Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGómez Mendoza, Juan Bernardo
dc.contributor.advisorPantoja Bucheli, Andrés Darío
dc.contributor.authorArévalo Terán, William Andrés
dc.date.accessioned2021-01-21T16:12:53Z
dc.date.available2021-01-21T16:12:53Z
dc.date.issued2020
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78861
dc.description.abstractEnergy efficiency is a worldwide interest topic that invites the scientific community to search for techniques, methods and procedures to look for the appropriate use of the available energy. Currently, a 48.7% of global electricity consumption depends on the dynamics of residential and commercial sectors, and in Colombia, this participation increases to 64.6%, making these sectors an interesting research to promote a good energy use. When making a detailed analysis of this participation, the consumption for lighting in these sectors is one of the highest, being surpassed only by heating and cooling systems. The high consumption is supported given that in the urban area, the presence of large apartment buildings, residential neighborhoods, large shopping centers, hospitals and educational centers, among others, require lighting on a daily basis for several consecutive hours. In this context, the term of intelligent lighting assumes an interesting role in the search for alternatives that make better use of the electrical energy used in artificial light. These methods use control strategies that allow the resource’s optimization, where the non-centralized schemes have an especial relevance such as the Replicators Dynamics, which inspire the work of the present investigation. Replicators Dynamics are used to solve problems of distributed optimization of resources based on population dynamics, which led to the lighting context allows managing the power allocation in an interconnected lamp system, minimizing the used energy. The main good thing about this control strategy is that only need local information to achieve the control objective. Related works show that the replicator system allows the monitoring of lighting references in an adequate way, but does not contemplate in its structure the possibility to dispense with use of luminaires depending on the need for lighting given by the presence of individuals; the inclusion of this parameter in the distributed replicators dynamic system applied to lighting management is the main contribution of this research. In this master's thesis, an adaptation of the optimization algorithm based on replicators dynamics applied to lighting control of room is planned, this algorithm is tested using a case study (classroom with eight led luminaires with lighting and presence sensors) by simulation using MATLAB software. Finally, a comparative analysis of the performance of this algorithm in relation to three control systems (MPC mimo, LQR mimo and PID) is made, demonstrating the benefits of the algorithm develop
dc.description.abstractEl uso eficiente de la energía es un tema de interés mundial que invita a la comunidad científica a buscar técnicas, métodos y procedimientos que permitan el buen uso de la energía disponible. Actualmente, el 48.7% de consumo de energía eléctrica mundial depende de las dinámicas de uso de los sectores residencial y comercial, y a nivel de Colombia, dicha participación aumenta al 64.6%, convirtiendo a estos sectores en un nicho interesante de investigación hacia la eficiencia energética. Al hacer un análisis más detallado de esta participación, se tiene que el consumo destinado a iluminación en estos sectores está entre los más altos, siendo superado solo por usos como calefacción y refrigeración. Esto se debe en gran parte a que, en la zona urbana, la presencia de grandes edificios de apartamentos, barrios residenciales, grandes centros comerciales, hospitales y centros educativos, entre muchos otros, requieren de la iluminación a diario y por varias horas consecutivas. En este contexto, el término iluminación inteligente asume un papel interesante en la búsqueda de alternativas que permitan hacer un mejor uso de la energía eléctrica empleada en luz artificial. Estos métodos usan estrategias de control que permiten la optimización del recurso, tomando relevancia esquemas no centralizados como el adaptado de los Replicadores Dinámicos, que inspiran el trabajo de la presente investigación. Los replicadores dinámicos solucionan problemas de optimización distribuida de recursos basados en dinámicas poblacionales, que llevados al contexto de iluminación, permiten gestionar la asignación de potencia en un sistema de lámparas y sensores interconectado, minimizando la energía utilizada. La principal característica de esta estrategia de control es que solo necesita información local para lograr su objetivo de control. Los trabajos realizados actualmente, demuestran que el sistema de replicadores permite el seguimiento de referencias de iluminación de forma adecuada, pero no contempla en su estructura la posibilidad de prescindir del uso de luminarias dependiendo de detectores de presencia. La inclusión de este parámetro en el sistema de replicadores dinámicos distribuidos aplicado a gestión de iluminación y su comparación con otras estrategias, constituyen el aporte principal de esta investigación. En este trabajo se planeta una adecuación del algoritmo de optimización basado en dinámicas poblacionales, para seguir referencias de iluminación de recintos con múltiples zonas, teniendo en cuenta la presencia o ausencia de individuos y solventando los inconvenientes que esta adecuación genera en el normal funcionamiento del sistema. Para validar el desempeño del nuevo algoritmo de control, se realiza un análisis comparativo de desempeño de éste con un grupo de controladores base dado por un controlador MPC, un LQR y un PID. Los resultados del análisis ante cuatro diferentes escenarios de prueba, demuestran que el algoritmo planteado es una solución óptima distribuida con un desempeño similar al obtenido por controladores óptimos centralizados como el MPC y el LQR, y que al mismo tiempo solventa limitantes que se presentan en estrategias de control descentralizadas como el controlador PID.
dc.format.extent140
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleAdaptación de un algoritmo de optimización basado en replicadores dinámicos aplicado al control de iluminación de recintos con presencia de individuos
dc.title.alternativeAdaptation of an optimization algorithm based on replicator dynamics applied to rooms lighting control with individuals presence
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalTesis de investigación presentada como requisito parcial para optar al título de: Magister en Ingeniería - Ingeniería Eléctrica. -- Línea de Investigación: Sistemas De Control. -- Grupo de Investigación: Percepción y Control Inteligente.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Eléctrica
dc.contributor.researchgroupPercepción y Control Inteligente (PCI)
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónica
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.references“Data tables – Data & Statistics - IEA.” [Online]. Available: https://www.iea.org/data-and-statistics/data-tables?country=WORLD&energy=Balances&year=2017. [Accessed: 20-Jul-2020].
dc.relation.references“Población urbana (% del total) | Data.” [Online]. Available: https://datos.bancomundial.org/indicador/SP.URB.TOTL.IN.ZS. [Accessed: 20-Jul-2020].
dc.relation.references“BALANCE ENERGETICO COLOMBIANO - BECO.” [Online]. Available: https://www1.upme.gov.co/InformacionCifras/Paginas/BalanceEnergetico.aspx. [Accessed: 20-Jul-2020].
dc.relation.references“BECOCONSULTA.” [Online]. Available: https://www1.upme.gov.co/InformacionCifras/Paginas/BECOCONSULTA.aspx. [Accessed: 20-Jul-2020].
dc.relation.referencesF. Viani, A. Polo, P. Garofalo, N. Anselmi, M. Salucci, and E. Giarola, “Evolutionary Optimization Applied to Wireless Smart Lighting in Energy-Efficient Museums,” IEEE Sens. J., vol. 17, no. 5, pp. 1213–1214, 2017, doi: 10.1109/JSEN.2017.2647827.
dc.relation.referencesD. Zhang and X. Xia, “Distributed illumination control of LED networked systems via local occupancy information,” 2017 IEEE 56th Annu. Conf. Decis. Control. CDC 2017, pp. 4141–4146, 2018, doi: 10.1109/CDC.2017.8264268.
dc.relation.referencesN. Iksan, E. D. Udayanti, A. Arfriandi, and D. A. Widodo, “Automatic Control using Fuzzy Techniques for Energy Management on Smart Building,” 2018 Int. Conf. Comput. Eng. Netw. Intell. Multimedia, CENIM 2018 - Proceeding, pp. 156–160, 2018, doi: 10.1109/CENIM.2018.8711385.
dc.relation.referencesA. Seyedolhosseini, N. Masoumi, M. Modarressi, and N. Karimian, “Illumination Control of Smart Indoor Lighting Systems Consists of Multiple Zones,” Proc. - 2018 Smart Grid Conf. SGC 2018, pp. 1–4, 2018, doi: 10.1109/SGC.2018.8777883.
dc.relation.referencesD. Tran and Y. K. Tan, “Sensorless illumination control of a networked LED-lighting system using feedforward neural network,” IEEE Trans. Ind. Electron., vol. 61, no. 4, pp. 2113–2121, 2014, doi: 10.1109/TIE.2013.2266084.
dc.relation.referencesC. Barz, O. Chiver, E. Zoltan, M. Horgos, and D. Preradovic, “Automation with MFD Titan for lighting control,” Proc. 2016 Int. Conf. Expo. Electr. Power Eng. EPE 2016, pp. 466–471, 2016, doi: 10.1109/ICEPE.2016.7781384.
dc.relation.referencesD. Caicedo and A. Pandharipande, “Distributed illumination control with local sensing and actuation in networked lighting systems,” IEEE Sens. J., vol. 13, no. 3, pp. 1092–1104, 2013, doi: 10.1109/JSEN.2012.2228850.
dc.relation.referencesM. A. Pradhan and A. D. Shaligram, “Optimization of indoor lighting by automatic control,” Proc. 2017 Int. Conf. Wirel. Commun. Signal Process. Networking, WiSPNET 2017, pp. 1529–1533, 2018, doi: 10.1109/WiSPNET.2017.8300017.
dc.relation.referencesA. Pantoja and N. Quijano, “Distributed optimization using population dynamics with a local replicator equation,” 2012 IEEE 51st IEEE Conf. Decis. Control, pp. 3790–3795, 2012, doi: 10.1109/CDC.2012.6426277.
dc.relation.referencesN. Espana and A. Pantoja, “Multizone illuminance control based on replicator dynamics,” 2015 IEEE 2nd Colomb. Conf. Autom. Control. CCAC 2015 - Conf. Proc., 2015, doi: 10.1109/CCAC.2015.7345177.
dc.relation.referencesS. Afshari and S. Mishra, “A Plug-and-Play Realization of Decentralized Feedback Control for Smart Lighting Systems,” IEEE Trans. Control Syst. Technol., vol. 24, no. 4, pp. 1317–1327, 2016, doi: 10.1109/TCST.2015.2487880.
dc.relation.referencesI. E. S. of N. America, The Lighting Handbook, 10th Editi. Illuminating Engineering Society of North America, 2013.
dc.relation.referencesMinisterio de Minas y Energía, “Resolución Número 180540 De 2010, RETILAP,” p. 243, 2010, doi: 10.1017/CBO9781107415324.004.
dc.relation.referencesP. Morgan Pattison, M. Hansen, and J. Y. Tsao, “LED lighting efficacy: Status and directions,” Comptes Rendus Phys., vol. 19, no. 3, pp. 134–145, 2018, doi: 10.1016/j.crhy.2017.10.013.
dc.relation.referencesM. E. Raypah, B. K. Sodipo, M. Devarajan, and F. Sulaiman, “Estimation of Luminous Flux and Luminous Efficacy of Low-Power SMD LED as a Function of Injection Current and Ambient Temperature,” IEEE Trans. Electron Devices, vol. 63, no. 7, pp. 2790–2795, 2016, doi: 10.1109/TED.2016.2556079.
dc.relation.referencesN. Lighting, S. Division, and D. Lsd, “Energy Savings with Fluorescent and LED Dimming,” 2015.
dc.relation.referencesJ. W. Weibull and J. W. W. is A. O. W. P. of E. at S. S. of Economics., Evolutionary Game Theory.
dc.relation.referencesS. N. and S. J. W. Edited by Suvrit Sra, Optimization for Machine Learning. 2011.
dc.relation.referencesA. Pantoja, G. Obando, and N. Quijano, “Distributed optimization with information-constrained population dynamics,” J. Franklin Inst., vol. 356, no. 1, pp. 209–236, 2019, doi: 10.1016/j.jfranklin.2018.10.016.
dc.relation.referencesJ. H. K. Sigmund, Evolutionary Games and Population Dynamics. Cambridge, UK: Cambridge University Press, 1998.
dc.relation.referencesR. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and Cooperation in Networked Multi-Agent Systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–233, 2007, doi: 10.1109/JPROC.2006.887293.
dc.relation.referencesN. Gentile and M. C. Dubois, “Field data and simulations to estimate the role of standby energy use of lighting control systems in individual offices,” Energy Build., vol. 155, pp. 390–403, 2017, doi: 10.1016/j.enbuild.2017.09.028.
dc.relation.referencesA. Pantoja, N. Quijano, and K. M. Passino, “Dispatch of distributed generators under local-information constraints,” Proc. Am. Control Conf., pp. 2682–2687, 2014, doi: 10.1109/ACC.2014.6859190.
dc.relation.referencesR. R. Cardoso and A. F. Brandao, “Artificial neural network application to a building hybrid illumination system,” IEEE Int. Symp. Ind. Electron., pp. 866–871, 2008, doi: 10.1109/ISIE.2008.4677011.
dc.relation.referencesY. Wang and S. Wu, “Development of a solar LED illumination control system based on variable universe adaptive fuzzy PID controller,” Asia-Pacific Power Energy Eng. Conf. APPEEC, pp. 14–17, 2011, doi: 10.1109/APPEEC.2011.5749162.
dc.relation.referencesH. Liao, X. Sheng, and D. Yang, “Design of adaptive lighting system based on fuzzy PID,” in 2018 Chinese Control And Decision Conference (CCDC), 2018, pp. 1543–1547, doi: 10.1109/CCDC.2018.8407372.
dc.relation.referencesM. Mahdavian and N. Wattanapongsakorn, “Multi-objective optimization of PID controller tuning for greenhouse lighting control system considering rtp in the smart grid,” in 2014 International Computer Science and Engineering Conference (ICSEC), 2014, pp. 57–61, doi: 10.1109/ICSEC.2014.6978129.
dc.relation.referencesM. Mahdavian and N. Wattanapongsakorn, “Optimizing PID controller tuning for greenhouse lighting control system by varying number of objectives,” in 2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2014, pp. 1–6, doi: 10.1109/ECTICon.2014.6839890.
dc.relation.referencesS. Agheb, X. Tan, and D. H. K. Tsang, “Model predictive control of integrated room automation considering occupants preference,” 2015 IEEE Int. Conf. Smart Grid Commun. SmartGridComm 2015, pp. 665–670, 2016, doi: 10.1109/SmartGridComm.2015.7436377.
dc.relation.referencesR. Eini and S. Abdelwahed, “A Neural Network-based Model Predictive Control Approach for Buildings Comfort Management,” in 2020 IEEE International Smart Cities Conference (ISC2), 2020, pp. 1–7, doi: 10.1109/ISC251055.2020.9239051.
dc.relation.referencesC. Lu, H. Xiao, and H. Ogai, “Low energy consumption method based on multi-objective PSO for illumination distribution optimization,” 2017 56th Annu. Conf. Soc. Instrum. Control Eng. Japan, SICE 2017, vol. 2017-November, pp. 338–342, 2017, doi: 10.23919/SICE.2017.8105740.
dc.relation.referencesL. Wang, Model Predictive Control System Design and Implementation Using MATLAB. Springer, 2009.
dc.relation.referencesK. Ogata, Sistemas de Control en Tiempo Discreto, 2da. Ed. PRENTlCE HALL HISPANOAMERICANA S.A., 1996.
dc.relation.referencesJ. P. Hespanha, Linear Systems Theory, Ed, 2nd. Princeton, 2018.
dc.relation.referencesK. Ogata, Ingeniería de Control Moderna, 3ra Ed. PRENTICE-HALL HISPANOAMERICANA, S.A., 1998.
dc.relation.referencesY. E. Wu, C. L. Shen, and C. Y. Liu, “Implementation of solar illumination system with three-stage charging and dimming control function,” 2011 Int. Conf. Electr. Inf. Control Eng. ICEICE 2011 - Proc., pp. 2260–2263, 2011, doi: 10.1109/ICEICE.2011.5776825.
dc.relation.referencesM. C. Pacis, K. D. Estoy, L. C. Pepito, J. M. Martinez, and N. B. Linsangan, “Design of a solar powered LED lighting system using the dual axis tracking system,” IEEE Reg. 10 Humanit. Technol. Conf. R10-HTC 2015 - co-located with 8th Int. Conf. Humanoid, Nanotechnology, Inf. Technol. Commun. Control. Environ. Manag. HNICEM 2015, 2016, doi: 10.1109/R10-HTC.2015.7391847.
dc.relation.referencesL. S. Shyu, C. H. Lee, K. Y. Lu, and C. T. Horng, “Independent wind-solar hybrid generation system for construction and verification in campus,” Proc. - 2018 1st Int. Cogn. Cities Conf. IC3 2018, pp. 174–178, 2018, doi: 10.1109/IC3.2018.00-34.
dc.relation.referencesX. Cao, X. Dai, and J. Liu, “Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade,” Energy Build., vol. 128, pp. 198–213, 2016, doi: 10.1016/j.enbuild.2016.06.089.
dc.relation.referencesD. Li, Z. Kun, and Q. Gao, “Zero Energy Consumption LED Intelligent Lighting System Based on the Technology of PoE,” Chinese Control Conf. CCC, vol. 2018-July, pp. 7639–7643, 2018, doi: 10.23919/ChiCC.2018.8483337.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalReplicator Dynamics
dc.subject.proposalReplicadores dinámicos
dc.subject.proposalLighting Control
dc.subject.proposalControl de iluminación
dc.subject.proposalControl distribuido
dc.subject.proposalDistributed Control
dc.subject.proposalDistributed Energy Optimization
dc.subject.proposalOptimización distribuida de energía
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito