Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorGrisales Palacio, Víctor Hugo
dc.contributor.advisorCárdenas Herrera, Pedro Fabián
dc.contributor.authorGarcía Zaragoza, Ubaldo
dc.date.accessioned2021-01-20T18:18:04Z
dc.date.available2021-01-20T18:18:04Z
dc.date.issued2020-12-10
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78852
dc.description.abstractThe purpose of this final master’s work is to define guidelines to validate and verify a manufacturing system with elements such as: processes, machines, sensors and actuators through a digital twin and thus validate the discrete control with cyber-physical functionalities. The proposed approach can be used with mechatronic models of existing systems or in concept models to ensure the correct and safe operation of the system. Through the use of digital twins such as a virtual controller and a virtual manufacturing system, the discrete control and motion coordination operation programming logic is validated and verified by applying the GRAFCET, LADDER method and the GEMMA guide for gait modes and stop. In contrast to the traditional start-up, the start-up of the system with cyber-physical functionalities opens an opportunity to the automation area because it incorporates a SCADA system with web functionalities, allowing access to both writing and reading information in multiple platforms and devices connecting physical and virtual systems in the same environment. This document presents the guidelines to systematically implement the validation and verification of a virtual manufacturing system under discrete control with cyberphysical functionalities. For its application, 3 modules were proposed that constitute a virtual manufacturing system considering integration and modularity criteria, representing a real production system. Initially, the methodologies used for the development of the project were shown, seeking to standardize and create guides for virtual start-up thought from the modeling criteria in computer-aided design software, important factors in industrial communications and programming concepts having consider safe modes of operation.
dc.description.abstractEl propósito de este trabajo final de maestría es definir pautas para validar y verificar un sistema de manufactura con elementos como: procesos, máquinas, sensores y actuadores por medio de un gemelo digital y de esta manera validar el control discreto con funcionalidades ciberfísicas. El enfoque propuesto puede ser usado con modelos mecatrónicos de sistemas existentes o en modelos de concepto para asegurar la operación correcta y segura del sistema. Mediante el uso de gemelos digitales como el de un controlador virtual y un sistema de manufactura virtual se valida y verifica la lógica de programación de funcionamiento del control discreto y coordinación de movimiento aplicando el método GRAFCET, LADDER y la guía GEMMA de modos de marcha y parada. En contraste con la puesta en marcha tradicional, la puesta en marcha del sistema con funcionalidades ciberfísicas, abre una oportunidad al área de automatización debido a que al incorpora un sistema SCADA con funcionalidades web, permitiendo acceso a la información tanto de escritura como de lectura en múltiples plataformas y dispositivos logrando conectar sistemas físicos y virtuales en un mismo entorno. En este documento se presenta las pautas para implementar sistemáticamente la validación y verificación de un sistema de manufactura virtual bajo control discreto con funcionalidades ciberfísicas. Para su aplicación, se propusieron 3 módulos que constituyan un sistema de manufactura virtual considerando criterios de integración y modularidad representando un sistema de producción real. Inicialmente se mostraron las metodologías utilizadas para el desarrollo del proyecto, buscando estandarizar y crear unas guías para la puesta en marcha virtual pensadas desde el criterio de modelado en un software de diseño asistido por computador, factores importantes en las comunicaciones industriales y conceptos de programación teniendo en cuenta modos seguros de operación.
dc.format.extent195
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleValidación y verificación de un sistema de manufactura virtual bajo control discreto con funcionalidades ciberfísicas
dc.title.alternativeVirtual Factory Test of a Cyber-Physical Modular Production System Station
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Automatización, Control y Mecatrónica
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.contributor.researchgroupUNROBOT-Grupo de Plataformas Robóticas
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesHoffmann, P., Stadtweg, R., and Grove, F. (2010). Virtual Commissioning Of Manufacturing Systems A Review And New Approaches For Simplification. In Proceedings of the 24th European Conference on Modelling and Simulation (ECMS 2010),At: Kuala Lumpur, Malaysia (pp. 175–181).
dc.relation.referencesAuinger, F., Buchtela, G. (1999). Interface driven domain-independent modeling architecture for soft-commissioning and reality in the loop. In Proceedings of the 1999 Winter Simulation Conference P. (pp. 798–805).
dc.relation.referencesPuntel-Schmidt, P., Fay, A. (2015). Levels of detail and appropriate model types for virtual commissioning in manufacturing engineering. IFACPapersOnLine, 28(1), 922–927. https://doi.org/10.1016/j.ifacol.2015.05.027
dc.relation.referencesHoffmann, P., Schuman, R., M.A., T. M., Premier, G. C. (2012). Research on simplified modelling strategy for virtual commissioning. In Proceedings of the European Modelling and Simulation Symposium (pp. 293–302). Proceedings of the European Modelling and Simulation Symposium.
dc.relation.referencesVermaak, H. (2017). Virtual Commissioning : A Tool to Ensure Effective System Integration. In 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM). https://doi.org/10.1109/ECMSM.2017.7945899
dc.relation.referencesSchamp, M., Hoedt, S., Claeys, A., Aghezzaf, E. H., Cottyn, J. (2018). Impact of a virtual twin on commissioning time and quality. In IFAC-PapersOnLine (Vol. 51, pp. 1047–1052). Elsevier B.V. https://doi.org/10.1016/j.ifacol.2018.08.469.
dc.relation.referencesKhan, A., Falkman, P., Fabian, M. (2017). Virtual Engineering Framework for Automatic Generation of Control Logic including Safety. In 13th IEEE Conference on Automation Science and Engineering (CASE) Xi’an, China.
dc.relation.referencesAlvarez, M. L., Burgos, A., Sarachaga, I., Estévez, E., Marcos, M. (2012). GEMMA based approach for generating PLCopen Automation projects. IFAC Conference on Embedded Systems, Computational Intelligence and Telematics in Control (Vol. 45, pp. 230–235).
dc.relation.referencesBinnberg, D., Johansson, V., Larsson, M., Berntsson, S., Ayani, M. (2016). University Diploma Project in automation techonology 22.5 ECTS Spring term Year. University of Skovde.
dc.relation.referencesUniverisdad de Oviedo. (2019, March 15). A - Procedimiento de parada. Retrieved from http://isa.uniovi.es/docencia/iea/teoria/gemma_resumen.pdf
dc.relation.referencesVielhaber, M., Siadat, A. (2018). Virtual validation of Design decentrally controlled manufacturing systems with cyber-physical functionalities. Procedia CIRP, 72, 509–514. https://doi.org/10.1016/j.procir.2018.03.195
dc.relation.referencesArmendia, M., Ghassempouri, M., Ozturk, E., Peysson, F. (2019). Twin- Control: A Digital Twin Approach to Improve Machine Tools Lifecycle. (M. Armendia, M. E. O. Ghassempouri, F. Peysson, Eds.). Gothenburg, Sweden: Springer.
dc.relation.referencesÄlegård, S., Knutsson, S. (2017). Virtual Commissioning of Smart Factory. Master Thesis. Chalmers University of Technology.
dc.relation.referencesKonopa, M. (2013). Simulation of Production Processes. Master Thesis. Czech Technical University.
dc.relation.referencesJovanny, D. (2014). Structured design of automatic systems: Applying the GEMMA/SFC approach to a mechatronics teaching system. In 3rd International Congress of Engineering Mechatronics and Automation, CIIMA 2014 (pp. 1–5). https://doi.org/10.1109/CIIMA.2014.6983449
dc.relation.referencesDeloitte. (2019, April 8). Industry 4.0 Challenges and solutions for the digital transformation and use of exponential technologies. https://doi.org/10.4324/9781315300412-3
dc.relation.referencesGuerrero, R. L. Y. V. (2017). Autómatas Programables SIEMENS GRAFCET y Guía GEMMA con TIA Portal. (SMC, Ed.) (1st ed.). Barcelona: Marcombo.
dc.relation.referencesJosep Balcells, J. L. R. (1997). Autómatas Programables (1st ed.). Barcelona: Marcombo.
dc.relation.referencesKazmi, S. M. A. (2019). Methodology For Validating Mechatronic Digital Twin. Master Thesis. Tampere University.
dc.relation.referencesHoernicke, M., Greifeneder, J. (2011). Next generation factory acceptance test. ABB Corporate Research Center Germany - Annual Report 2011, (April 2012).
dc.relation.referencesRunde, C. (2018). Whitepaper Virtual Acceptance in the field of Mechanical Engineering Virtual Dimension Center ( VDC ) Fellbach, (August). https://doi.org/10.13140/RG.2.2.16553.65122
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalVirtual commisioning
dc.subject.proposalPuesta en marcha virtual
dc.subject.proposalSistema modular de producción
dc.subject.proposalModular production system
dc.subject.proposalGemelo digital
dc.subject.proposalDigital twin
dc.subject.proposalComunicaciones industriales
dc.subject.proposalIndustrial comunications
dc.subject.proposalAutomatización
dc.subject.proposalAutomation
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito