plastics. 2016;60:28–29.
dc.relation.references[39] R. Amacher, W. Smith, J. Botsis, C. Dransfeld, J. Cugnoni . New design opportunities using thin-ply composites. JEC Compos Mag 2015;52:33–5.
dc.relation.references[40] J. Galos. Thin-ply composite laminates: a review. Composite Structures 236 (2020) 111920.
dc.relation.references[41] K. Kawabe, T. Matsuo, Z. Maekawa. New technology for opening various reinforcing fiber tows. J Soc Mater Sci, Japan 1998; 47:727–34.
dc.relation.references[42] S.W. Tsai, K. Kawabe. Thin ply laminates. Japanese Patent: JP2014177125A. 2007.
dc.relation.references[43] S. Sihn, R.Y. Kim, K. Kawabe, S.W. Tsai. Experimental studies of thin-ply laminated composites. Composites Science and Technology 67 (2007) 996–1008.
dc.relation.references[44] L.N. Phillips, Improving racing-car bodies, Composites 1 (1969) 50–51.
dc.relation.references[45] C. Zweben, Tensile strength of hybrid composites, J. Mater. Sci. 12 (1977) 1325–1337.
dc.relation.references[46] J. Summerscales, D. Short, Carbon fibre and glass fibre hybrid reinforced plastics, Composites 9 (3) (1978) 157–166.
dc.relation.references[47] P.W. Manders, M.G. Bader, The strength of hybrid glass/carbon fibre composites – Part 1, J. Mater. Sci. 16 (1981) 2233–2245.
dc.relation.references[48] M.G. Phillips, Composition parameters for hybrid composite materials, Composites 12 (2) (1981) 113–116.
dc.relation.references[49] G. Kretsis, A review of the tensile, compressive, flexural and shear properties of hybrid fibre reinforced plastics, Composites 18 (1) (1987).
dc.relation.references[50] Y. Swolfs et.al. Tensile behaviour of intralayer hybrid composites of carbon fibre and self-reinforced polypropylene. Composites: Part A 59 (2014) 78–84
dc.relation.references[51] Y. Swolfs et.al. Introducing ductility in hybrid carbon fibre/self-reinforced composites through control of the damage mechanisms. Composite Structures 131 (2015) 259–265.
dc.relation.references[52] T. Hayashi, On the improvement of mechanical properties of composites by hybrid composition, in: Proc 8th Int Reinf. Plast. Conf., 1972: pp. 149–152.
dc.relation.references[53] A.R. Bunsell, B. Harris, Hybrid carbon and glass fibre composites, Composites 5 (1974) 157e164.
dc.relation.references[54] L.N. Phillips. The hybrid effect - does it exist?. Composites. January 1976
dc.relation.references[55] Aveston J, Sillwood JM. Synergistic fibre strengthening in hybrid composites. J Mater Sci 1976; 11:1877–83.
dc.relation.references[56] H. Fukuda, An advanced theory of the strength of hybrid composites, J. Mater. Sci. 19 (3) (1984) 974–982. 105 | P a g e
dc.relation.references[57] Czél G, Jalalvand M, Wisnom MR. Hybrid specimens eliminating stress concentrations in tensile and compressive testing of unidirectional composites. Composites: Part A 91 (2016) 436–447.
dc.relation.references[58] M.R. Wisnom, G. Czel, Y. Swolfs, M. Jalalvand, L. Gorbatikh, I. Verpoest, Hybrid effects in thin ply carbon/glass unidirectional laminates: accurate experimental determination and prediction, Compos Part A 88 (2016) 131-139.
dc.relation.references[59] J. Xing, G.C. Hsiao, T.W. Chou, A dynamic explanation of the hybrid effect, J. Compos. Mater. 15 (SEP 1981) 443–461
dc.relation.references[60] Y. Swolfs, R.M. McMeeking, L. Gorbatikh, I. Verpoest. The effect of fibre dispersion on initial failure strain and cluster development in unidirectional carbon/glass hybrid composites, Compos. A: Appl. Sci. Manuf. 69 (2015) 279–287.
dc.relation.references[61] R. Kulkarni, O. Ochoa. Transverse and longitudinal CTE measurements of carbon fibers and their impact on interfacial residual stresses in composites, J. Compos. Mater. 40 (2006) 733–754.
dc.relation.references[62] C. Dong. Development of an engineering model for predicting the transverse Coefficients of thermal expansion of unidirectional fiber reinforced composites, J. Eng. Mater. Technol. Trans. ASME. 131 (2009) 0310011–0310017.
dc.relation.references[63] D.L. Motoc, J. Ivens, N. Dadirlat. Coefficient of thermal expansion evolution for cryogenic preconditioned hybrid carbon fiber/glass fiber-reinforced polymeric composite materials, J. Therm. Anal. Calorim. 112 (2013) 1245–1251.
dc.relation.references[64] J. Hedgepeth, Stress concentrations in filamentary structures, NASA, TN. D-882 (1961) 1–36.
dc.relation.references[65] PWJ. van den Heuvel, YJW. van der Bruggen, T. Peijs. The influence of carbon fibre surface treatment on fibre-fibre interactions in multi-fibre microcomposites. Adv Compos Lett 1994;3(6):197–201.
dc.relation.references[66] D.G. Harlow, S.L. Phoenix. Probability distributions for the strength of composite materials I: two-level bounds. Int J Fract 1981;17(4):347–72.
dc.relation.references[67] R.L. Smith. Limit theorems and approximations for the reliability of load-sharing systems. Adv Appl Probab 1983;15(2):304–30.
dc.relation.references[68] J.M. Neumeister. A constitutive law for continuous fiber reinforced brittle matrix composites with fiber fragmentation and stress recovery. J Mech Phys Solids 1993;41(8):1383–404.
dc.relation.references[69] X.F. Zhou, H.D. Wagner. Stress concentrations caused by fiber failure in twodimensional composites. Compos Sci Technol 1999;59(7):1063–71.
dc.relation.references[70] Y. Swolfs et. al. Global load-sharing model for unidirectional hybrid fibre-reinforced composites, J. Mech. Phys. Solids 84 (2015) 380–394.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalBending
dc.subject.proposalFlexion
dc.subject.proposalTension
dc.subject.proposalTension
dc.subject.proposalCompuestos hibridos
dc.subject.proposalHybrid composites
dc.subject.proposalFalla gradual
dc.subject.proposalGradual failure
dc.subject.proposalFragmentación
dc.subject.proposalFragmentation
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito